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I. Tensors and Tensor Networks
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What is a Tensor?

An order-p tensor is an n1 × n2 × · · · × np multi-array:
T = (Ti1,i2,...,ip) with ij ∈ {1, 2, . . . , nj}.

An order-1 tensor is a vector. An order-2 tensor is a matrix.

T is symmetric if n1 = · · · = np = n and Ti1,...,ip = Tiπ(1),...,iπ(p)
for

any permutation π.

I In this talk, all tensors will be symmetric.

Given p vectors x1, . . . , xp, the rank-1 tensor x1 ⊗ x2 ⊗ · · · ⊗ xp has
entries (x1 ⊗ x2 ⊗ · · · ⊗ xp)i1,...,ip = (x1)i1(x2)i2 · · · (xp)ip .

I Generalizes the rank-1 matrix xy>.

I Symmetric version: x⊗p = x ⊗ · · · ⊗ x (p times).
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Tensor Problems

Some statistical problems involving tensors:

I Tensor PCA / Spiked Tensor Model [RM’14, HSS’15]:

Observe T = λx⊗p + Z where
I x ∈ Rn is planted “signal” (norm 1)
I λ > 0 is signal-to-noise parameter
I Z is “noise” (i.i.d. Gaussian tensor)

Goal: given T , recover x

“Recover a rank-1 tensor buried in noise”

I Tensor Decomposition [AGJ’14, BKS’15, GM’15, HSSS’16, MSS’16]:

Observe T =
∑r

i=1 x
⊗p
i where {xi} are random vectors:

I xi ∼ N (0, In)

Goal: given T , recover {x1, . . . , xr}
“Recover the components of a rank-r tensor”
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Tensor Network Notation

A graphical representation for tensors (used in e.g., quantum)

An order-p tensor has p “legs”, one for each index:

T

i

jk
⇔ T = (Ti ,j ,k)

Two (or more) tensors can be attached by contracting indices:

T U
i

a

c

b

d
⇔

B = (Ba,b,c,d)

Ba,b,c,d =
∑

i Ta,c,i Ub,d,i

Rule: sum over “fully connected” indices (in this case, i)
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More Examples

A bigger example:

T

T

T

u

j k

i

a c b d

⇔
B = (Ba,b,c,d)

Ba,b,c,d =
∑

i,j,k Ta,c,j Tb,d,k Ti,j,k ui

This framework generalizes matrix/vector multiplication:

x − A− B − y ⇔ x>ABy

∑
ijk

xiAijBjkyk
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II. Spectral Methods from Tensor Networks
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Spectral Methods from Tensor Networks

General framework for solving tensor problems:

1. Given input tensor T

2. Build a new tensor B by connecting copies of T in a tensor
network

3. Flatten B to form a symmetric matrix M
I E.g., the ({a, b}, {c , d})-flattening of B = (Ba,b,c,d) is the

n2 × n2 matrix M(a,b),(c,d) = Ba,b,c,d

4. Compute the leading eigenvector of M

9 / 19



Prior Work

Prior work has (implicitly) used this framework:

T

T

T

T

db

ca

T

T

T

T

T

u

a c b d

I [Richard–Montanari’14, Hopkins–Shi–Steurer’15] “Tensor unfolding”

I [Hopkins–Shi–Steurer’15] “Spectral SoS”

I [Hopkins–Schramm–Shi–Steurer’16] “Spectral SoS with partial trace”

I [Hopkins–Schramm–Shi–Steurer’16] “Spectral tensor decomposition”

u is a random vector (to break symmetry).
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Our Contribution

We give the first polynomial-time algorithm for a particular tensor
problem: heterogeneous continuous multi-reference alignment.

The algorithm is a spectral method based on this tensor network:

u

T
T T

T

T

TT
T

T

a c

b

d

Smaller tensor networks fail for this problem.
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General Analysis of Tensor Networks

Main step of analysis is to upper bound largest eigenvalue of a
matrix built from a tensor network.

Trace moment method: for a symmetric matrix M with
eigenvalues {λi} and λmax = maxi |λi |,

Tr(M2k) =
∑
i

λ2ki ≥ λ2kmax

so compute E[Tr(M2k)] and apply Markov’s inequality:

P(λmax ≥ t) = P(λ2kmax ≥ t2k) ≤ E[Tr(M2k)]

t2k
.
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Trace Method for Tensor Networks

Example: T is an order-3 symmetric tensor with i.i.d. Rademacher
(uniform ±1) entries, and we want to compute E[Tr(M6)] where
M is the ({a, b}, {c , d})-flattening of this tensor:

T T

a

c

b

d

Note that

Tr(M6) =

M

M

M

M

M

M

so plug in the definition of M...

13 / 19



Trace Method for Tensor Networks

Example: T is an order-3 symmetric tensor with i.i.d. Rademacher
(uniform ±1) entries, and we want to compute E[Tr(M6)] where
M is the ({a, b}, {c , d})-flattening of this tensor:

T T

a

c

b

d

Note that

Tr(M6) =

M

M

M

M

M

M

so plug in the definition of M...
13 / 19



Trace Method for Tensor Networks (Continued)

Tr(M6) =

T

T

T

T

T

T

T

T

T

T

T

T

So the computation of E[Tr(M6)] is reduced to a combinatorial
question about this diagram.

When T is i.i.d. Rademacher: E[Tr(M6)] is the number of ways to
label the edges of the diagram with elements of [n] such that each
triple {i , j , k} appears incident to an even number of T ’s.
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III. Orbit Recovery Problems
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Image Alignment

Given many noisy rotated copies of an image, recover the image.

Image credit: [Bandeira, PhD thesis ’15]

Application: cryo-EM (cryo-electron microscopy)

I Given many noisy pictures of a molecule taken from different
unknown angles, recover the 3D structure of the molecule.
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Orbit Recovery

Orbit Recovery Problem [APS17,BRW17,PWBRS17,BBKPWW17,APS18]:

I Let x ∈ Rn be an unknown “signal” (e.g. the image)

I Let G be a compact group acting on Rn (e.g. rotations SO(2))

I Observe samples yi = gi · x + zi where gi ∼ G , zi ∼ N (0, In)

I Goal: recover the orbit of x (can’t distinguish x from g · x)

I Heterogeneous: signals x1, . . . , xK , samples yi = gi · xki + zi

This paper: heterogeneous continuous multi-reference alignment

I Each signal xk is a random real-valued (band-limited) function
on the unit circle

I G = SO(2) acting by rotation
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Our algorithm

Method of moments: use samples to estimate 3rd moment tensor

Ei [y
⊗3
i ] ⇒ T =

K∑
k=1

∫
g∼SO(2)

(g · xk)⊗3.

Plug T (and random u) into tensor network,
and compute leading eigenvector:

u

T
T T

T

T

TT
T

T

a c

b

d

Our algorithm gives:

I optimal sample complexity

I heterogeneity K ≤ nδ (optimal should be n1/2)

I list recovery of {xk}
I first solution to heterogeneous problem over infinite group
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Summary

I General framework for designing spectral algorithms for tensor
problems

I Tensor network notation makes general analysis tractable

I First polynomial-time algorithm for a certain continuous tensor
decomposition problem (heterogeneous continuous MRA)

I Orbit recovery problems are in need of further theoretical
study

I All groups (especially infinite groups)
I Optimal heterogeneity

Thanks!

19 / 19



Summary

I General framework for designing spectral algorithms for tensor
problems

I Tensor network notation makes general analysis tractable

I First polynomial-time algorithm for a certain continuous tensor
decomposition problem (heterogeneous continuous MRA)

I Orbit recovery problems are in need of further theoretical
study

I All groups (especially infinite groups)
I Optimal heterogeneity

Thanks!

19 / 19


