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My research interests

I Statistical and computational limits of average-case inference
problems (signal planted in random noise)

I Community detection (stochastic block model)
I Spiked matrix/tensor problems
I Synchronization / group actions (today)

I Connections to...

I Statistical physics

I Phase transitions: easy, hard, impossible

I Algebra

I Group theory, representation theory, invariant theory

I Today: problems involving group actions

I A meeting point of statistics, algebra, signal processing
computer science, statistical physics, . . .
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Motivation: cryo-electron microscopy (cryo-EM)

Image credit: [Singer, Shkolnisky ’11]

I Biological imaging method: determine structure of molecule
I 2017 Nobel Prize in Chemistry
I Given many noisy 2D images of a 3D molecule, taken from

different unknown angles
I Goal is to reconstruct the 3D structure of the molecule
I Group action by SO(3) (rotations in 3D)
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Other examples

Other problems involving random group actions:

I Image registration

Image credit: [Bandeira, PhD thesis ’15]

Group: SO(2) (2D rotations)

I Multi-reference alignment

Image credit: Jonathan Weed

Group: Z/p (cyclic shifts)

I Applications: computer vision, radar, structural biology,
robotics, geology, paleontology, ...

I Methods used in practice often lack provable guarantees...
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Part I: Synchronization
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Synchronization problems

The synchronization approach [1]: learn the group elements

I Fix a group G
I e.g. SO(3)

I g ∈ Gn – vector of unknown group elements
I e.g. rotation of each image

I Given pairwise information: for each i < j , a noisy
measurement of gig

−1
j

I e.g. by comparing two images

I Goal: recover g up to global right-multiplication
I can’t distinguish (g1, . . . , gn) from (g1h, . . . , gnh)

In cryo-EM: once you learn the rotations, it is possible to
reconstruct a de-noised model of the molecule [2]

[1] Singer ’11

[2] Singer, Shkolnisky ’11
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A simple model: Gaussian Z/2 synchronization

I G = Z/2 = {±1}

I True signal x ∈ {±1}n (vector of group elements)

I For each i , j observe xixj +N (0, σ2)

I Specifically, observe n × n matrix Y =
λ

n
xx>︸ ︷︷ ︸

signal

+
1√
n
W︸ ︷︷ ︸

noiseI λ ≥ 0 – signal-to-noise parameter

I W – random noise matrix: symmetric with entries N (0, 1)

I Yij is a noisy measurement of xixj (same/diff)

I Normalization: MMSE is a constant (depending on λ)

This is a spiked Wigner model: in general xi ∼ P (some prior)

Statistical physics makes extremely precise (non-rigorous)
predictions about this type of problem

I Often later proved correct
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A simple model: Gaussian Z/2 synchronization

I G = Z/2 = {±1}
I True signal x ∈ {±1}n (vector of group elements)

I Observe n × n matrix Y =
λ

n
xx>︸ ︷︷ ︸

signal

+
1√
n
W︸ ︷︷ ︸

noise

Image credit: [Deshpande, Abbe, Montanari ’15]
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Statistical physics and inference

What does statistical physics have to do with Bayesian inference?

In inference, observe Y = λ
n xx

> + 1√
n
W and want to infer x

Posterior distribution: Pr[x |Y ] ∝ exp(λ x>Yx)

In physics, this is called a Boltzmann/Gibbs distribution:

Pr[x ] ∝ exp(−βH(x))

I Energy (“Hamiltonian”) H(x) = −x>Yx
I Temperature β = λ

So posterior distribution of Bayesian inference obeys the same
equations as a disordered physical system (e.g. magnet, spin glass)
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BP and AMP

“Axiom” from statistical physics: the best algorithm for every*
problem is BP (belief propagation) [1]

I Each unknown xi is a “node”

I Each observation (“interaction”) Yij is an “edge”

I In our case, a complete graph

I Nodes iteratively pass “messages” or “beliefs” to each other along
edges, and then update their own beliefs

I Hard to analyze

In our case (since interactions are “dense”), we can use a simplification
of BP called AMP (approximate message passing) [2]

I Easy/possible to analyze

I Provably optimal mean squared error for many problems

[1] Pearl ’82

[2] Donoho, Maleki, Montanari ’09
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AMP for Z/2 synchronization

Y =
λ

n
xx> +

1√
n
W , x ∈ {±1}n

AMP algorithm:

I State v ∈ Rn – estimate for x
I Initialize v to small random vector
I Repeat:

1. Power iteration: v ← Yv (power iteration)
2. Onsager: v ← v + [Onsager term]
3. Entrywise soft projection: vi ← tanh(λvi ) (for all i)

I Resulting values in [−1, 1]
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AMP is optimal

Y =
λ

n
xx> +

1√
n
W , x ∈ {±1}n

For Z/2 synchronization, AMP is provably optimal.

Deshpande, Abbe, Montanari, ’15

13 / 39



Free energy landscapes

What do physics predictions look like?

f (γ) =
1

λ

[
−

λ2

4

(
γ2

λ4
+ 1

)
+

1

2
γ

(
γ

λ2
+ 1

)
− E

z∼N (0,1)
log(2 cosh(γ +

√
γz))

]
x-axis γ: correlation with true signal (related to MSE)

y-axis f : free energy – AMP’s “objective function” (minimize)

AMP – gradient descent starting from γ = 0 (left side)

STAT (statistical) – global minimum

So yields computational and statistical MSE for each λ

Lesieur, Krzakala, Zdeborová ’15
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Our contributions

Joint work with Amelia Perry, Afonso Bandeira, Ankur Moitra

I Using representation theory we define a very general Gaussian
observation model for synchronization over any compact group

I Significantly generalizes Z/2 case

I We give a precise analysis of the statistical and computational
limits of this model

I Uses non-rigorous (but well-established) ideas from statistical
physics

I Methods proven correct in related settings

I Includes an AMP algorithm which we believe is optimal among
all polynomial-time algorithms

I Also some rigorous statistical lower and upper bounds

Perry, W., Bandeira, Moitra, Message-passing algorithms for synchronization problems over compact groups,
to appear in CPAM

Perry, W., Bandeira, Moitra, Optimality and Sub-optimality of PCA for Spiked Random Matrices and
Synchronization, part I to appear in Ann. Stat
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Multi-frequency U(1) synchronization

I G = U(1) = {z ∈ C : |z | = 1} (angles)

I True signal x ∈ U(1)n

I W – complex Gaussian noise (GUE)
I Observe

Y (1) =
λ1

n
xx∗ +

1√
n
W (1)

Y (2) =
λ2

n
x2x∗2 +

1√
n
W (2)

· · ·

Y (K) =
λK
n

xKx∗K +
1√
n
W (K)

where xk means entry-wise kth power.

I This model has information on different frequencies
I Challenge: how to synthesize information across frequencies?
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AMP for U(1) synchronization

Y (k) =
λk
n
xkx∗k +

1√
n
W (k) for k = 1, . . . ,K

Algorithm’s state: v (k) ∈ Cn for each frequency k

I v (k) is an estimate of (xk1 , . . . , x
k
n )

AMP algorithm:

I Power iteration (separately on each frequency):
v (k) ← Y (k)v (k)

I “Soft projection” (separately on each index i): v
(·)
i ← F(v

(·)
i )

I This synthesizes the frequencies in a non-trivial way

I Onsager correction term

Analysis of AMP:

I Exact expression for AMP’s MSE (as n→∞) as a function of
λ1, . . . , λK

I Also, exact expression for the statistically optimal MSE
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Results for U(1) synchronization

Y (k) =
λk
n
xkx∗k +

1√
n
W (k) for k = 1, . . . ,K

I Single frequency: given Y (k), can non-trivially estimate xk iff
λk > 1

I Information-theoretically, with λ1 = · · · = λK = λ, need
λ ∼

√
logK/K (for large K )

I But AMP (and conjecturally, any poly-time algorithm)
requires λk > 1 for some k

I Computationally hard to synthesize sub-critical (λ ≤ 1)
frequencies

I But once above the λ = 1 threshold, adding frequencies helps
reduce MSE of AMP

18 / 39



Results for U(1) synchronization

Y (k) =
λk
n
xkx∗k +

1√
n
W (k) for k = 1, . . . ,K

I Single frequency: given Y (k), can non-trivially estimate xk iff
λk > 1

I Information-theoretically, with λ1 = · · · = λK = λ, need
λ ∼

√
logK/K (for large K )

I But AMP (and conjecturally, any poly-time algorithm)
requires λk > 1 for some k

I Computationally hard to synthesize sub-critical (λ ≤ 1)
frequencies

I But once above the λ = 1 threshold, adding frequencies helps
reduce MSE of AMP

18 / 39



Results for U(1) synchronization

Y (k) =
λk
n
xkx∗k +

1√
n
W (k) for k = 1, . . . ,K

I Single frequency: given Y (k), can non-trivially estimate xk iff
λk > 1

I Information-theoretically, with λ1 = · · · = λK = λ, need
λ ∼

√
logK/K (for large K )

I But AMP (and conjecturally, any poly-time algorithm)
requires λk > 1 for some k

I Computationally hard to synthesize sub-critical (λ ≤ 1)
frequencies

I But once above the λ = 1 threshold, adding frequencies helps
reduce MSE of AMP

18 / 39



Results for U(1) synchronization

Y (k) =
λk
n
xkx∗k +

1√
n
W (k) for k = 1, . . . ,K

I Single frequency: given Y (k), can non-trivially estimate xk iff
λk > 1

I Information-theoretically, with λ1 = · · · = λK = λ, need
λ ∼

√
logK/K (for large K )

I But AMP (and conjecturally, any poly-time algorithm)
requires λk > 1 for some k

I Computationally hard to synthesize sub-critical (λ ≤ 1)
frequencies

I But once above the λ = 1 threshold, adding frequencies helps
reduce MSE of AMP

18 / 39



Results for U(1) synchronization

Y (k) =
λk
n
xkx∗k +

1√
n
W (k) for k = 1, . . . ,K

I Single frequency: given Y (k), can non-trivially estimate xk iff
λk > 1

I Information-theoretically, with λ1 = · · · = λK = λ, need
λ ∼

√
logK/K (for large K )

I But AMP (and conjecturally, any poly-time algorithm)
requires λk > 1 for some k

I Computationally hard to synthesize sub-critical (λ ≤ 1)
frequencies

I But once above the λ = 1 threshold, adding frequencies helps
reduce MSE of AMP

18 / 39



Results for U(1) synchronization

Y (k) =
λk
n
xkx∗k +

1√
n
W (k) for k = 1, . . . ,K

I Single frequency: given Y (k), can non-trivially estimate xk iff
λk > 1

I Information-theoretically, with λ1 = · · · = λK = λ, need
λ ∼

√
logK/K (for large K )

I But AMP (and conjecturally, any poly-time algorithm)
requires λk > 1 for some k

I Computationally hard to synthesize sub-critical (λ ≤ 1)
frequencies

I But once above the λ = 1 threshold, adding frequencies helps
reduce MSE of AMP

18 / 39



Results for U(1) synchronization

Solid: AMP (n = 100) (K = num freq)
Dotted: theoretical (n→∞)
Same λ on each frequency

Image credit: Perry, W., Bandeira, Moitra, Message-passing algorithms for synchronization problems over
compact groups, to appear in CPAM
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General groups

All of the above extends to any compact group

I E.g. Any finite group; SO(3)

How to even define the model?

I Need to add “noise” to a group element gig
−1
j

Answer: Use representation theory to represent a group element as
a matrix (and then add Gaussian noise)

I A representation ρ of G is a way to assign a matrix ρ(g) to
each g ∈ G

I Formally, a homomorphism
ρ : G → GL(Cd) = {d × d invertible matrices}

Frequencies are replaced by irreducible representations of G

I Fourier theory for functions G → C

For U(1), 1D irreducible representation for each k : ρk(g) = gk
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Part II: Orbit Recovery
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Back to cryo-EM

Image credit: [Singer, Shkolnisky ’11]

Synchronization is not the ideal model for cryo-EM

I The synchronization approach disregards the underlying signal
(the molecule)

I Our Gaussian synchronization model assumes independent
noise on each pair i , j of images, whereas actually there is
independent noise on each image

I For high noise, it is impossible to reliably recover the rotations
I So we should not try to estimate the rotations!
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Orbit recovery problem

Let G be a compact group acting linearly and continuously on a
finite-dimensional real vector space V = Rp.

I Compact: e.g. any finite group, SO(2), SO(3)

I Linear: ρ : G → GL(V ) = {invertible p × p matrices}
(homomorphism)

I Action: g · x = ρ(g)x for g ∈ G , x ∈ V

I Continuous: ρ is continuous
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Orbit recovery problem

Let G be a compact group acting linearly and continuously on a
finite-dimensional real vector space V = Rp.

Unknown signal x ∈ V (e.g. the molecule)

For i = 1, . . . , n observe yi = gi · x + εi where. . .

I gi ∼ Haar(G ) (“uniform distribution” on G )

I εi ∼ N (0, σ2Ip) (noise)

Goal: Recover some x̃ in the orbit {g · x : g ∈ G} of x
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Special case: multi-reference alignment (MRA)

G = Z/p acts on Rp via cyclic shifts
For i = 1, . . . , n observe yi = gi · x + εi with εi ∼ N (0, σ2I)

Image credit: Jonathan Weed

Method of invariants [1,2] : measure features of the signal x that
are shift-invariant
Degree-1:

∑
i xi (mean)

Degree-2:
∑

i x
2
i , x1x2 + x2x3 + · · ·+ xpx1, . . . (autocorrelation)

Degree-3: x1x2x4 + x2x3x5 + . . . (triple correlation)
Invariant features are easy to estimate from the samples

[1] Bandeira, Rigollet, Weed, Optimal rates of estimation for multi-reference alignment, 2017

[2] Perry, Weed, Bandeira, Rigollet, Singer, The sample complexity of multi-reference alignment, 2017
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Sample complexity

Theorem [1]:
(Upper bound) With noise level σ, can estimate degree-d
invariants using n = O(σ2d) samples.

(Lower bound) If x (1), x (2) agree on all invariants of degree
≤ d − 1 then Ω(σ2d) samples are required to distinguish them.

I Method of invariants is optimal

Question: What degree d∗ of invariants do we need to learn before
we can recover (the orbit of) x?

I Optimal sample complexity is n = Θ(σ2d∗)

Answer (for MRA) [1]:

I For “generic” x , degree 3 is sufficient, so sample complexity
n = Θ(σ6)

I But for a measure-zero set of “bad” signals, need much higher
degree (as high as p)

[1] Bandeira, Rigollet, Weed, Optimal rates of estimation for multi-reference alignment, 2017
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Another viewpoint: mixtures of Gaussians

MRA sample: y = g · x + ε with g ∼ G , ε ∼ N (0, σ2I)

The distribution of y is a (uniform) mixture of |G | Gaussians
centered at {g · x : g ∈ G}
I For infinite groups, a mixture of infinitely-many Gaussians

Method of moments: Estimate moments E[y ],E[yy>], . . ., E[y⊗d ]

E[y⊗k ] Eg [(g · x)⊗k ]

Fact: Moments are equivalent to invariants

I Eg [(g · x)⊗k ] contains the same information as the degree-k
invariant polynomials
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I Eg [(g · x)⊗k ] contains the same information as the degree-k
invariant polynomials
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Our contributions

Joint work with Ben Blum-Smith, Afonso Bandeira, Amelia Perry,
Jonathan Weed

I We generalize from MRA to any compact group

I Again, the method of invariants/moments is optimal

I We give an (inefficient) algorithm that achieves optimal
sample complexity: solve polynomial system

I To determine what degree of invariants are required, we use
invariant theory and algebraic geometry

I How to tell if polynomial equations have a unique solution

Bandeira, Blum-Smith, Perry, Weed, W., Estimation under group actions: recovering orbits from invariants,
2017
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Invariant theory

Variables x1, . . . , xp (corresponding to the coordinates of x)

The invariant ring R[x]G is the subring of R[x] := R[x1, . . . , xp]
consisting of polynomials f such that f (g · x) = f (x) ∀g ∈ G .

I Aside: A main result of invariant theory is that R[x]G is
finitely-generated

R[x]G≤d – invariants of degree ≤ d

(Simple) algorithm:

I Pick d∗ (to be chosen later)

I Using Θ(σ2d∗) samples, estimate invariants up to degree d∗:
learn value f (x) for all f ∈ R[x]G≤d

I Solve for an x̂ that is consistent with those values:
f (x̂) = f (x) ∀f ∈ R[x]G≤d (polynomial system of equations)
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All invariants determine orbit

Theorem [1]: If G is compact, for every x ∈ V , the full invariant
ring R[x]G determines x up to orbit.

I In the sense that if x , x ′ do not lie in the same orbit, there
exists f ∈ R[x]G that separates them: f (x) 6= f (x ′)

Corollary: Suppose that for some d , R[x]G≤d generates R[x]G (as

an R-algebra). Then R[x]G≤d determines x up to orbit and so

sample complexity is O(σ2d).

Problem: This is for worst-case x ∈ V . For MRA (cyclic shifts)
this requires d = p whereas generic x only requires d = 3 [2].

Actually care about whether R[x]G≤d generically determines R[x]G

[1] Kač, Invariant theory lecture notes, 1994

[2] Bandeira, Rigollet, Weed, Optimal rates of estimation for multi-reference alignment, 2017
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[1] Kač, Invariant theory lecture notes, 1994

[2] Bandeira, Rigollet, Weed, Optimal rates of estimation for multi-reference alignment, 2017

30 / 39



All invariants determine orbit

Theorem [1]: If G is compact, for every x ∈ V , the full invariant
ring R[x]G determines x up to orbit.

I In the sense that if x , x ′ do not lie in the same orbit, there
exists f ∈ R[x]G that separates them: f (x) 6= f (x ′)

Corollary: Suppose that for some d , R[x]G≤d generates R[x]G (as

an R-algebra). Then R[x]G≤d determines x up to orbit and so

sample complexity is O(σ2d).

Problem: This is for worst-case x ∈ V . For MRA (cyclic shifts)
this requires d = p whereas generic x only requires d = 3 [2].

Actually care about whether R[x]G≤d generically determines R[x]G
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Do polynomials generically determine other polynomials?

Say we have A ⊆ B ⊆ R[x]

I (Technically need to assume B is finitely generated)

Question: Do the values {a(x) : a ∈ A} generically determine the
values {b(x) : b ∈ B}?

Definition: Polynomials f1, . . . , fm are algebraically independent if
there is no P ∈ R[y1, . . . , ym] with P(f1, . . . , fm) ≡ 0.

Definition: For U ⊆ R[x], the transcendence degree trdeg(U) is
the number of algebraically independent polynomials in U.

Answer: Suppose trdeg(A) = trdeg(B). If x is “generic” then the
values {a(x) : a ∈ A} determine a finite number of possibilities
for the entire collection {b(x) : b ∈ B}.
I “Generic”: x lies in a particular full-measure set
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How to test algebraic independence?

This is actually easy!

Theorem (Jacobian criterion):
Polynomials f1, . . . , fm ∈ R[x1, . . . , xp] are algebraically
independent if and only if the m × p Jacobian matrix Jij = ∂fi

∂xj
has

full row rank. (Still true if you evaluate J at a generic point x .)

I Why: Tests whether map (x1, . . . , xp) 7→ (f1(x), . . . , fm(x)) is
locally surjective
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Generic list recovery

Our main result is an efficient procedure that takes the problem
setup as input (group G and action on V ) and outputs the degree
d∗ of invariants required for generic list recovery.

I List recovery: output a finite list x̂ (1), x̂ (2), . . ., one of which
(approximately) lies in the orbit of the true x

I List recovery may be good enough in practice?

Procedure:

I Need to test whether R[x]G≤d determines R[x]G (generically)

I So need to check if trdeg(R[x]G≤d) = trdeg(R[x]G )

I trdeg(R[x]G ) is easy: dim(x)− dim(orbit)

I trdeg(R[x]G≤d) via Jacobian criterion
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I List recovery: output a finite list x̂ (1), x̂ (2), . . ., one of which
(approximately) lies in the orbit of the true x

I List recovery may be good enough in practice?

Comments:

I For e.g. MRA (cyclic shifts), need to test each p separately on
a computer

I Not an efficient algorithm to solve any particular instance

I There is also an algorithm to bound the size of the list (or test
for unique recovery), but it is not efficient (Gröbner bases)
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Generalized orbit recovery problem

Extensions:

I Projection (e.g. cryo-EM):
I Observe yi = Π(gi · x) + εi
I Π : V →W linear
I εi ∼ N (0, σ2I)

I Heterogeneity:
I K signals x (1), . . . , x (K)

I Mixing weights (w1, . . . ,wK ) ∈ ∆K

I Observe yi = Π(gi · x (ki )) + εi
I ki ∼ {1, . . . ,K} according to w

Same methods apply!

I Order-d moments now only give access to a particular
subspace of R[x]G

I For heterogeneity, work over a bigger group GK acting on
(x (1), . . . , x (K)) ∈ V⊕K
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Generalized orbit recovery problem

Extensions:
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Results: cryo-EM

Our methods show that for cryo-EM, generic list recovery is
possible at degree 3

So information-theoretic sample complexity is Θ(σ6)

Ongoing work: polynomial time algorithm for cryo-EM
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Efficient recovery: tensor decomposition

Restrict to finite group

Recall: with O(σ6) samples, can estimate the third moment:

T3(x) =
∑
g∈G

(g · x)⊗3

This is an instance of tensor decomposition: Given
∑m

i=1 a
⊗3
i for

some a1, . . . , am ∈ Rp, recover {ai}

For MRA: since m ≤ p (“undercomplete”) can apply Jennrich’s
algorithm to decompose tensor efficiently [1]

[1] Perry, Weed, Bandeira, Rigollet, Singer, The sample complexity of multi-reference alignment, 2017
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Example: heterogeneous MRA

MRA with multiple signals x (1), . . . , x (K)

Td(x) =
K∑

k=1

∑
g∈G

(g · x (k))⊗d

Jennrich’s algorithm works if given 5th moment  n = O(σ10) [1]

Information-theoretically, 3rd moment suffices if K ≤ p/6

If signals x (k) are random (i.i.d. Gaussian), conjectured that
efficient recovery is possible from 3rd moment iff K ≤ √p [2]

New result (with A. Moitra): if K ≤ √p/polylog(p) then for
random signals, efficient recovery is possible from 3rd moment
I Based on random overcomplete 3-tensor decomposition [3]

[1] Perry, Weed, Bandeira, Rigollet, Singer ’17

[2] Boumal, Bendory, Lederman, Singer ’17

[3] Ma, Shi, Steurer ’16
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