Hardness of Certification for Constrained PCA

Alex Wein Courant Institute, NYU

Joint work with:

Afonso Bandeira (NYU)

Tim Kunisky (NYU)

Part I: Statistical-to-Computational Gaps and the "Low-Degree Method"

▶ Planted clique: $G(n, 1/2) \cup \{k \text{-clique}\}$

n vertices

- n vertices
- Each of the $\binom{n}{2}$ edges occurs with probability 1/2

- n vertices
- Each of the $\binom{n}{2}$ edges occurs with probability 1/2
- Planted clique on k vertices

- n vertices
- Each of the $\binom{n}{2}$ edges occurs with probability 1/2
- Planted clique on k vertices

- n vertices
- Each of the $\binom{n}{2}$ edges occurs with probability 1/2
- Planted clique on k vertices
- Goal: find the clique

- Planted clique: $G(n, 1/2) \cup \{k \text{-clique}\}$
 - Statistically, can find planted clique of size $(2 + \varepsilon) \log n$

- Planted clique: $G(n, 1/2) \cup \{k \text{-clique}\}$
 - Statistically, can find planted clique of size $(2 + \varepsilon) \log n$
 - In poly-time, can only find clique of size $\Omega(\sqrt{n})$

- Planted clique: $G(n, 1/2) \cup \{k \text{-clique}\}$
 - Statistically, can find planted clique of size $(2 + \varepsilon) \log n$
 - In poly-time, can only find clique of size $\Omega(\sqrt{n})$

Impossible	Hard		Easy	~
2 lo	bg n	√'n		k

- Planted clique: $G(n, 1/2) \cup \{k \text{-clique}\}$
 - Statistically, can find planted clique of size $(2 + \varepsilon) \log n$
 - In poly-time, can only find clique of size $\Omega(\sqrt{n})$

Impossible	Hard		Easy	
2 log n		√'n		k

- Planted clique: $G(n, 1/2) \cup \{k \text{-clique}\}$
 - Statistically, can find planted clique of size $(2 + \varepsilon) \log n$
 - In poly-time, can only find clique of size $\Omega(\sqrt{n})$

- Sparse PCA
- Stochastic block model (community detection)

- Planted clique: $G(n, 1/2) \cup \{k \text{-clique}\}$
 - Statistically, can find planted clique of size $(2 + \varepsilon) \log n$
 - In poly-time, can only find clique of size $\Omega(\sqrt{n})$

- Sparse PCA
- Stochastic block model (community detection)
- Random constraint satisfaction problems (e.g. 3-SAT)

- Planted clique: $G(n, 1/2) \cup \{k \text{-clique}\}$
 - Statistically, can find planted clique of size $(2 + \varepsilon) \log n$
 - In poly-time, can only find clique of size $\Omega(\sqrt{n})$

- Sparse PCA
- Stochastic block model (community detection)
- Random constraint satisfaction problems (e.g. 3-SAT)
- Tensor PCA

- Planted clique: $G(n, 1/2) \cup \{k \text{-clique}\}$
 - Statistically, can find planted clique of size $(2 + \varepsilon) \log n$
 - In poly-time, can only find clique of size $\Omega(\sqrt{n})$

- Sparse PCA
- Stochastic block model (community detection)
- Random constraint satisfaction problems (e.g. 3-SAT)
- Tensor PCA
- Tensor decomposition

- Planted clique: $G(n, 1/2) \cup \{k \text{-clique}\}$
 - Statistically, can find planted clique of size $(2 + \varepsilon) \log n$
 - In poly-time, can only find clique of size $\Omega(\sqrt{n})$

- Sparse PCA
- Stochastic block model (community detection)
- Random constraint satisfaction problems (e.g. 3-SAT)
- Tensor PCA
- Tensor decomposition
- Synchronization / orbit recovery

- Planted clique: $G(n, 1/2) \cup \{k \text{-clique}\}$
 - Statistically, can find planted clique of size $(2 + \varepsilon) \log n$
 - In poly-time, can only find clique of size $\Omega(\sqrt{n})$

- Sparse PCA
- Stochastic block model (community detection)
- Random constraint satisfaction problems (e.g. 3-SAT)
- Tensor PCA
- Tensor decomposition
- Synchronization / orbit recovery

Different from theory of NP-completeness: average-case

- Planted clique: $G(n, 1/2) \cup \{k \text{-clique}\}$
 - Statistically, can find planted clique of size $(2 + \varepsilon) \log n$
 - In poly-time, can only find clique of size $\Omega(\sqrt{n})$

- Sparse PCA
- Stochastic block model (community detection)
- Random constraint satisfaction problems (e.g. 3-SAT)
- Tensor PCA
- Tensor decomposition
- Synchronization / orbit recovery

Different from theory of NP-completeness: average-case

Q: What fundamentally makes a problem easy or hard?

We don't know how to prove that average-case problems are hard, but various forms of evidence:

Reductions (e.g. from planted clique) [Berthet, Rigollet '13]

- Reductions (e.g. from planted clique) [Berthet, Rigollet '13]
- Failure of MCMC [Jerrum '92]

- Reductions (e.g. from planted clique) [Berthet, Rigollet '13]
- Failure of MCMC [Jerrum '92]
- Shattering of solution space [Achlioptas, Coja-Oghlan '08]

- Reductions (e.g. from planted clique) [Berthet, Rigollet '13]
- Failure of MCMC [Jerrum '92]
- Shattering of solution space [Achlioptas, Coja-Oghlan '08]
- Failure of local algorithms [Gamarnik, Sudan '13]

- Reductions (e.g. from planted clique) [Berthet, Rigollet '13]
- Failure of MCMC [Jerrum '92]
- Shattering of solution space [Achlioptas, Coja-Oghlan '08]
- Failure of local algorithms [Gamarnik, Sudan '13]
- Statistical physics, BP [Decelle, Krzakala, Moore, Zdeborová '11]

- Reductions (e.g. from planted clique) [Berthet, Rigollet '13]
- Failure of MCMC [Jerrum '92]
- Shattering of solution space [Achlioptas, Coja-Oghlan '08]
- Failure of local algorithms [Gamarnik, Sudan '13]
- Statistical physics, BP [Decelle, Krzakala, Moore, Zdeborová '11]
- Optimization landscape, Kac-Rice [Auffinger, Ben Arous, Cerný '10]

- Reductions (e.g. from planted clique) [Berthet, Rigollet '13]
- Failure of MCMC [Jerrum '92]
- Shattering of solution space [Achlioptas, Coja-Oghlan '08]
- Failure of local algorithms [Gamarnik, Sudan '13]
- Statistical physics, BP [Decelle, Krzakala, Moore, Zdeborová '11]
- Optimization landscape, Kac-Rice [Auffinger, Ben Arous, Cerný '10]
- Sum-of-squares lower bounds [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]

We don't know how to prove that average-case problems are hard, but various forms of evidence:

- Reductions (e.g. from planted clique) [Berthet, Rigollet '13]
- Failure of MCMC [Jerrum '92]
- Shattering of solution space [Achlioptas, Coja-Oghlan '08]
- Failure of local algorithms [Gamarnik, Sudan '13]
- Statistical physics, BP [Decelle, Krzakala, Moore, Zdeborová '11]
- Optimization landscape, Kac-Rice [Auffinger, Ben Arous, Cerný '10]
- Sum-of-squares lower bounds [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]
- This talk: "low-degree method"

[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16; Hopkins, Steurer '17;

Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17; Hopkins '18 (PhD thesis)]

Suppose we want to hypothesis test (with error probability o(1)) between two distributions:

Suppose we want to hypothesis test (with error probability o(1)) between two distributions:

▶ Null model $Y \sim \mathbb{Q}_n$ e.g. G(n, 1/2)

Suppose we want to hypothesis test (with error probability o(1)) between two distributions:

- ▶ Null model $Y \sim \mathbb{Q}_n$ e.g. G(n, 1/2)
- ▶ Planted model $Y \sim \mathbb{P}_n$ e.g. $G(n, 1/2) \cup \{k \text{-clique}\}$

Suppose we want to hypothesis test (with error probability o(1)) between two distributions:

- ▶ Null model $Y \sim \mathbb{Q}_n$ e.g. G(n, 1/2)
- ▶ Planted model $Y \sim \mathbb{P}_n$ e.g. $G(n, 1/2) \cup \{k \text{-clique}\}$

Look for a degree-D multivariate polynomial f that distinguishes \mathbb{P} from \mathbb{Q} :

$$\max_{f \in \mathbb{R}[Y]_D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}}$$

Suppose we want to hypothesis test (with error probability o(1)) between two distributions:

- ▶ Null model $Y \sim \mathbb{Q}_n$ e.g. G(n, 1/2)
- ▶ Planted model $Y \sim \mathbb{P}_n$ e.g. $G(n, 1/2) \cup \{k \text{-clique}\}$

Look for a degree-D multivariate polynomial f that distinguishes \mathbb{P} from \mathbb{Q} :

$$\max_{f \in \mathbb{R}[Y]_D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}}$$

Want f(Y) to be big when $Y \sim \mathbb{P}$ and small when $Y \sim \mathbb{Q}$

$$\max_{f \in \mathbb{R}[Y]_D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}}$$

 $\mathbb{R}[Y]_D$: polynomials of degree $\leq D$ (subspace)

$$\max_{f \in \mathbb{R}[Y]_D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} = \max_{f \in \mathbb{R}[Y]_D} \frac{\mathbb{E}_{Y \sim \mathbb{Q}}[L(Y)f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}}$$

 $\mathbb{R}[Y]_D$: polynomials of degree $\leq D$ (subspace)

$$L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y)$$
$$\max_{f \in \mathbb{R}[Y]_D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} = \max_{f \in \mathbb{R}[Y]_D} \frac{\mathbb{E}_{Y \sim \mathbb{Q}}[L(Y)f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} = \max_{f \in \mathbb{R}[Y]_D} \frac{\langle L, f \rangle}{\|f\|}$$

 $\mathbb{R}[Y]_{D}: \text{ polynomials of}$ degree $\leq D$ (subspace) $L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y)$ $\langle f, g \rangle = \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)g(Y)]$ $\|f\| = \sqrt{\langle f, f \rangle}$

$$\max_{f \in \mathbb{R}[Y]_D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}}[f(Y)^2]}$$

=
$$\max_{f \in \mathbb{R}[Y]_D} \frac{\mathbb{E}_{Y \sim \mathbb{Q}}[L(Y)f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}}[f(Y)^2]}$$

=
$$\max_{f \in \mathbb{R}[Y]_D} \frac{\langle L, f \rangle}{\|f\|}$$

=
$$\|L^{\leq D}\|$$

 $\mathbb{R}[Y]_{D}: \text{ polynomials of}$ degree $\leq D$ (subspace) $L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y)$ $\langle f, g \rangle = \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)g(Y)]$ $\|f\| = \sqrt{\langle f, f \rangle}$

Maximizer: $f = L^{\leq D} := \operatorname{proj}_{(\mathbb{R}[Y]_D)} L$

$$\max_{f \in \mathbb{R}[Y]_D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}}$$

=
$$\max_{f \in \mathbb{R}[Y]_D} \frac{\mathbb{E}_{Y \sim \mathbb{Q}}[L(Y)f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}}$$

=
$$\max_{f \in \mathbb{R}[Y]_D} \frac{\langle L, f \rangle}{\|f\|}$$

=
$$\|L^{\leq D}\|$$

 $\mathbb{R}[Y]_{D}: \text{ polynomials of}$ degree $\leq D$ (subspace) $L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y)$ $\langle f, g \rangle = \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)g(Y)]$ $\|f\| = \sqrt{\langle f, f \rangle}$

Maximizer: $f = L^{\leq D} := \operatorname{proj}_{(\mathbb{R}[Y]_D)} L$

Norm of low-degree likelihood ratio

Conclusion:
$$\max_{f \in \mathbb{R}[Y]_D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} = \|L^{\leq D}\|$$

$$\begin{array}{l} \text{Conclusion: } \max_{f \in \mathbb{R}[Y]_D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} = \|L^{\leq D}\| \\ \text{Heuristically,} \end{array}$$

 $\|L^{\leq D}\| = \begin{cases} \omega(1) & \text{degree-}D \text{ polynomial can distinguish } \mathbb{Q}, \mathbb{P} \\ O(1) & \text{degree-}D \text{ polynomials fail} \end{cases}$

$$\begin{array}{l} \mathsf{Conclusion:} \ \max_{f \in \mathbb{R}[Y]_D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} = \|L^{\leq D}\| \\ \mathsf{Heuristically,} \end{array}$$

 $\|L^{\leq D}\| = \begin{cases} \omega(1) & \text{degree-}D \text{ polynomial can distinguish } \mathbb{Q}, \mathbb{P} \\ O(1) & \text{degree-}D \text{ polynomials fail} \end{cases}$

Degree- $O(\log n)$ polynomials \Leftrightarrow Polynomial-time algorithms

 $\begin{array}{l} \text{Conclusion: } \max_{f \in \mathbb{R}[Y]_D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} = \|L^{\leq D}\| \\ \text{Heuristically,} \end{array}$

 $\|L^{\leq D}\| = \begin{cases} \omega(1) & \text{degree-}D \text{ polynomial can distinguish } \mathbb{Q}, \mathbb{P} \\ O(1) & \text{degree-}D \text{ polynomials fail} \end{cases}$

Degree- $O(\log n)$ polynomials \Leftrightarrow Polynomial-time algorithms

Spectral method: distinguish via top eigenvalue of matrix M = M(Y) whose entries are O(1)-degree polynomials in Y

 $\begin{array}{l} \text{Conclusion: } \max_{f \in \mathbb{R}[Y]_D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} = \|L^{\leq D}\| \\ \text{Heuristically,} \end{array}$

 $\|L^{\leq D}\| = \begin{cases} \omega(1) & \text{degree-}D \text{ polynomial can distinguish } \mathbb{Q}, \mathbb{P} \\ O(1) & \text{degree-}D \text{ polynomials fail} \end{cases}$

Degree- $O(\log n)$ polynomials \Leftrightarrow Polynomial-time algorithms

- Spectral method: distinguish via top eigenvalue of matrix M = M(Y) whose entries are O(1)-degree polynomials in Y
- Log-degree distinguisher: $f(Y) = Tr(M^q)$ with $q = \Theta(\log n)$

 $\begin{array}{l} \text{Conclusion: } \max_{f \in \mathbb{R}[Y]_D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} = \|L^{\leq D}\| \\ \text{Heuristically,} \end{array}$

 $\|L^{\leq D}\| = \begin{cases} \omega(1) & \text{degree-}D \text{ polynomial can distinguish } \mathbb{Q}, \mathbb{P} \\ O(1) & \text{degree-}D \text{ polynomials fail} \end{cases}$

Degree- $O(\log n)$ polynomials \Leftrightarrow Polynomial-time algorithms

- Spectral method: distinguish via top eigenvalue of matrix M = M(Y) whose entries are O(1)-degree polynomials in Y
- Log-degree distinguisher: $f(Y) = Tr(M^q)$ with $q = \Theta(\log n)$
- ► Spectral methods ⇔ sum-of-squares [HKPRSS '17]

 $\begin{array}{l} \text{Conclusion: } \max_{f \in \mathbb{R}[Y]_D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} = \|L^{\leq D}\| \\ \text{Heuristically,} \end{array}$

 $\|L^{\leq D}\| = \begin{cases} \omega(1) & \text{degree-}D \text{ polynomial can distinguish } \mathbb{Q}, \mathbb{P} \\ O(1) & \text{degree-}D \text{ polynomials fail} \end{cases}$

Degree- $O(\log n)$ polynomials \Leftrightarrow Polynomial-time algorithms

- Spectral method: distinguish via top eigenvalue of matrix M = M(Y) whose entries are O(1)-degree polynomials in Y
- Log-degree distinguisher: $f(Y) = Tr(M^q)$ with $q = \Theta(\log n)$
- ► Spectral methods ⇔ sum-of-squares [HKPRSS '17]

Conjecture (informal variant of [Hopkins '18])

For "nice" \mathbb{Q}, \mathbb{P} , if $||L^{\leq D}|| = O(1)$ for $D = \log^{1+\Omega(1)}(n)$ then no polynomial-time algorithm can distinguish \mathbb{Q}, \mathbb{P} with success probability 1 - o(1).

▶ Can actually calculate/bound $\|L^{\leq D}\|$ for many problems

- Can actually calculate/bound $\|L^{\leq D}\|$ for many problems
- And the predictions are correct! (i.e. matching widely-believed conjectures)

- Can actually calculate/bound $\|L^{\leq D}\|$ for many problems
- And the predictions are correct! (i.e. matching widely-believed conjectures)
 - Planted clique, sparse PCA, stochastic block model, tensor PCA, ...

- Can actually calculate/bound $\|L^{\leq D}\|$ for many problems
- And the predictions are correct! (i.e. matching widely-believed conjectures)
 - Planted clique, sparse PCA, stochastic block model, tensor PCA, ...
- Heuristically, low-degree prediction matches performance of sum-of-squares

- Can actually calculate/bound $\|L^{\leq D}\|$ for many problems
- And the predictions are correct! (i.e. matching widely-believed conjectures)
 - Planted clique, sparse PCA, stochastic block model, tensor PCA, ...
- Heuristically, low-degree prediction matches performance of sum-of-squares
 - But low-degree calculation is much easier than proving SOS lower bounds

- Can actually calculate/bound $\|L^{\leq D}\|$ for many problems
- And the predictions are correct! (i.e. matching widely-believed conjectures)
 - Planted clique, sparse PCA, stochastic block model, tensor PCA, ...
- Heuristically, low-degree prediction matches performance of sum-of-squares
 - But low-degree calculation is much easier than proving SOS lower bounds
- By varying degree D, can explore power of subexponential-time algorithms:
 - Degree- n^{δ} polynomials \Leftrightarrow Time- $2^{n^{\delta}}$ algorithms $\delta \in (0, 1)$

Additive Gaussian noise: $\mathbb{P} : Y = X + Z$ vs $\mathbb{Q} : Y = Z$ where $X \sim \mathcal{P}$, any distribution over \mathbb{R}^N and Z is i.i.d. $\mathcal{N}(0, 1)$

Additive Gaussian noise: $\mathbb{P}: Y = X + Z$ vs $\mathbb{Q}: Y = Z$ where $X \sim \mathcal{P}$, any distribution over \mathbb{R}^N and Z is i.i.d. $\mathcal{N}(0, 1)$

$$L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y) = \frac{\mathbb{E}_X \exp(-\frac{1}{2}||Y - X||^2)}{\exp(-\frac{1}{2}||Y||^2)} = \mathbb{E}_X \exp(\langle Y, X \rangle - \frac{1}{2}||X||^2)$$

Additive Gaussian noise: $\mathbb{P}: Y = X + Z$ vs $\mathbb{Q}: Y = Z$ where $X \sim \mathcal{P}$, any distribution over \mathbb{R}^N and Z is i.i.d. $\mathcal{N}(0, 1)$

$$L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y) = \frac{\mathbb{E}_X \exp(-\frac{1}{2} ||Y - X||^2)}{\exp(-\frac{1}{2} ||Y||^2)} = \mathbb{E}_X \exp(\langle Y, X \rangle - \frac{1}{2} ||X||^2)$$

Write $L = \sum_{\alpha} c_{\alpha} h_{\alpha}$ where $\{h_{\alpha}\}$ are Hermite polynomials (orthonormal basis w.r.t. \mathbb{Q})

Additive Gaussian noise: $\mathbb{P}: Y = X + Z$ vs $\mathbb{Q}: Y = Z$ where $X \sim \mathcal{P}$, any distribution over \mathbb{R}^N and Z is i.i.d. $\mathcal{N}(0, 1)$

$$L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y) = \frac{\mathbb{E}_X \exp(-\frac{1}{2} ||Y - X||^2)}{\exp(-\frac{1}{2} ||Y||^2)} = \mathbb{E}_X \exp(\langle Y, X \rangle - \frac{1}{2} ||X||^2)$$

Write $L = \sum_{\alpha} c_{\alpha} h_{\alpha}$ where $\{h_{\alpha}\}$ are Hermite polynomials (orthonormal basis w.r.t. \mathbb{Q})

$$\|L^{\leq D}\|^2 = \sum_{|\alpha| \leq D} c_{\alpha}^2$$
 where $c_{\alpha} = \langle L, h_{\alpha} \rangle = \mathbb{E}_{Y \sim \mathbb{Q}}[L(Y)h_{\alpha}(Y)]$

Additive Gaussian noise: $\mathbb{P}: Y = X + Z$ vs $\mathbb{Q}: Y = Z$ where $X \sim \mathcal{P}$, any distribution over \mathbb{R}^N and Z is i.i.d. $\mathcal{N}(0, 1)$

$$L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y) = \frac{\mathbb{E}_X \exp(-\frac{1}{2} ||Y - X||^2)}{\exp(-\frac{1}{2} ||Y||^2)} = \mathbb{E}_X \exp(\langle Y, X \rangle - \frac{1}{2} ||X||^2)$$

Write $L = \sum_{\alpha} c_{\alpha} h_{\alpha}$ where $\{h_{\alpha}\}$ are Hermite polynomials (orthonormal basis w.r.t. \mathbb{Q})

$$\|L^{\leq D}\|^2 = \sum_{|\alpha| \leq D} c_{\alpha}^2$$
 where $c_{\alpha} = \langle L, h_{\alpha} \rangle = \mathbb{E}_{Y \sim \mathbb{Q}}[L(Y)h_{\alpha}(Y)]$...

Additive Gaussian noise: $\mathbb{P}: Y = X + Z$ vs $\mathbb{Q}: Y = Z$ where $X \sim \mathcal{P}$, any distribution over \mathbb{R}^N and Z is i.i.d. $\mathcal{N}(0, 1)$

$$L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y) = \frac{\mathbb{E}_X \exp(-\frac{1}{2} ||Y - X||^2)}{\exp(-\frac{1}{2} ||Y||^2)} = \mathbb{E}_X \exp(\langle Y, X \rangle - \frac{1}{2} ||X||^2)$$

Write $L = \sum_{\alpha} c_{\alpha} h_{\alpha}$ where $\{h_{\alpha}\}$ are Hermite polynomials (orthonormal basis w.r.t. \mathbb{Q})

$$\|L^{\leq D}\|^2 = \sum_{|\alpha| \leq D} c_{\alpha}^2$$
 where $c_{\alpha} = \langle L, h_{\alpha} \rangle = \mathbb{E}_{Y \sim \mathbb{Q}}[L(Y)h_{\alpha}(Y)]$...

Result: $||L^{\leq D}||^2 = \sum_{d=0}^{D} \frac{1}{d!} \mathbb{E}_{X,X'}[\langle X, X' \rangle^d]$

Part II: Hardness of Certification for Constrained PCA Problems

Let $W \sim \text{GOE}(n)$ "Gaussian orthogonal ensemble"

• $n \times n$ random symmetric matrix:

 $W_{ij} = W_{ji} \sim \mathcal{N}(0, 1/n), \quad W_{ii} \sim \mathcal{N}(0, 2/n)$

- $n \times n$ random symmetric matrix: $W_{ij} = W_{ji} \sim \mathcal{N}(0, 1/n), \quad W_{ii} \sim \mathcal{N}(0, 2/n)$
- ▶ Eigenvalues follow semicircle law on [-2,2]

- $n \times n$ random symmetric matrix: $W_{ij} = W_{ji} \sim \mathcal{N}(0, 1/n), \quad W_{ii} \sim \mathcal{N}(0, 2/n)$
- ▶ Eigenvalues follow semicircle law on [-2,2]

PCA:
$$\max_{\|x\|=1} x^\top W x$$

- $n \times n$ random symmetric matrix: $W_{ij} = W_{ji} \sim \mathcal{N}(0, 1/n), \quad W_{ii} \sim \mathcal{N}(0, 2/n)$
- ▶ Eigenvalues follow semicircle law on [-2,2]

PCA:
$$\max_{\|x\|=1} x^\top W x = \lambda_{\max}(W) \to 2$$
 as $n \to \infty$

- $n \times n$ random symmetric matrix: $W_{ij} = W_{ji} \sim \mathcal{N}(0, 1/n), \quad W_{ii} \sim \mathcal{N}(0, 2/n)$
- ▶ Eigenvalues follow semicircle law on [-2,2]

PCA:
$$\max_{\|x\|=1} x^{\top} Wx = \lambda_{\max}(W) \to 2 \text{ as } n \to \infty$$

Constrained PCA: $\phi(W) := \max_{x \in \{\pm 1/\sqrt{n}\}^n} x^{\top} Wx$

Let $W \sim \text{GOE}(n)$ "Gaussian orthogonal ensemble"

- $n \times n$ random symmetric matrix: $W_{ij} = W_{ji} \sim \mathcal{N}(0, 1/n), \quad W_{ii} \sim \mathcal{N}(0, 2/n)$
- ▶ Eigenvalues follow semicircle law on [-2,2]

$$\mathsf{PCA:} \quad \max_{\|x\|=1} x^\top W \! x = \lambda_{\mathsf{max}}(W) \to 2 \quad \text{as} \ n \to \infty$$

Constrained PCA: $\phi(W) := \max_{x \in \{\pm 1/\sqrt{n}\}^n} x^\top W x$

Statistical physics: "Sherrington-Kirkpatrick spin glass model"

 $ightarrow \phi(W)
ightarrow 2{
m P}_{*} pprox 1.5264$ as $n
ightarrow \infty$ [Parisi '80; Talagrand '06]

$$\phi(W) := \max_{x \in \{\pm 1/\sqrt{n}\}^n} x^\top W x, \quad W \sim GOE(n)$$

$$\phi(W) := \max_{x \in \{\pm 1/\sqrt{n}\}^n} x^\top W x, \quad W \sim GOE(n)$$

$$\phi(W) := \max_{x \in \{\pm 1/\sqrt{n}\}^n} x^\top W x, \quad W \sim GOE(n)$$

Two computational problems:

• Search: given W, find $x \in \{\pm 1/\sqrt{n}\}^n$ with large $x^\top W x$

$$\phi(W) := \max_{x \in \{\pm 1/\sqrt{n}\}^n} x^\top W x, \quad W \sim GOE(n)$$

- ▶ Search: given *W*, find $x \in \{\pm 1/\sqrt{n}\}^n$ with large $x^\top W x$
 - Proves a lower bound on $\phi(W)$

$$\phi(W) := \max_{x \in \{\pm 1/\sqrt{n}\}^n} x^\top W x, \quad W \sim GOE(n)$$

- ▶ Search: given W, find $x \in \{\pm 1/\sqrt{n}\}^n$ with large $x^\top W x$
 - Proves a lower bound on $\phi(W)$
- Certification: given W, prove $\phi(W) \leq B$ for some bound B

$$\phi(W) := \max_{x \in \{\pm 1/\sqrt{n}\}^n} x^\top W x, \quad W \sim GOE(n)$$

- Search: given W, find $x \in \{\pm 1/\sqrt{n}\}^n$ with large $x^\top W x$
 - Proves a lower bound on $\phi(W)$
- Certification: given W, prove $\phi(W) \leq B$ for some bound B
 - ▶ Formally: algorithm $\{f_n\}$ outputs $f_n(W) \in \mathbb{R}$ such that:

$$\phi(W) := \max_{x \in \{\pm 1/\sqrt{n}\}^n} x^\top W x, \quad W \sim GOE(n)$$

- Search: given W, find $x \in \{\pm 1/\sqrt{n}\}^n$ with large $x^\top W x$
 - Proves a lower bound on $\phi(W)$
- Certification: given W, prove $\phi(W) \leq B$ for some bound B
 - Formally: algorithm {f_n} outputs f_n(W) ∈ ℝ such that:
 (i) φ(W) ≤ f_n(W) ∀W ∈ ℝ^{n×n}
Search vs Certification

$$\phi(W) := \max_{x \in \{\pm 1/\sqrt{n}\}^n} x^\top W x, \quad W \sim GOE(n)$$

Two computational problems:

- Search: given W, find $x \in \{\pm 1/\sqrt{n}\}^n$ with large $x^\top W x$
 - Proves a lower bound on $\phi(W)$
- Certification: given W, prove $\phi(W) \leq B$ for some bound B
 - Formally: algorithm {f_n} outputs f_n(W) ∈ ℝ such that:
 (i) φ(W) ≤ f_n(W) ∀W ∈ ℝ^{n×n}
 (ii) if W ~ GOE(n), f_n(W) ≤ B + o(1) w.p. 1 o(1)

Search vs Certification

$$\phi(W) := \max_{x \in \{\pm 1/\sqrt{n}\}^n} x^\top W x, \quad W \sim GOE(n)$$

Two computational problems:

- Search: given W, find $x \in \{\pm 1/\sqrt{n}\}^n$ with large $x^\top W x$
 - Proves a lower bound on $\phi(W)$
- Certification: given W, prove $\phi(W) \leq B$ for some bound B
 - ▶ Formally: algorithm $\{f_n\}$ outputs $f_n(W) \in \mathbb{R}$ such that: (i) $\phi(W) \leq f_n(W) \quad \forall W \in \mathbb{R}^{n \times n}$ (ii) if $W \sim GOE(n)$, $f_n(W) \leq B + o(1)$ w.p. 1 - o(1)

• Note: cannot just output $f_n(W) = 2P_* + \varepsilon$

Search vs Certification

$$\phi(W) := \max_{x \in \{\pm 1/\sqrt{n}\}^n} x^\top W x, \quad W \sim GOE(n)$$

Two computational problems:

- Search: given W, find $x \in \{\pm 1/\sqrt{n}\}^n$ with large $x^\top W x$
 - Proves a lower bound on $\phi(W)$
- Certification: given W, prove $\phi(W) \leq B$ for some bound B
 - Formally: algorithm {f_n} outputs f_n(W) ∈ ℝ such that:
 (i) φ(W) ≤ f_n(W) ∀W ∈ ℝ^{n×n}
 (ii) if W ~ GOE(n), f_n(W) ≤ B + o(1) w.p. 1 o(1)
 - Note: cannot just output $f_n(W) = 2P_* + \varepsilon$

Perfect search is possible in poly time

Perfect search is possible in poly time

• Can find $x \in \{\pm 1/\sqrt{n}\}^n$ such that $x^\top W x \ge 2\mathsf{P}* - \varepsilon$ [Montanari '18]

Perfect search is possible in poly time

- Can find $x \in \{\pm 1/\sqrt{n}\}^n$ such that $x^\top W x \ge 2\mathsf{P}* \varepsilon$ [Montanari '18]
- Optimization of full-RSB models [Subag '18]

Perfect search is possible in poly time

- Can find $x \in \{\pm 1/\sqrt{n}\}^n$ such that $x^\top W x \ge 2\mathsf{P}* arepsilon$ [Montanari '18]
- Optimization of full-RSB models [Subag '18]

Trivial spectral certification:

Perfect search is possible in poly time

- Can find $x \in \{\pm 1/\sqrt{n}\}^n$ such that $x^\top W x \ge 2\mathsf{P}* arepsilon$ [Montanari '18]
- Optimization of full-RSB models [Subag '18]

Trivial spectral certification:

$$\phi(W) \leq \max_{\|x\|=1} x^{\top} W x = \lambda_{\max}(W) \rightarrow 2$$

Perfect search is possible in poly time

- Can find $x \in \{\pm 1/\sqrt{n}\}^n$ such that $x^\top W x \ge 2\mathsf{P}* arepsilon$ [Montanari '18]
- Optimization of full-RSB models [Subag '18]

Trivial spectral certification:

$$\phi(W) \leq \max_{\|x\|=1} x^{\top} W x = \lambda_{\max}(W) \rightarrow 2$$

Can we do better (in poly time)?

Perfect search is possible in poly time

- Can find $x \in \{\pm 1/\sqrt{n}\}^n$ such that $x^\top W x \ge 2\mathsf{P}* arepsilon$ [Montanari '18]
- Optimization of full-RSB models [Subag '18]

Trivial spectral certification:

$$\phi(W) \leq \max_{\|x\|=1} x^{\top} W x = \lambda_{\max}(W) \rightarrow 2$$

- Can we do better (in poly time)?
 - Convex relaxation?

Perfect search is possible in poly time

- Can find $x \in \{\pm 1/\sqrt{n}\}^n$ such that $x^\top W x \ge 2\mathsf{P}* arepsilon$ [Montanari '18]
- Optimization of full-RSB models [Subag '18]

Trivial spectral certification:

$$\phi(W) \leq \max_{\|x\|=1} x^{\top} W x = \lambda_{\max}(W) \rightarrow 2$$

Can we do better (in poly time)?

- Convex relaxation?
- Sum-of-squares?

Perfect search is possible in poly time

- Can find $x \in \{\pm 1/\sqrt{n}\}^n$ such that $x^\top W x \ge 2\mathsf{P}* arepsilon$ [Montanari '18]
- Optimization of full-RSB models [Subag '18]

Trivial spectral certification:

$$\phi(W) \leq \max_{\|x\|=1} x^{\top} W x = \lambda_{\max}(W) \rightarrow 2$$

Can we do better (in poly time)?

- Convex relaxation?
- Sum-of-squares?

Answer: no!

Perfect search is possible in poly time

- Can find $x \in \{\pm 1/\sqrt{n}\}^n$ such that $x^\top W x \ge 2\mathsf{P}* arepsilon$ [Montanari '18]
- Optimization of full-RSB models [Subag '18]

Trivial spectral certification:

$$\phi(W) \leq \max_{\|x\|=1} x^{\top} W x = \lambda_{\max}(W) \rightarrow 2$$

- Can we do better (in poly time)?
 - Convex relaxation?
 - Sum-of-squares?

Answer: no!

In particular, any convex relaxation fails

Perfect search is possible in poly time

- Can find $x \in \{\pm 1/\sqrt{n}\}^n$ such that $x^\top W x \ge 2\mathsf{P}* arepsilon$ [Montanari '18]
- Optimization of full-RSB models [Subag '18]

Trivial spectral certification:

$$\phi(W) \leq \max_{\|x\|=1} x^{\top} W x = \lambda_{\max}(W) \rightarrow 2$$

- Can we do better (in poly time)?
 - Convex relaxation?
 - Sum-of-squares?

Answer: no!

In particular, any convex relaxation fails

Theorem (informal)

Conditional on the low-degree method, for any $\varepsilon > 0$, no polynomial-time algorithm can certify an upper bound of $2 - \varepsilon$ on $\phi(W)$.

Theorem (informal)

Conditional on the low-degree method, for any $\varepsilon > 0$, no polynomial-time algorithm can certify an upper bound of $2 - \varepsilon$ on $\phi(W)$.

▶ In fact, need essentially exponential time: $2^{n^{1-o(1)}}$

Theorem (informal)

Conditional on the low-degree method, for any $\varepsilon > 0$, no polynomial-time algorithm can certify an upper bound of $2 - \varepsilon$ on $\phi(W)$.

- In fact, need essentially exponential time: $2^{n^{1-o(1)}}$
- Also for constraint sets other than $\{\pm 1/\sqrt{n}\}^n$

Theorem (informal)

Conditional on the low-degree method, for any $\varepsilon > 0$, no polynomial-time algorithm can certify an upper bound of $2 - \varepsilon$ on $\phi(W)$.

- In fact, need essentially exponential time: $2^{n^{1-o(1)}}$
- Also for constraint sets other than $\{\pm 1/\sqrt{n}\}^n$

Proof outline:

Theorem (informal)

Conditional on the low-degree method, for any $\varepsilon > 0$, no polynomial-time algorithm can certify an upper bound of $2 - \varepsilon$ on $\phi(W)$.

- In fact, need essentially exponential time: $2^{n^{1-o(1)}}$
- Also for constraint sets other than $\{\pm 1/\sqrt{n}\}^n$

Proof outline:

(i) Reduction from a hypothesis testing problem (negatively-spiked Wishart) to certification problem

Theorem (informal)

Conditional on the low-degree method, for any $\varepsilon > 0$, no polynomial-time algorithm can certify an upper bound of $2 - \varepsilon$ on $\phi(W)$.

- In fact, need essentially exponential time: $2^{n^{1-o(1)}}$
- Also for constraint sets other than $\{\pm 1/\sqrt{n}\}^n$

Proof outline:

(i) Reduction from a hypothesis testing problem (negatively-spiked Wishart) to certification problem

(ii) Use low-degree method to show that the hypothesis testing problem is hard

 \mathbb{Q} : Observe *N* independent samples y_1, \ldots, y_N where $y_i \sim \mathcal{N}(0, I_n)$

 \mathbb{Q} : Observe *N* independent samples y_1, \ldots, y_N where $y_i \sim \mathcal{N}(0, I_n)$

 $\mathbb{P} : \text{Planted vector } x \sim \text{Unif}(\{\pm 1/\sqrt{n}\}^n)$ Observe y_1, \ldots, y_N with $y_i \sim \mathcal{N}(0, I_n + \beta x x^\top)$

Parameters: $n/N \rightarrow \gamma$, $\beta \in [-1, \infty)$

 \mathbb{Q} : Observe *N* independent samples y_1, \ldots, y_N where $y_i \sim \mathcal{N}(0, I_n)$

 $\mathbb{P} : \text{Planted vector } x \sim \text{Unif}(\{\pm 1/\sqrt{n}\}^n)$ Observe y_1, \ldots, y_N with $y_i \sim \mathcal{N}(0, I_n + \beta x x^\top)$

Parameters: $n/N \rightarrow \gamma$, $\beta \in [-1, \infty)$

Spectral threshold: if $\beta^2 > \gamma$, can distinguish \mathbb{Q}, \mathbb{P} using top/bottom eigenvalue of sample covariance matrix $Y = \frac{1}{N} \sum_{i} y_i y_i^\top$ [Baik, Ben Arous, Péché '05]

 \mathbb{Q} : Observe *N* independent samples y_1, \ldots, y_N where $y_i \sim \mathcal{N}(0, I_n)$

 $\mathbb{P} : \text{Planted vector } x \sim \text{Unif}(\{\pm 1/\sqrt{n}\}^n)$ Observe y_1, \ldots, y_N with $y_i \sim \mathcal{N}(0, I_n + \beta x x^\top)$

Parameters: $n/N \rightarrow \gamma$, $\beta \in [-1, \infty)$

Spectral threshold: if $\beta^2 > \gamma$, can distinguish \mathbb{Q}, \mathbb{P} using top/bottom eigenvalue of sample covariance matrix $Y = \frac{1}{N} \sum_{i} y_i y_i^\top$ [Baik, Ben Arous, Péché '05]

Using low-degree method, we show: if $\beta^2 < \gamma$, cannot distinguish \mathbb{Q}, \mathbb{P} (unless given exponential time)

Our case of interest: eta=-1 (technically eta>-1,etapprox-1)

Our case of interest: eta=-1 (technically eta>-1,etapprox-1)

 \mathbb{Q} : observe N random vectors in \mathbb{R}^n

Our case of interest: eta=-1 (technically eta>-1,etapprox-1)

 \mathbb{Q} : observe N random vectors in \mathbb{R}^n

 $\mathbb P$: observe N random vectors that are all orthogonal to a planted hypercube vector $x\in\{\pm 1/\sqrt{n}\}^n$

•
$$y_i \sim \mathcal{N}(0, I_n - xx^{\top})$$

Our case of interest: eta=-1 (technically eta>-1,etapprox-1)

 \mathbb{Q} : observe N random vectors in \mathbb{R}^n

 $\mathbb P$: observe N random vectors that are all orthogonal to a planted hypercube vector $x\in\{\pm 1/\sqrt{n}\}^n$

•
$$y_i \sim \mathcal{N}(0, I_n - xx^{\top})$$

Spectral threshold: if $N \ge n$, can distinguish using $rank(y_1, \ldots, y_N)$

- \mathbb{Q} : rank *n*
- \mathbb{P} : rank n-1

Our case of interest: eta=-1 (technically eta>-1,etapprox-1)

 \mathbb{Q} : observe N random vectors in \mathbb{R}^n

 $\mathbb P$: observe N random vectors that are all orthogonal to a planted hypercube vector $x\in\{\pm 1/\sqrt{n}\}^n$

•
$$y_i \sim \mathcal{N}(0, I_n - xx^{\top})$$

Spectral threshold: if $N \ge n$, can distinguish using $rank(y_1, \ldots, y_N)$

- \mathbb{Q} : rank *n*
- \mathbb{P} : rank n-1

Low-degree method: if N < n, cannot distinguish (unless given exponential time)

Our case of interest: eta=-1 (technically eta>-1,etapprox-1)

 \mathbb{Q} : observe N random vectors in \mathbb{R}^n

 $\mathbb P$: observe N random vectors that are all orthogonal to a planted hypercube vector $x\in\{\pm 1/\sqrt{n}\}^n$

•
$$y_i \sim \mathcal{N}(0, I_n - xx^{\top})$$

Spectral threshold: if $N \ge n$, can distinguish using $rank(y_1, \ldots, y_N)$

- \mathbb{Q} : rank *n*
- \mathbb{P} : rank n-1

Low-degree method: if N < n, cannot distinguish (unless given exponential time)

But statistically possible

Reduction from Wishart to Certification

Suppose you can certify $\phi(W) \leq 2 - \varepsilon$ when $W \sim \text{GOE}(n)$

• Recall $\phi(W) = \max_{x \in \{\pm 1/\sqrt{n}\}^n} x^\top W x$

Reduction from Wishart to Certification

- Suppose you can certify φ(W) ≤ 2 − ε when W ~ GOE(n)
 Recall φ(W) = max_{x∈{±1/√n}ⁿ} x[⊤] Wx
- ► Then you can certify that the top δn-dimensional eigenspace of W does not contain a hypercube vector

If hypercube vector x is a linear combination of the top δn eigenvectors, it would satisfy x[⊤] Wx ≥ 2 − ε

Reduction from Wishart to Certification

- Suppose you can certify φ(W) ≤ 2 − ε when W ~ GOE(n)
 Recall φ(W) = max_{x∈{±1/√n}ⁿ} x[⊤] Wx
- ► Then you can certify that the top δn-dimensional eigenspace of W does not contain a hypercube vector
- Suppose you can certify φ(W) ≤ 2 − ε when W ~ GOE(n)
 Recall φ(W) = max_{x∈{±1/√n}} x[⊤] Wx
- ► Then you can certify that the top δn-dimensional eigenspace of W does not contain a hypercube vector
- ► So you can certify that a random δn-dimensional subspace does not contain a hypercube vector

- Suppose you can certify φ(W) ≤ 2 − ε when W ~ GOE(n)
 Recall φ(W) = max_{x∈{±1/√n}} x[⊤] Wx
- ► Then you can certify that the top δn-dimensional eigenspace of W does not contain a hypercube vector
- ► So you can certify that a random δn-dimensional subspace does not contain a hypercube vector
- So you can distinguish between a random δn-dimensional subspace and a δn-dimensional subspace containing a hypercube vector

- Suppose you can certify φ(W) ≤ 2 − ε when W ~ GOE(n)
 Recall φ(W) = max_{x∈{±1/√n}} x[⊤] Wx
- ► Then you can certify that the top δn-dimensional eigenspace of W does not contain a hypercube vector
- ► So you can certify that a random δn-dimensional subspace does not contain a hypercube vector
- So you can distinguish between a random δn-dimensional subspace and a δn-dimensional subspace containing a hypercube vector
- So you can distinguish between a random (1 − δ)n-dimensional subspace and a (1 − δ)n-dimensional subspace that is orthogonal to a hypercube vector

- Suppose you can certify φ(W) ≤ 2 − ε when W ~ GOE(n)
 Recall φ(W) = max_{x∈{±1/√n}} x[⊤] Wx
- ► Then you can certify that the top δn-dimensional eigenspace of W does not contain a hypercube vector
- ► So you can certify that a random δn-dimensional subspace does not contain a hypercube vector
- So you can distinguish between a random δn-dimensional subspace and a δn-dimensional subspace containing a hypercube vector
- So you can distinguish between a random (1 − δ)n-dimensional subspace and a (1 − δ)n-dimensional subspace that is orthogonal to a hypercube vector
- ▶ But this is exactly the Wishart problem with $\beta = -1$ and $N = (1 \delta)n$, which is hard \Rightarrow contradiction

 Low-degree method: systematic way to predict when hypothesis testing problems are computationally easy/hard

- Low-degree method: systematic way to predict when hypothesis testing problems are computationally easy/hard
- But what about other types of average-case problems?

- Low-degree method: systematic way to predict when hypothesis testing problems are computationally easy/hard
- But what about other types of average-case problems?
 - Search

- Low-degree method: systematic way to predict when hypothesis testing problems are computationally easy/hard
- But what about other types of average-case problems?
 - Search
 - Certification

- Low-degree method: systematic way to predict when hypothesis testing problems are computationally easy/hard
- But what about other types of average-case problems?
 - Search
 - Certification
 - Recovery (e.g. tensor decomposition)

- Low-degree method: systematic way to predict when hypothesis testing problems are computationally easy/hard
- But what about other types of average-case problems?
 - Search
 - Certification
 - Recovery (e.g. tensor decomposition)
 - Sampling

- Low-degree method: systematic way to predict when hypothesis testing problems are computationally easy/hard
- But what about other types of average-case problems?
 - Search
 - Certification
 - Recovery (e.g. tensor decomposition)
 - Sampling
 - Counting solutions

- Low-degree method: systematic way to predict when hypothesis testing problems are computationally easy/hard
- But what about other types of average-case problems?
 - Search
 - Certification
 - Recovery (e.g. tensor decomposition)
 - Sampling
 - Counting solutions
- For constrained PCA, we gave low-degree evidence that certification is hard by reduction from a hypothesis testing problem (negatively-spiked Wishart)

- Low-degree method: systematic way to predict when hypothesis testing problems are computationally easy/hard
- But what about other types of average-case problems?
 - Search
 - Certification
 - Recovery (e.g. tensor decomposition)
 - Sampling
 - Counting solutions
- For constrained PCA, we gave low-degree evidence that certification is hard by reduction from a hypothesis testing problem (negatively-spiked Wishart)
- Future direction: how to systematically predict hardness for other types of certification/search/etc problems?

- Low-degree method: systematic way to predict when hypothesis testing problems are computationally easy/hard
- But what about other types of average-case problems?
 - Search
 - Certification
 - Recovery (e.g. tensor decomposition)
 - Sampling
 - Counting solutions
- For constrained PCA, we gave low-degree evidence that certification is hard by reduction from a hypothesis testing problem (negatively-spiked Wishart)
- Future direction: how to systematically predict hardness for other types of certification/search/etc problems?

Thanks!