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My research interests

» Statistical and computational limits of average-case inference
problems (signal planted in random noise)

» Community detection (stochastic block model)
» Spiked matrix/tensor problems
» Synchronization / group actions (today)
» Connections to...
» Statistical physics
> Phase transitions: easy, hard, impossible
> Algebra

» Group theory, representation theory, invariant theory

» Today: problems involving group actions

» A meeting point of statistics, algebra, signal processing
computer science, statistical physics, ...
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Biological imaging method: determine structure of molecule
2017 Nobel Prize in Chemistry

Given many noisy 2D images of a 3D molecule, taken from
different unknown angles

Goal is to reconstruct the 3D structure of the molecule
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Biological imaging method: determine structure of molecule
2017 Nobel Prize in Chemistry

Given many noisy 2D images of a 3D molecule, taken from
different unknown angles

v

v

Goal is to reconstruct the 3D structure of the molecule
Group action by SO(3) (rotations in 3D)

v
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Other problems involving random group actions:

> Image registration

Image credit: [Bandeira, PhD thesis '15]

Group: SO(2) (2D rotations)

» Multi-reference alignment

true signal

noisy data

Image credit: Jonathan Weed

Group: Z/p (cyclic shifts)
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Other examples

Other problems involving random group actions:

> Image registration » Multi-reference alignment

noisy data

Image credit: [Bandeira, PhD thesis '15] Image credit: Jonathan Weed
Group: SO(2) (2D rotations) Group: Z/p (cyclic shifts)

» Applications: computer vision, radar, structural biology,
robotics, geology, paleontology, ...

» Methods used in practice often lack provable guarantees...
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Synchronization problems

The synchronization approach [1]: learn the group elements

» Fix a group G
» e.g. SO(3)
» g € G" — vector of unknown group elements

> e.g. rotation of each image

> Given pairwise information: for each i/ < j, a noisy
measurement of g,-gj_l
> e.g. by comparing two images

» Goal: recover g up to global right-multiplication
» can't distinguish (g1,...,8,) from (gih,...,g.h)

In cryo-EM: once you learn the rotations, it is possible to
reconstruct a de-noised model of the molecule [2]

[1] Singer '11
[2] Singer, Shkolnisky '11

39



A simple model: Gaussian Z/2 synchronization

> G=17/2={£1}

/39



A simple model: Gaussian Z/2 synchronization

> G=7/2={+1}

> True signal x € {£1}" (vector of group elements)

/ 39



A simple model: Gaussian Z/2 synchronization

» G=7/2={£1}
> True signal x € {£1}" (vector of group elements)

» For each i, observe x;x; + N (0, 0?)

39



A simple model: Gaussian Z/2 synchronization

v

G=17/2={%1}
True signal x € {£1}" (vector of group elements)

v
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For each i, j observe x;x; + N(0,?)

: . A
Specifically, observe n x n matrix Y = Zxx ' 4+ —=W

| 2
n n
\f
signal noise

v

A > 0 — signal-to-noise parameter
» W — random noise matrix: symmetric with entries A/(0, 1)
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A simple model: Gaussian Z/2 synchronization

» G=7/2={£1}
> True signal x € {£1}" (vector of group elements)

» For each i, observe x;x; + N (0, 0?)

: . A 1
» Specifically, observe n x n matrix Y = Zxx' + —W

n n
~—— \f
signal noise

» A\ > 0 — signal-to-noise parameter
» W — random noise matrix: symmetric with entries A/(0, 1)
> Y,-J-
» Normalization: MMSE is a constant (depending on \)

is a noisy measurement of x;x; (same/diff)

This is a spiked Wigner model: in general x; ~ P (some prior)

Statistical physics makes extremely precise (non-rigorous)
predictions about this type of problem

» Often later proved correct
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A simple model: Gaussian Z/2 synchronization

» G=17/2={£1}
» True signal x € {£1}" (vector of group elements)

» Observe n x nmatrix ¥ = “xx' + —W
n Vvn
g
signal noise

0.8

0.6
Error
(MMSE)
n— oo
0.4

Image credit: [Deshpande, Abbe, Montanari '15]
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Statistical physics and inference

What does statistical physics have to do with Bayesian inference?

A

In inference, observe Y = ;xxT + ﬁW and want to infer x

Posterior distribution: Pr[x|Y] o< exp(Ax ' Yx)
In physics, this is called a Boltzmann/Gibbs distribution:

Prlx] oc exp(—BH(x))

» Energy (“Hamiltonian") H(x) = —x Yx
» Temperature 8 = A

So posterior distribution of Bayesian inference obeys the same
equations as a disordered physical system (e.g. magnet, spin glass)

10/39
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BP and AMP

“Axiom” from statistical physics: the best algorithm for every*
problem is BP (belief propagation) [1]

» Each unknown x; is a “node”
» Each observation (“interaction”) Yj; is an “edge”
> In our case, a complete graph

> Nodes iteratively pass "messages” or “beliefs” to each other along
edges, and then update their own beliefs

» Hard to analyze

In our case (since interactions are “dense” ), we can use a simplification
of BP called AMP (approximate message passing) [2]

> Easy/possible to analyze

» Provably optimal mean squared error for many problems

[1] Pearl '82
[2] Donoho, Maleki, Montanari '09
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AMP for Z/2 synchronization

Y = éxxT + LW, x € {£1}"
n vn
AMP algorithm:
» State v € R” — estimate for x
» Initialize v to small random vector
> Repeat:

1. Power iteration: v < Yv (power iteration)

2. Onsager: v < v + [Onsager term|

3. Entrywise soft projection: v; < tanh(Av;) (for all i)
> Resulting values in [—1,1]

! tanh(x)

12/39



AMP is optimal

A 1
Y =Sxx| +—W +1}"
XX +\/ﬁ ; x € {£1}

For Z/2 synchronization, AMP is provably optimal.

1.0

0.8

0.6
Error
(MMSE)

n— oo
0.4

Deshpande, Abbe, Montanari, '15
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STAT (statistical) — global minimum
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What do physics predictions look like?

) 1 A2 (42 L +1
S iy A z
=X 4 \ A4 27

(l + 1) - Z~'}\]]}:(011) log(2 cosh(y + /7z))

A = 0.8, impossible

5

x-axis y: correlation with true signal (related to MSE)

y-axis f: free energy — AMP’s “objective function” (minimize)
AMP — gradient descent starting from v = 0 (left side)

STAT (statistical) — global minimum

So yields computational and statistical MSE for each A

A =0.92, hard

AMP

STAT

Lesieur, Krzakala, Zdeborova '15

14 /39



Our contributions

Joint work with Amelia Perry, Afonso Bandeira, Ankur Moitra

Perry, W., Bandeira, Moitra, Message-passing algorithms for synchronization problems over compact groups,
to appear in CPAM
Perry, W., Bandeira, Moitra, Optimality and Sub-optimality of PCA for Spiked Random Matrices and
Synchronization, part | to appear in Ann. Stat
15/39



Our contributions
Joint work with Amelia Perry, Afonso Bandeira, Ankur Moitra

» Using representation theory we define a very general Gaussian
observation model for synchronization over any compact group

Perry, W., Bandeira, Moitra, Message-passing algorithms for synchronization problems over compact groups,
to appear in CPAM

Perry, W., Bandeira, Moitra, Optimality and Sub-optimality of PCA for Spiked Random Matrices and
Synchronization, part | to appear in Ann. Stat

15/39



Our contributions
Joint work with Amelia Perry, Afonso Bandeira, Ankur Moitra

» Using representation theory we define a very general Gaussian
observation model for synchronization over any compact group

» Significantly generalizes Z/2 case

Perry, W., Bandeira, Moitra, Message-passing algorithms for synchronization problems over compact groups,
to appear in CPAM

Perry, W., Bandeira, Moitra, Optimality and Sub-optimality of PCA for Spiked Random Matrices and
Synchronization, part | to appear in Ann. Stat

15/39



Our contributions
Joint work with Amelia Perry, Afonso Bandeira, Ankur Moitra

» Using representation theory we define a very general Gaussian
observation model for synchronization over any compact group

» Significantly generalizes Z/2 case

» We give a precise analysis of the statistical and computational
limits of this model

Perry, W., Bandeira, Moitra, Message-passing algorithms for synchronization problems over compact groups,
to appear in CPAM

Perry, W., Bandeira, Moitra, Optimality and Sub-optimality of PCA for Spiked Random Matrices and
Synchronization, part | to appear in Ann. Stat

15/39



Our contributions
Joint work with Amelia Perry, Afonso Bandeira, Ankur Moitra

» Using representation theory we define a very general Gaussian
observation model for synchronization over any compact group

» Significantly generalizes Z/2 case

» We give a precise analysis of the statistical and computational
limits of this model
» Uses non-rigorous (but well-established) ideas from statistical
physics
» Methods proven correct in related settings

Perry, W., Bandeira, Moitra, Message-passing algorithms for synchronization problems over compact groups,
to appear in CPAM

Perry, W., Bandeira, Moitra, Optimality and Sub-optimality of PCA for Spiked Random Matrices and
Synchronization, part | to appear in Ann. Stat

15/39



Our contributions
Joint work with Amelia Perry, Afonso Bandeira, Ankur Moitra

» Using representation theory we define a very general Gaussian
observation model for synchronization over any compact group

» Significantly generalizes Z/2 case

» We give a precise analysis of the statistical and computational
limits of this model
» Uses non-rigorous (but well-established) ideas from statistical
physics
» Methods proven correct in related settings
> Includes an AMP algorithm which we believe is optimal among
all polynomial-time algorithms

Perry, W., Bandeira, Moitra, Message-passing algorithms for synchronization problems over compact groups,
to appear in CPAM

Perry, W., Bandeira, Moitra, Optimality and Sub-optimality of PCA for Spiked Random Matrices and
Synchronization, part | to appear in Ann. Stat

15/39



Our contributions
Joint work with Amelia Perry, Afonso Bandeira, Ankur Moitra

» Using representation theory we define a very general Gaussian
observation model for synchronization over any compact group

» Significantly generalizes Z/2 case

» We give a precise analysis of the statistical and computational
limits of this model

» Uses non-rigorous (but well-established) ideas from statistical
physics
» Methods proven correct in related settings
> Includes an AMP algorithm which we believe is optimal among
all polynomial-time algorithms

» Also some rigorous statistical lower and upper bounds

Perry, W., Bandeira, Moitra, Message-passing algorithms for synchronization problems over compact groups,
to appear in CPAM
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Multi-frequency U(1) synchronization

» G=U(1)={ze€C : |z] =1} (angles)
» True signal x € U(1)"
» W — complex Gaussian noise (GUE)
> Observe \ .
y(D) = Ao = @
n + Vvn
A2 1
Y(2) _ e 2 %2 7w(2)
n + Vn
A 1
Y(K) — 7KXKX*K+%W(K)
where x¥ means entry-wise kth power.
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y(K) = MK ek L k)
n Vn
where x¥ means entry-wise kth power.
» This model has information on different frequencies

16

39



Multi-frequency U(1) synchronization

» G=U(1)={ze€C : |z] =1} (angles)
» True signal x € U(1)"

» W — complex Gaussian noise (GUE)

> Observe

y(K) = MK ek L k)
n Vn
where x¥ means entry-wise kth power.
» This model has information on different frequencies
» Challenge: how to synthesize information across frequencies?

16
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AMP for U(1) synchronization

A 1
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AMP for U(1) synchronization
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n n
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AMP for U(1) synchronization

A 1
y (k) — kax*k + ﬁw(k) fork=1,...,K

Algorithm’s state: v(k) € C" for each frequency k
» v(k) is an estimate of (xX,...,xk)
AMP algorithm:

» Power iteration (separately on each frequency):
vK) — y k), (k)
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AMP for U(1) synchronization

A 1
yk) = Zhykserk o = W) fork=1,... K
Vvn

n

Algorithm’s state: v(k) € C" for each frequency k
» v(k) is an estimate of (xX,...,xk)
AMP algorithm:

» Power iteration (separately on each frequency):
vK) — y k), (k)

» “Soft projection” (separately on each index i): v
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» This synthesizes the frequencies in a non-trivial way
» Onsager correction term
Analysis of AMP:

» Exact expression for AMP's MSE (as n — o0) as a function of

AL, AK

» Also, exact expression for the statistically optimal MSE
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» Single frequency: given Y(K), can non-trivially estimate x* iff
A >1

» Information-theoretically, with Ay = --- = Ak = A, need
A~ /log K/K (for large K)

» But AMP (and conjecturally, any poly-time algorithm)
requires A, > 1 for some k

» Computationally hard to synthesize sub-critical (A < 1)
frequencies

» But once above the A = 1 threshold, adding frequencies helps
reduce MSE of AMP
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Results for U(1) synchronization

|
w

log error
A

0.5 1.0 15 2.0 2.5 3.0

Solid: AMP (n = 100) (K = num freq)
Dotted: theoretical (n — o0)
Same A on each frequency

Image credit: Perry, W., Bandeira, Moitra, Message-passing algorithms for synchronization problems over
compact groups, to appear in CPAM
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How to even define the model?

» Need to add “noise” to a group element g,-gjf1

Answer: Use representation theory to represent a group element as
a matrix (and then add Gaussian noise)

> A representation p of G is a way to assign a matrix p(g) to
eachge G

» Formally, a homomorphism
p: G — GL(CY) = {d x d invertible matrices}
Frequencies are replaced by irreducible representations of G
» Fourier theory for functions G — C

For U(1), 1D irreducible representation for each k: pk(g) = g*
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Back to cryo-EM

Projection P,= ‘ . ‘
Molecule ¢ 6f

S

/) R; € SO(3)

7 ' EEE
E;ss&z%"m 9003 05¢0C

Image credit: [Singer, Shkolnisky '11]
Synchronization is not the ideal model for cryo-EM

» The synchronization approach disregards the underlying signal
(the molecule)

» Our Gaussian synchronization model assumes independent
noise on each pair i, of images, whereas actually there is
independent noise on each image

» For high noise, it is impossible to reliably recover the rotations

» So we should not try to estimate the rotations!
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Orbit recovery problem

Let G be a compact group acting linearly and continuously on a
finite-dimensional real vector space V = RP.

Unknown signal x € V (e.g. the molecule)

Fori=1,...,n observe y; = g; - x + €; where. ..

» gi ~ Haar(G) (“uniform distribution” on G)
» g ~N(0,0%1,) (noise)

Goal: Recover some X in the orbit {g-x : g € G} of x

24 /39



Special case: multi-reference alignment (MRA)

G = Z/p acts on RP via cyclic shifts
For i=1,...,n observe y; = gj - x + &; with £; ~ N (0, 0°T)

o~ TN -

true signal

noisy data

Image credit: Jonathan Weed
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Method of invariants [1,2] : measure features of the signal x that
are shift-invariant
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Degree-2: Zix,?, X1X2 + XoX3 + -+ + XpX1, ... (autocorrelation)
Degree-3: xyxox4 + xox3x5 + . .. (triple correlation)

Invariant features are easy to estimate from the samples
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Sample complexity
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Theorem [1]:
(Upper bound) With noise level o, can estimate degree-d
invariants using n = O(c29) samples.
(Lower bound) If x(1), x(?) agree on all invariants of degree
< d — 1 then Q(0??) samples are required to distinguish them.
» Method of invariants is optimal
Question: What degree d* of invariants do we need to learn before
we can recover (the orbit of) x7

» Optimal sample complexity is n = ©(c29")

Answer (for MRA) [1]:

> For “generic” x, degree 3 is sufficient, so sample complexity

n=0(c®)

> But for a measure-zero set of “bad” signals, need much higher
degree (as high as p)

[1] Bandeira, Rigollet, Weed, Optimal rates of estimation for multi-reference alignment, 2017
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Another viewpoint: mixtures of Gaussians

MRA sample: y = g - x + ¢ with g ~ G, £ ~ N(0, 0°T)

The distribution of y is a (uniform) mixture of |G| Gaussians
centered at {g-x : g € G}

> For infinite groups, a mixture of infinitely-many Gaussians
Method of moments: Estimate moments E[y],E[yy '], ..., E[y®]
Ely® ] ~ Egl(g - x)*/]

Fact: Moments are equivalent to invariants

» E.[(g - x)®¥] contains the same information as the degree-k
invariant polynomials
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Our contributions

Joint work with Ben Blum-Smith, Afonso Bandeira, Amelia Perry,
Jonathan Weed

» We generalize from MRA to any compact group
» Again, the method of invariants/moments is optimal

» We give an (inefficient) algorithm that achieves optimal
sample complexity: solve polynomial system

» To determine what degree of invariants are required, we use
invariant theory and algebraic geometry

» How to tell if polynomial equations have a unique solution

Bandeira, Blum-Smith, Perry, Weed, W., Estimation under group actions: recovering orbits from invariants,
2017
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Invariant theory

Variables xi, ..., x, (corresponding to the coordinates of x)

The invariant ring R[x]€ is the subring of R[x] := R[xy, ..., xp]
consisting of polynomials f such that f(g - x) = f(x) Vg € G.

» Aside: A main result of invariant theory is that R[x]¢ is
finitely-generated

R[x]gd — invariants of degree < d

(Simple) algorithm:
» Pick d* (to be chosen later)

» Using ©(029") samples, estimate invariants up to degree d*:

learn value f(x) for all f € R[x]gd

» Solve for an X that is consistent with those values:
f(R) = f(x) Vf € R[x]¢, (polynomial system of equations)
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All invariants determine orbit

Theorem [1]: If G is compact, for every x € V, the full invariant
ring R[x]® determines x up to orbit.

» In the sense that if x, x’ do not lie in the same orbit, there
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Theorem [1]: If G is compact, for every x € V, the full invariant
ring R[x]® determines x up to orbit.

» In the sense that if x, x’ do not lie in the same orbit, there
exists f € R[x]® that separates them: f(x) # f(x')

Corollary: Suppose that for some d, ]R[x]gd generates R[x]¢ (as
an R-algebra). Then R[x]gd determines x up to orbit and so

sample complexity is O(o29).

Problem: This is for worst-case x € V. For MRA (cyclic shifts)
this requires d = p whereas generic x only requires d = 3 [2].

Actually care about whether R[x]¢, generically determines R[x]®

[1] Kag, Invariant theory lecture notes, 1994

[2] Bandeira, Rigollet, Weed, Optimal rates of estimation for multi-reference alignment, 2017
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Do polynomials generically determine other polynomials?

Say we have A C B C R[x]

» (Technically need to assume B is finitely generated)
Question: Do the values {a(x) : a € A} generically determine the
values {b(x) : b€ B}?

Definition: Polynomials fi, ..., f,, are algebraically independent if

there is no P € R[y1,...,ym] with P(f1,...,f,) =0.

Definition: For U C R[x], the transcendence degree trdeg(U) is
the number of algebraically independent polynomials in U.

Answer: Suppose trdeg(A) = trdeg(B). If x is “generic” then the
values {a(x) : a € A} determine a finite number of possibilities
for the entire collection {b(x) : b € B}.

> “Generic": x lies in a particular full-measure set
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This is actually easy!

Theorem (Jacobian criterion):

Polynomials fi, ..., fm € R[x1,. .., Xp] are algebraically
independent if and only if the m x p Jacobian matrix J;; = g—z has
full row rank. (Still true if you evaluate J at a generic point x.)

» Why: Tests whether map (x1,...,xp) = (fi(x),..., fm(x)) is
locally surjective
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Generic list recovery

Our main result is an efficient procedure that takes the problem
setup as input (group G and action on V) and outputs the degree
d* of invariants required for generic list recovery.

» List recovery: output a finite list £(1), @) .. one of which
(approximately) lies in the orbit of the true x
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» List recovery may be good enough in practice?

Procedure:
> Need to test whether R[x]gd determines R[x]® (generically)
> So need to check if trdeg(R[x]gd) = trdeg(R[x]®)
» trdeg(R[x]®) is easy: dim(x) — dim(orbit)
> trdeg(R[x]gd) via Jacobian criterion
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Generic list recovery

Our main result is an efficient procedure that takes the problem
setup as input (group G and action on V) and outputs the degree
d* of invariants required for generic list recovery.

» List recovery: output a finite list (1), £ ... one of which
(approximately) lies in the orbit of the true x

» List recovery may be good enough in practice?

Comments:
» For e.g. MRA (cyclic shifts), need to test each p separately on
a computer
» Not an efficient algorithm to solve any particular instance

» There is also an algorithm to bound the size of the list (or test
for unique recovery), but it is not efficient (Grobner bases)

34 /39
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Generalized orbit recovery problem

Extensions:

» Projection (e.g. cryo-EM):
» Observe y; =M(g; - x) + ¢;
» [1:V — W linear
> Egjnv N(O, 0'21)
» Heterogeneity:
» K signals x() ... x(K)
» Mixing weights (wq,...,wk) € Ak
» Observe y; = MN(g; - x()) 4 ¢;
» ki ~{1,...,K} according to w

Same methods apply!

» Order-d moments now only give access to a particular
subspace of R[x]¢

» For heterogeneity, work over a bigger group G¥ acting on
(x), ... x(K)) e voK
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Our methods show that for cryo-EM, generic list recovery is
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Results: cryo-EM

Our methods show that for cryo-EM, generic list recovery is
possible at degree 3

So information-theoretic sample complexity is ©(o®)

Ongoing work: polynomial time algorithm for cryo-EM
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Efficient recovery: tensor decomposition

Restrict to finite group

Recall: with O(c®) samples, can estimate the third moment:

T3(x) =Y (g-x)*

geiG

[1] Perry, Weed, Bandeira, Rigollet, Singer, The sample complexity of multi-reference alignment, 2017
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Efficient recovery: tensor decomposition

Restrict to finite group

Recall: with O(c®) samples, can estimate the third moment:

T3(x) =Y (g-x)*

geiG

This is an instance of tensor decomposition: Given Y 7", al®3 for
some ai,...,am € RP, recover {a;}

For MRA: since m < p (“undercomplete”) can apply Jennrich’s
algorithm to decompose tensor efficiently [1]

[1] Perry, Weed, Bandeira, Rigollet, Singer, The sample complexity of multi-reference alignment, 2017
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Example: heterogeneous MRA

MRA with multiple signals x L x(K)

Tal) = 30 Y (g <)

[1] Perry, Weed, Bandeira, Rigollet, Singer '17
[2] Boumal, Bendory, Lederman, Singer '17
[3] Ma, Shi, Steurer '16
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Example: heterogeneous MRA

MRA with multiple signals x L x(K)
K
Ta(x)=> > (g-x")=e
k=1geG

Jennrich’s algorithm works if given 5th moment ~ n = O(c1?) [1]
Information-theoretically, 3rd moment suffices if K < p/6

If signals x(k) are random (i.i.d. Gaussian), conjectured that
efficient recovery is possible from 3rd moment iff K < /p [2]

New result (with A. Moitra): if K < \/p/polylog(p) then for
random signals, efficient recovery is possible from 3rd moment

» Based on random overcomplete 3-tensor decomposition [3]

[1] Perry, Weed, Bandeira, Rigollet, Singer '17
[2] Boumal, Bendory, Lederman, Singer '17
[3] Ma, Shi, Steurer '16
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