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Max Independent Set

Example (max independent set): given sparse graph G (n, d/n),

max
S⊆[n]

|S | s.t. S independent

OPT = 2
log d

d
n

ALG =
log d

d
n

[Frieze ’90]

[Karp ’76]: Is there a better algorithm?

Structural evidence suggests no!
[Achlioptas, Coja-Oghlan ’08; Coja-Oghlan, Efthymiou ’10]

Local algorithms achieve value ALG and no better
[Gamarnik, Sudan ’13; Rahman, Virág ’14]
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Spherical Spin Glass

Example (spherical p-spin model): for Y ∈ R⊗p i.i.d. N (0, 1),

max
‖v‖=1

1√
n
〈Y , v⊗p〉

OPT = Θ(1) [Auffinger, Ben Arous, Černý ’13]

ALG = Θ(1) [Subag ’18]

ALG < OPT (for p ≥ 3)

Approximate message passing (AMP) algorithms achieve value
ALG and no better [El Alaoui, Montanari, Sellke ’20]
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What’s Missing?

How to give the best “evidence” that there are no better
algorithms?

Prior work rules out certain classes of algorithms (local, AMP), but
do we expect these to be optimal?

I AMP is not optimal for tensor PCA [Montanari, Richard ’14]

Would like a unified framework for lower bounds

I Local algorithms only make sense on sparse graphs

Solution: lower bounds against a larger class of algorithms
(low-degree polynomials) that contains both local and AMP
algorithms
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The Low-Degree Polynomial Framework

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RM → RN

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: e.g. b ∈ {0, 1} or v ∈ Rn

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1

I Approximate message passing

I Local algorithms on sparse graphs

I Or any of the above applied to Ỹ = g(Y )
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6 / 18



The Low-Degree Polynomial Framework

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RM → RN

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: e.g. b ∈ {0, 1}

or v ∈ Rn

I “Low” means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1

I Approximate message passing

I Local algorithms on sparse graphs

I Or any of the above applied to Ỹ = g(Y )
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Planted Problems

For problems with a planted signal, the low-degree framework is
already well-established
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16]

[Hopkins, Steurer ’17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17]

[Hopkins ’18] (PhD thesis)

Example (planted clique): G (n, 1/2) with planted k-clique

I Detection

I Recovery
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Planted Problems (Continued)

For all of these planted problems...

planted clique, sparse PCA, community detection, tensor PCA, spiked

Wigner/Wishart, planted submatrix, planted dense subgraph, ...

...it is the case that

I the best known poly-time algorithms are captured by
O(log n)-degree polynomials (spectral/AMP)

I low-degree polynomials fail in the “hard” regime
[BHKKMP16,HS17,HKPRSS17,Hop18,BKW19,KWB19,DKWB19]

This work: extend low-degree framework to non-planted setting

Other frameworks: sum-of-squares, statistical query model

“Robustness”: Gaussian elimination for XOR-SAT
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Spherical Spin Glass: Results

Example (spherical p-spin model): for Y ∈ R⊗p i.i.d. N (0, 1),

max
‖v‖=1

1√
n
〈Y , v⊗p〉

ALG < OPT (for p ≥ 3)

Result: no low-degree polynomial can achieve value OPT− ε

Theorem [Gamarnik, Jagannath, W. ’20] Let p ≥ 4 be even.
For some ε > 0, no f : R⊗p → Rn of degree polylog(n) achieves
both of the following with probability 1− exp(−nΩ(1)):

I Objective: H(f (Y )) ≥ OPT− ε
I Normalization: ‖f (Y )‖ ≈ 1

9 / 18



Spherical Spin Glass: Results

Example (spherical p-spin model): for Y ∈ R⊗p i.i.d. N (0, 1),

max
‖v‖=1

1√
n
〈Y , v⊗p〉

ALG < OPT (for p ≥ 3)

Result: no low-degree polynomial can achieve value OPT− ε

Theorem [Gamarnik, Jagannath, W. ’20] Let p ≥ 4 be even.
For some ε > 0, no f : R⊗p → Rn of degree polylog(n) achieves
both of the following with probability 1− exp(−nΩ(1)):

I Objective: H(f (Y )) ≥ OPT− ε
I Normalization: ‖f (Y )‖ ≈ 1

9 / 18



Spherical Spin Glass: Results

Example (spherical p-spin model): for Y ∈ R⊗p i.i.d. N (0, 1),

max
‖v‖=1

1√
n
〈Y , v⊗p〉

ALG < OPT (for p ≥ 3)

Result: no low-degree polynomial can achieve value OPT− ε

Theorem [Gamarnik, Jagannath, W. ’20] Let p ≥ 4 be even.
For some ε > 0, no f : R⊗p → Rn of degree polylog(n) achieves
both of the following with probability 1− exp(−nΩ(1)):

I Objective: H(f (Y )) ≥ OPT− ε
I Normalization: ‖f (Y )‖ ≈ 1

9 / 18



Spherical Spin Glass: Results

Example (spherical p-spin model): for Y ∈ R⊗p i.i.d. N (0, 1),

max
‖v‖=1

1√
n
〈Y , v⊗p〉

ALG < OPT (for p ≥ 3)

Result: no low-degree polynomial can achieve value OPT− ε

Theorem [Gamarnik, Jagannath, W. ’20] Let p ≥ 4 be even.
For some ε > 0, no f : R⊗p → Rn of degree polylog(n) achieves
both of the following with probability 1− exp(−nΩ(1)):

I Objective: H(f (Y )) ≥ OPT− ε

I Normalization: ‖f (Y )‖ ≈ 1

9 / 18



Spherical Spin Glass: Results

Example (spherical p-spin model): for Y ∈ R⊗p i.i.d. N (0, 1),

max
‖v‖=1

1√
n
〈Y , v⊗p〉

ALG < OPT (for p ≥ 3)

Result: no low-degree polynomial can achieve value OPT− ε

Theorem [Gamarnik, Jagannath, W. ’20] Let p ≥ 4 be even.
For some ε > 0, no f : R⊗p → Rn of degree polylog(n) achieves
both of the following with probability 1− exp(−nΩ(1)):

I Objective: H(f (Y )) ≥ OPT− ε
I Normalization: ‖f (Y )‖ ≈ 1

9 / 18



Max Independent Set: Results

Example (max independent set): given sparse graph G (n, d/n),

max
S⊆[n]

|S | s.t. S independent

OPT = 2
log d

d
n ALG =

log d

d
n

Result: no low-degree polynomial can achieve (1 + 1√
2

) log d
d n

Theorem [Gamarnik, Jagannath, W. ’20]

No polynomial f : {0, 1}(
n
2) → Rn of degree polylog(n) achieves
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Optimization [Gamarnik, Jagannath, W. ’20]

How to prove failure of low-degree polynomials?

For problems with a planted signal:

I Detection: linear algebra [BHKKMP’16; HS’17; HKPRSS’17]

I Recovery: Jensen + linear algebra [Schramm, W. ’20]

For random optimization problems, need different approach:

I Stability of low-degree polynomials

I Overlap gap property (OGP)
[Gamarnik, Sudan ’13]

[Chen, Gamarnik, Panchenko, Rahman ’17]

[Gamarnik, Jagannath ’19]
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Low-Degree Polynomials are Stable

Theorem

Let Y ,Y ′ be ρ-correlated samples from N (0, Im)

Let f : Rm → Rn have degree ≤ D

Normalization EY ‖f (Y )‖2 = 1

Then for any t ≥ (6e)D ,

Pr
[
‖f (Y )− f (Y ′)‖2 ≥ 2t(1− ρD)

]
≤ exp

(
− D

3e
t1/D

)

Proof: low-degree polynomials have

I Low noise sensitivty

I Low total influence

I Hypercontractivity
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Low-Degree Polynomials are Stable (Binary Case)

Y ∼ i.i.d. Bernoulli(p)

Interpolation path: Y (0) Y (1) Y (2) · · · Y (m−1) Y (m)

f : {0, 1}m → Rn degree D

Definition: Index i is “c-bad” if

‖f (Y (i))− f (Y (i−1))‖2 > c E
Y
‖f (Y )‖2

Theorem
Pr

Y (0),...,Y (m)
[@ c-bad i ] ≥ p4D/c

With non-trivial probability (over path), f ’s output is “smooth”
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Overlap Gap Property

Overlap gap property (OGP): with high probability,
Y ∼ G (n, d/n) has no occurrence of

I S ,T independent sets

I |S |, |T | ≈ (1 + 1√
2

)Φ

I |S ∩ T | ≈ Φ

Proof: first moment method [Gamarnik, Sudan ’13]
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Ensemble OGP

Ensemble OGP: with high probability, ∀i , j on the interpolation
path

Y (0) Y (1) Y (2) · · · Y (m−1) Y (m)

there is no occurrence of

I S independent set in Y (i)

I T independent set in Y (j)

I |S |, |T | ≈ (1 + 1√
2

)Φ

I |S ∩ T | ≈ Φ

15 / 18



Putting it Together

Proof that low-degree polynomials fail:

Suppose f (Y ) outputs independent sets of size (1 + 1√
2

)Φ

Y (0) Y (1) Y (2) · · · Y (m−1) Y (m)

Separation: f (Y (0)) and f (Y (m)) are “far apart”

Stability: with probability & n−D , there are no big “jumps”

f (Y (i))→ f (Y (i+1))

Contradicts OGP
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Comments

I Improvement to (1 + ε) log d
d n

I Inspired by [Rahman, Virág ’14]

I Proof of OGP for p-spin (for p ≥ 4 even)
[Chen, Sen ’15; Auffinger, Chen ’17]

I Langevin dynamics

I Connections between heuristics
I OGP → Low-Degree
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References for the Low-Degree Framework

I Detection (survey article)
Notes on Computational Hardness of Hypothesis Testing:
Predictions using the Low-Degree Likelihood Ratio

Kunisky, W., Bandeira

arXiv:1907.11636

I Recovery
Computational Barriers to Estimation from Low-Degree
Polynomials

Schramm, W.

arXiv:2008.02269

I Optimization
Low-Degree Hardness of Random Optimization Problems
Gamarnik, Jagannath, W.

arXiv:2004.12063
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