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Tensor Decomposition

Basic algorithmic primitive with applications in:

• Phylogenetic reconstruction
[MR05]

• Topic modeling [AFHKL12]

• Community detection
[AGHK13,HS17,AAA17,JLLX20]

• Learning Gaussian mixtures
[HK13,GHK15,BCMV14,ABGRV14]

• Independent component 

analysis [GVX14]

• Dictionary learning [BKS15,MSS16]

• Multi-reference alignment 
[PWBRS19]

• …



Tensors

Order-2 tensor: matrix

Order-3 tensor

Rank-1 (symmetric) order-2 tensor

Rank-1 (symmetric) order-3 tensor

𝑀 = (𝑀𝑖𝑗)

𝑇 = (𝑇𝑖𝑗𝑘)

𝑣𝑣⊤ 𝑣𝑣⊤ 𝑖𝑗 = 𝑣𝑖𝑣𝑗 𝑣 ∈ ℝ𝑛

𝑣⊗3 𝑣⊗3
𝑖𝑗𝑘

= 𝑣𝑖𝑣𝑗𝑣𝑘

𝑛

𝑛

𝑛
𝑛

𝑛



Random Tensor Decomposition

Given a rank-𝑟 order-3 tensor

𝑇 =෍

𝑖=1

𝑟

𝑎𝑖
⊗3 𝑎𝑖 ∈ ℝ𝑛

the goal is to recover the components 𝑎1, … , 𝑎𝑟

Assume random components 𝑎𝑖 ∼ 𝒩 0, 𝐼𝑛
succeed with high probability

method of moments



Prior Work

Algorithmic results: SoS [GM15, Ma-Shi-Steurer’16], spectral [HSSS16,DOLST22], …

All known poly-time algorithms require 𝑟 ≪ 𝑛3/2

Information-theoretically possible when 𝑟 ≤ 𝑐𝑛2 [BCO14]

Q: is this hardness inherent?

≪ hides polylog factor

c = constant

𝑇 =෍

𝑖=1

𝑟

𝑎𝑖
⊗3 𝑎𝑖 ∼ 𝒩(0, 𝐼𝑛)

𝑟

easy hard? impossible

𝑛3/2 𝑛21



Statistical-Computational Gaps

Many statistical problems have “hard” regimes

sparse PCA, compressed sensing, community detection, tensor PCA, …

No average-case complexity theory

Instead:

• Reductions from planted clique

• Lower bounds in restricted models

• Optimization landscape

Planted clique: G(n,1/2) + {k-clique}

𝑘

easyhard?impossible

2 log2 𝑛 𝑛1



Tensor Decomposition: Difficulties

Which lower bound framework?

• Reduction – out of reach?

• Statistical query (SQ) model – not applicable (no iid samples)

• Sum-of-squares (SoS) – hardness of refutation [BBKMW21]

• Optimization landscape – what function to optimize? [GZ19, BGJ20, CMZ22]

• Low-degree polynomials (LDP) – this talk



Tensor Decomposition: More Difficulties

Issue of symmetry

which component to recover?

Existing SQ/SoS/LDP lower bounds

leverage hardness of testing vs iid “null”

a few exceptions [Schramm-W’22, Koehler-Mossel’21]

• Testing rank-𝑟 tensor vs iid tensor is

easy when 𝑟 ≪ 𝑛3

• But decomp hard when 𝑟 ≫ 𝑛3/2

𝑇 =෍

𝑖=1

𝑟

𝑎𝑖
⊗3

𝑘

easy
hard

(even for testing)impossible

2 log2 𝑛 𝑛1

G(n,1/2)     vs     G(n,1/2) + {k-clique}



Solving the Issue of Symmetry

Define a new model: “largest component recovery”

𝑇 = 1 + 𝛿 𝑎1
⊗3 +෍

𝑖=2

𝑟

𝑎𝑖
⊗3 𝑎𝑖 ∈ {±1}𝑛 unif. at random

Goal: recover/estimate 𝑎11 ≔ (𝑎1)1

Hardness of the above problem implies hardness of decomposing

෍

𝑖=1

𝑟

𝜆𝑖𝑎𝑖
⊗3 𝜆𝑖 ∈ 1,1 + 𝛿 arbitrary, 𝑎𝑖 ∈ {±1}𝑛 unif. at random

relation to tensor PCA



Main Result: LDP Phase Transition

Class of algorithms: multivariate polynomials 𝑓 in the entries of

𝑇 = 1 + 𝛿 𝑎1
⊗3 +෍

𝑖=2

𝑟

𝑎𝑖
⊗3 𝑎𝑖 ∈ {±1}𝑛 unif. at random

Degree-D minimum mean squared error:

MMSE≤𝐷 ≔ inf
𝑓 deg 𝐷

𝔼𝑎[ 𝑓 𝑇 − 𝑎11
2]

Theorem (W. ‘22)  Fix any 𝜖 > 0, 𝛿 > 0

• (Easy) If 𝑟 ≤ 𝑛3/2−𝜖 then MMSE≤𝑂(log 𝑛) → 0 as 𝑛 → ∞

• (Hard) If 𝑟 ≥ 𝑛3/2+𝜖 then MMSE≤𝑛Ω 1 → 1 as 𝑛 → ∞



Why LDP (Low-Deg Poly) Framework?

Algorithms captured by 𝑂(log 𝑛)-deg poly: spectral, AMP, local, SQ, …

LDP lower bounds rule out certain known approaches

Great track record of predicting stat-comp gaps

LDP lower bounds give rigorous “evidence” for hardness

• Some counterexamples: Gaussian elimination, lattice basis reduction, …

• But these algorithms tend to be “brittle”

Testing [Hopkins-Steurer’17, HKPRSS17, …], estimation [SW22], optimization [GJW20, …]

Connections to circuit complexity [Gamarnik-Jagannath-W’22]

[BBHSL21]



Main Result: LDP Phase Transition

Class of algorithms: multivariate polynomials 𝑓 in the entries of

𝑇 = 1 + 𝛿 𝑎1
⊗3 +෍

𝑖=2

𝑟

𝑎𝑖
⊗3 𝑎𝑖 ∈ {±1}𝑛 unif. at random

Degree-D minimum mean squared error:

MMSE≤𝐷 ≔ inf
𝑓 deg 𝐷

𝔼𝑎[ 𝑓 𝑇 − 𝑎11
2]

Theorem (W. ‘22)   Fix any 𝛿 > 0, 𝜖 > 0

• (Easy) If 𝑟 ≤ 𝑛3/2−𝜖 then MMSE≤𝑂(log 𝑛) → 0 as 𝑛 → ∞

• (Hard) If 𝑟 ≥ 𝑛3/2+𝜖 then MMSE≤𝑛Ω 1 → 1 as 𝑛 → ∞



Upper Bound: LDP Succeeds

Idea: “spectral methods from tensor networks”
[Hopkins-Schramm-Shi-Steurer’16, Moitra-W’19, Ding-d’Orsi-Liu-Steurer-Tiegel’22]

Degree-𝑂(log 𝑛) polynomial implies quasipoly-time 𝑛𝑂(log 𝑛) algorithm

Image credit: [DOLST22] This work

T

T

T

T

T

T

T

random 3-regular
𝑂(log 𝑛)-vertex

graph



Main Result: LDP Phase Transition

Class of algorithms: multivariate polynomials 𝑓 in the entries of

𝑇 = 1 + 𝛿 𝑎1
⊗3 +෍

𝑖=2

𝑟

𝑎𝑖
⊗3 𝑎𝑖 ∈ {±1}𝑛 unif. at random

Degree-D minimum mean squared error:

MMSE≤𝐷 ≔ inf
𝑓 deg 𝐷

𝔼𝑎[ 𝑓 𝑇 − 𝑎11
2]

Theorem (W. ‘22)   Fix any 𝛿 > 0, 𝜖 > 0

• (Easy) If 𝑟 ≤ 𝑛3/2−𝜖 then MMSE≤𝑂(log 𝑛) → 0 as 𝑛 → ∞

• (Hard) If 𝑟 ≥ 𝑛3/2+𝜖 then MMSE≤𝑛Ω 1 → 1 as 𝑛 → ∞



Lower Bound: Baby Example

Observe scalar          𝑡 = σ𝑖=1
𝑟 𝑎𝑖 𝑎𝑖 ∈ {±1} unif. at random

Goal: estimate 𝑎1

Want to show Corr≤𝐷 ≔ sup
𝑓 deg 𝐷

𝔼[𝑓 𝑡 𝑎1]

𝔼[𝑓 𝑡 2]
= 𝑜 1 𝑓 𝑡 = σ𝑑=0

𝐷 መ𝑓𝑑𝑡
𝑑

First attempt:

• Numerator linear in መ𝑓 𝔼 𝑓 𝑡 𝑎1 = σ𝑑=0
𝐷 መ𝑓𝑑𝔼[𝑡

𝑑𝑎1] =: ⟨𝑐, መ𝑓⟩

• Denominator quadratic in መ𝑓 𝔼 𝑓 𝑡 2 = σ𝑑,𝑑′=0
𝐷 መ𝑓𝑑 መ𝑓𝑑′𝔼[𝑡

𝑑𝑡𝑑
′
] =: መ𝑓⊤𝑃 መ𝑓

𝑐𝑑

𝑃𝑑,𝑑′

sup
መ𝑓

⟨𝑐, መ𝑓⟩

መ𝑓⊤𝑃 መ𝑓

= 𝑐⊤𝑃−1𝑐



Lower Bound: Baby Example

෍

𝑑=0

𝐷

መ𝑓𝑑𝑡
𝑑 = 𝑓 𝑡 = 𝑔 𝑎 = ෍

𝑈⊆ 𝑟

ො𝑔𝑈𝑎
𝑈

Claim:   𝔼 𝑓 𝑡 2 = 𝔼 𝑔 𝑎 2 = ො𝑔 2

Claim:   ො𝑔 = 𝑀 መ𝑓 for some matrix 𝑀

Claim:   suffices to construct an explicit left-inverse   𝑀+ s.t. 𝑀+𝑀 = 𝐼

sup
𝑓

𝔼[𝑓 𝑡 𝑎1]

𝔼[𝑓 𝑡 2]
= sup

መ𝑓

⟨𝑐, መ𝑓⟩

𝑀 መ𝑓
= sup

መ𝑓

𝑐⊤𝑀+𝑀 መ𝑓

𝑀 መ𝑓
≤ sup

ො𝑔

𝑐⊤𝑀+ ො𝑔

ො𝑔
= 𝑐⊤𝑀+

𝑡 =෍

𝑖=1

𝑟

𝑎𝑖 𝑎𝑖 ∈ {±1}

want  
𝔼[𝑓 𝑡 𝑎1]

𝔼[𝑓 𝑡 2]
≤ ⋯

𝑎𝑈 ≔ෑ

𝑖∈𝑈

𝑎𝑖

orthonormal: 𝔼 𝑎𝑈𝑎𝑈
′
= 𝟙𝑈=𝑈′

ො𝑔



Constructing the Left-Inverse

෍

𝑑=0

𝐷

መ𝑓𝑑𝑡
𝑑 = 𝑓 𝑡 = 𝑔 𝑎 = ෍

𝑈⊆ 𝑟

ො𝑔𝑈𝑎
𝑈

Recall:      ො𝑔 = 𝑀 መ𝑓 want   𝑀+ s.t. 𝑀+𝑀 = 𝐼

In other words:      𝑀+ ො𝑔 = መ𝑓 whenever     ො𝑔 = 𝑀 መ𝑓

In other words:      given (valid) ො𝑔,  recover መ𝑓

Proof by example:   𝑔 𝑎 = 𝑎1𝑎2𝑎3 + 𝑎1𝑎2𝑎4 − 2𝑎1𝑎3 − 2𝑎3𝑎4 +⋯ 𝑓 𝑡 = ? ?

𝑡 =෍

𝑖=1

𝑟

𝑎𝑖 𝑎𝑖 ∈ {±1}

𝑡 = 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4

𝑟 = 4, 𝐷 = 3
1

6
𝑡3 = 𝑎1𝑎2𝑎3 + 𝑎1𝑎2𝑎4 +⋯+

5

3
(𝑎1 + 𝑎2 + 𝑎3 + 𝑎4)



Wrapping Up the Lower Bound

Conclusion:     Corr≤𝐷 ≔ sup
𝑓 deg 𝐷

𝔼 𝑓 𝑡 𝑎1

𝔼 𝑓 𝑡 2
≤ 𝑐⊤𝑀+ =: 𝑣

For the true model, 𝑣 is indexed by hypergraphs and defined recursively

reminiscent of cumulants in [Schramm-W’22]

A A

B C

𝑣𝐴 = 𝛼𝐴𝐵𝑣𝐵 + 𝛼𝐴𝐶𝑣𝐶 +⋯



𝑟

easy
hard impossible

𝑛3/2 𝑛21

random

Comments

First concrete lower bound for random tensor decomposition

low-degree polynomial threshold matches best known algorithms

Results extend to tensors of any order 𝑘 ≥ 3, threshold is 𝑟 ∼ 𝑛𝑘/2

Future directions: Gaussian components, structured tensors

Open: is “generic” tensor decomposition strictly harder than random (𝑘 = 3)?

𝑛 hard impossible

easy

generic

???

Thanks!
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