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Main result: first polynomial-time algorithm for a certain orbit
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l. Tensors and Tensor Networks

3/19



What is a Tensor?

An order-p tensor is an ny X np X --- X np multi-array:
T = (Til,l'z,m,ip) with IJ S {1, 2, RN nj}.

An order-1 tensor is a vector. An order-2 tensor is a matrix.
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What is a Tensor?

An order-p tensor is an ny X np X --- X np multi-array:
T = (T,'17,'2,“.7,'p) with IJ S {1, 2, RN nj}.

An order-1 tensor is a vector. An order-2 tensor is a matrix.

T is symmetr.lc if np =---=np,=nand Ti,.ip = Tiw(1)7~~,i7r(p) for
any permutation .

> In this talk, all tensors will be symmetric.
Given p vectors xi, ..., Xp, the rank-1 tensor x; ® xo ® - - - ® x, has

entries (x1 @ x Q-+ ® Xp)il,...,i,, = (x1)i(x2)i, - (Xp)ip-

» Generalizes the rank-1 matrix xy ' .

» Symmetric version: x®P = x® ---®@x  (p times).
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Tensor Problems

Some statistical problems involving tensors:
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Tensor Problems

Some statistical problems involving tensors:

» Tensor PCA / Spiked Tensor Model [RM'14, HSS'15]:

Observe T = A\x®P 4+ Z where

» x € R" is planted “signal” (norm 1)
» X\ > 0 is signal-to-noise parameter
» Zis “noise” (i.i.d. Gaussian tensor)

Goal: given T, recover x
“Recover a rank-1 tensor buried in noise”
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Tensor Problems

Some statistical problems involving tensors:

» Tensor PCA / Spiked Tensor Model [RM'14, HSS'15]:

Observe T = A\x®P 4+ Z where

» x € R" is planted “signal” (norm 1)
» X\ > 0 is signal-to-noise parameter
» Zis “noise” (i.i.d. Gaussian tensor)

Goal: given T, recover x
“Recover a rank-1 tensor buried in noise”

» Tensor Decomposition [AGJ'14, BKS'15, GM'15, HSSS'16, MSS'16]:

Observe T = >_7_; x°P where {x;} are random vectors:
> X~ J\/(O, I,,)

Goal: given T, recover {x1,...,x,}

“Recover the components of a rank-r tensor”
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Tensor Network Notation

A graphical representation for tensors (used in e.g., quantum)
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Tensor Network Notation

A graphical representation for tensors (used in e.g., quantum)

An order-p tensor has p “legs”, one for each index:

N & T=(Tijx)

U PN B= (Ba,b,c,d)
C/ \d Babed=>; Tac,iUbd,i

Rule: sum over “fully connected” indices (in this case, i)

6
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More Examples

A bigger example:
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B= (Ba,b,c,d)

Bab,cd =2k Tac Tod.k Tijok Ui
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More Examples

A bigger example:

u
}. T < B= (Ba,b,c,d)

T T
/N b\
This framework generalizes matrix/vector multiplication:

x—A-B-y & XTABy

ZXI ij k)/k

ijk

Bab,cd =2k Tac Tod.k Tijok Ui
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Spectral Methods from Tensor Networks

General framework for solving tensor problems:

1. Given input tensor T

2. Build a new tensor B by connecting copies of T in a tensor
network

3. Flatten B to form a symmetric matrix M

» E.g., the ({a, b}, {c, d})-flattening of B = (B, p,c,4) is the
n? x n? matrix Ma,b),(c,d) = Bab,c,d

4. Compute the leading eigenvector of M
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Prior Work

Prior work has (implicitly) used this framework:

u
N e |
T T T
] | ST
T T T
e T /e b/ N
| 2T U a c b d
> [Richard-Montanari'14, Hopkins—Shi-Steurer'15] “Tensor unfolding”
> [Hopkins—Shi—Steurer'15] “Spectral SoS”
> [Hopkins—Schramm-Shi—Steurer'16] “Spectral SoS with partial trace”
> [Hopkins—Schramm-Shi-Steurer'16] “Spectral tensor decomposition”

u is a random vector (to break symmetry).
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Our Contribution
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Our Contribution

We give the first polynomial-time algorithm for a particular tensor
problem: heterogeneous continuous multi-reference alignment.

The algorithm is a spectral method based on this tensor network:

T
T N
) \/r
\/\

T/T

‘|

Smaller tensor networks fail for this problem.
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General Analysis of Tensor Networks
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General Analysis of Tensor Networks

Main step of analysis is to upper bound largest eigenvalue of a
matrix built from a tensor network.
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General Analysis of Tensor Networks

Main step of analysis is to upper bound largest eigenvalue of a
matrix built from a tensor network.

Trace moment method: for a symmetric matrix M with
eigenvalues {\;} and A\nax = max; |\,

T = 3703 > 43,

i
so compute E[Tr(M?%)] and apply Markov's inequality:

E[Tr(M2k
]P)()‘max > t) = (Arznl;x > t2k) [rt(2k)]
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Trace Method for Tensor Networks

Example: T is an order-3 symmetric tensor with i.i.d. Rademacher
(uniform 41) entries, and we want to compute E[Tr(M®)] where
M is the ({a, b}, {c, d})-flattening of this tensor:

o/ \d
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Trace Method for Tensor Networks

Example: T is an order-3 symmetric tensor with i.i.d. Rademacher
(uniform 41) entries, and we want to compute E[Tr(M®)] where
M is the ({a, b}, {c, d})-flattening of this tensor:

Note that

Tr(M?®) = | |

so plug in the definition of M...
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Trace Method for Tensor Networks (Continued)

-~

~N -

/

T

/
\

T T
Tr(M®) = | |
T T
- ~N -
T \ T
T
So the computation of E[Tr(M®)] is reduced to a combinatorial

question about this diagram.

When T is i.i.d. Rademacher: E[Tr(M®)] is the number of ways to
label the edges of the diagram with elements of [n] such that each
triple {/,j, k} appears incident to an even number of T's.
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Trace Method for Tensor Networks (Continued)
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I1l. Orbit Recovery Problems

5/19



Image Alignment

Given many noisy rotated copies of an image, recover the image.

Image credit: [Bandeira, PhD thesis '15]
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Image Alignment

Given many noisy rotated copies of an image, recover the image.

Image credit: [Bandeira, PhD thesis '15]

Application: cryo-EM (cryo-electron microscopy)

» Given many noisy pictures of a molecule taken from different
unknown angles, recover the 3D structure of the molecule.
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Orbit Recovery

Orbit Recovery Problem [APS17, BRW17,PWBRS17,BBKPWW17,APS18]:
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Orbit Recovery

Orbit Recovery Problem [APS17, BRW17,PWBRS17,BBKPWW17,APS18]:
> Let x € R” be an unknown “signal” (e.g. the image)

» Let G be a compact group acting on R” (e.g. rotations SO(2))

v

Observe samples y; = gj - x + z; where g; ~ G, z; ~ N(0, I,,)

v

Goal: recover the orbit of x (can't distinguish x from g - x)

v

Heterogeneous: signals xi, ..., Xk, samples y; = gj - Xk, + z;
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Orbit Recovery

Orbit Recovery Problem [APS17, BRW17,PWBRS17,BBKPWW17,APS18]:
> Let x € R” be an unknown “signal” (e.g. the image)

» Let G be a compact group acting on R” (e.g. rotations SO(2))

v

Observe samples y; = gj - x + z; where g; ~ G, z; ~ N(0, I,,)

v

Goal: recover the orbit of x (can't distinguish x from g - x)

» Heterogeneous: signals xi, ..., Xk, samples y; = g; - xx, + z;
This paper: heterogeneous continuous multi-reference alignment

» Each signal x is a random real-valued (band-limited) function
on the unit circle

» G = SO(2) acting by rotation
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Our algorithm

Method of moments: use samples to estimate 3rd moment tensor

Ey®] = T= Z/ x)%3.

~SO(2)
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Our algorithm

Method of moments: use samples to estimate 3rd moment tensor

K
By = T= Z/ (g - x)®.
k=1 g~S0(2)
QT, T T/C
Plug T (and random u) into tensor network, / \/‘T
\ T

and compute leading eigenvector: N T~
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Our algorithm

Method of moments: use samples to estimate 3rd moment tensor

E®] = T-= Z / )22,

~SO(2)
QT, T T/C
Plug T (and random u) into tensor network, ! \/‘T
and compute leading eigenvector: LN T
-
o

Our algorithm gives:
» optimal sample complexity

> heterogeneity K < n’ (optimal should be n'/?)

v

list recovery of {x}

v

first solution to heterogeneous problem over infinite group
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Summary

» General framework for designing spectral algorithms for tensor
problems

» Tensor network notation makes general analysis tractable

» First polynomial-time algorithm for a certain continuous tensor
decomposition problem (heterogeneous continuous MRA)

» Orbit recovery problems are in need of further theoretical
study

» All groups (especially infinite groups)
» Optimal heterogeneity
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Summary
» General framework for designing spectral algorithms for tensor
problems
» Tensor network notation makes general analysis tractable

» First polynomial-time algorithm for a certain continuous tensor
decomposition problem (heterogeneous continuous MRA)

» Orbit recovery problems are in need of further theoretical
study

» All groups (especially infinite groups)
» Optimal heterogeneity

Thanks!
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