Hardness of Certification for Constrained PCA

Alex Wein
Courant Institute, NYU

Joint work with:

Afonso Bandeira (NYU) Tim Kunisky (NYU)

Part I: Statistical-to-Computational Gaps and the
“Low-Degree Method"

2/19

Statistical-to-Computational Gaps

» Planted clique: G(n,1/2) U {k-clique}

/19

Statistical-to-Computational Gaps

» Planted clique: G(n,1/2) U {k-clique}

O O o0 o0
OOO

© 5 o 0
0 5 ©

> n vertices

19

Statistical-to-Computational Gaps

» Planted clique: G(n,1/2) U {k-clique}

> n vertices
» Each of the ('2’) edges occurs with probability 1/2

19

Statistical-to-Computational Gaps

» Planted clique: G(n,1/2) U {k-clique}

> n vertices
» Each of the ('2’) edges occurs with probability 1/2
» Planted clique on k vertices

19

Statistical-to-Computational Gaps

» Planted clique: G(n,1/2) U {k-clique}

> n vertices
» Each of the ('2’) edges occurs with probability 1/2
» Planted clique on k vertices

19

Statistical-to-Computational Gaps

» Planted clique: G(n,1/2) U {k-clique}

n vertices

Each of the ('2’) edges occurs with probability 1/2
Planted clique on k vertices

Goal: find the clique

vV vy vy

19

Statistical-to-Computational Gaps

» Planted clique: G(n,1/2) U {k-clique}

/19

Statistical-to-Computational Gaps

» Planted clique: G(n,1/2) U {k-clique}
» Statistically, can find planted clique of size (2 + ¢) log n

19

Statistical-to-Computational Gaps

» Planted clique: G(n,1/2) U {k-clique}
» Statistically, can find planted clique of size (2 + ¢) log n
» In poly-time, can only find clique of size Q(y/n)

19

Statistical-to-Computational Gaps

» Planted clique: G(n,1/2) U {k-clique}
» Statistically, can find planted clique of size (2 + ¢) log n
» In poly-time, can only find clique of size Q(+/n)
Impossible Hard , Easy

2Ic;gn vn k

19

Statistical-to-Computational Gaps

» Planted clique: G(n,1/2) U {k-clique}
» Statistically, can find planted clique of size (2 + ¢) log n
» In poly-time, can only find clique of size Q(+/n)
Impossible Hard , Easy

2Ic;gn vn k

» Sparse PCA

19

Statistical-to-Computational Gaps

» Planted clique: G(n,1/2) U {k-clique}
» Statistically, can find planted clique of size (2 + ¢) log n
» In poly-time, can only find clique of size Q(+/n)
Impossible Hard , Easy

2Ic;gn vn k

» Sparse PCA

» Stochastic block model (community detection)

19

Statistical-to-Computational Gaps

» Planted clique: G(n,1/2) U {k-clique}
» Statistically, can find planted clique of size (2 + ¢) log n
» In poly-time, can only find clique of size Q(+/n)
Impossible Hard , Easy

2Ic;gn vn k

» Sparse PCA
» Stochastic block model (community detection)

» Random constraint satisfaction problems (e.g. 3-SAT)

Statistical-to-Computational Gaps

» Planted clique: G(n,1/2) U {k-clique}
» Statistically, can find planted clique of size (2 + ¢) log n
» In poly-time, can only find clique of size Q(+/n)
Impossible Hard , Easy

2Ic;gn vn k

v

Sparse PCA

Stochastic block model (community detection)

v

v

Random constraint satisfaction problems (e.g. 3-SAT)
Tensor PCA

v

19

Statistical-to-Computational Gaps

» Planted clique: G(n,1/2) U {k-clique}
» Statistically, can find planted clique of size (2 + ¢) log n
» In poly-time, can only find clique of size Q(+/n)
Impossible Hard , Easy

2Ic;gn vn k

v

Sparse PCA

Stochastic block model (community detection)

v

v

Random constraint satisfaction problems (e.g. 3-SAT)
Tensor PCA

Tensor decomposition

v

v

19

Statistical-to-Computational Gaps

» Planted clique: G(n,1/2) U {k-clique}
» Statistically, can find planted clique of size (2 + ¢) log n
» In poly-time, can only find clique of size Q(y/n)

Impossible Hard , Easy
2 Ic;g n x/lﬁ k
» Sparse PCA
» Stochastic block model (community detection)

v

Random constraint satisfaction problems (e.g. 3-SAT)
Tensor PCA

Tensor decomposition

v

v

v

Synchronization / orbit recovery

19

Statistical-to-Computational Gaps

» Planted clique: G(n,1/2) U {k-clique}
» Statistically, can find planted clique of size (2 + ¢) log n
» In poly-time, can only find clique of size Q(y/n)

Impossible Hard , Easy
2 Ic;g n x/lﬁ k
» Sparse PCA
» Stochastic block model (community detection)

v

Random constraint satisfaction problems (e.g. 3-SAT)
Tensor PCA

Tensor decomposition

v

v

v

Synchronization / orbit recovery

Different from theory of NP-completeness: average-case

19

Statistical-to-Computational Gaps

» Planted clique: G(n,1/2) U {k-clique}
» Statistically, can find planted clique of size (2 + ¢) log n
» In poly-time, can only find clique of size Q(y/n)

Impossible Hard , Easy
2 Ic;g n x/lﬁ k
» Sparse PCA
» Stochastic block model (community detection)

v

Random constraint satisfaction problems (e.g. 3-SAT)
Tensor PCA

Tensor decomposition

v

v

v

Synchronization / orbit recovery

Different from theory of NP-completeness: average-case

Q: What fundamentally makes a problem easy or hard?

19

How to Show that a Problem is Hard?

We don’t know how to prove that average-case problems are hard,
but various forms of evidence:

19

How to Show that a Problem is Hard?

We don’t know how to prove that average-case problems are hard,
but various forms of evidence:

» Reductions (e.g. from planted clique) (gerthet, Rigollet '13]

19

How to Show that a Problem is Hard?

We don’t know how to prove that average-case problems are hard,
but various forms of evidence:

» Reductions (e.g. from planted clique) (gerthet, Rigollet '13]

> Failure Of MCMC [Jerrum '92]

5/19

How to Show that a Problem is Hard?

We don’t know how to prove that average-case problems are hard,
but various forms of evidence:

» Reductions (e.g. from planted clique) (gerthet, Rigollet '13]
> Failure Of MCMC [Jerrum '92]

» Shattering of solution space [achlioptas, Coja-Oghlan '08]

5/19

How to Show that a Problem is Hard?

We don’t know how to prove that average-case problems are hard,
but various forms of evidence:

» Reductions (e.g. from planted clique) (gerthet, Rigollet '13]
> Failure Of MCMC [Jerrum '92]
» Shattering of solution space [achlioptas, Coja-Oghlan '08]

» Failure of local algorithms [camarmik, Sudan '13]

5/19

How to Show that a Problem is Hard?

We don’t know how to prove that average-case problems are hard,
but various forms of evidence:

» Reductions (e.g. from planted clique) (gerthet, Rigollet '13]
» Failure of MCMC perrum '92)

» Shattering of solution space [achlioptas, Coja-Oghlan '08]

» Failure of local algorithms [camarmik, Sudan '13]

> Stat|st|ca| phySICS, BP [Decelle, Krzakala, Moore, Zdeborova '11]

5/19

How to Show that a Problem is Hard?

We don’t know how to prove that average-case problems are hard,
but various forms of evidence:

» Reductions (e.g. from planted clique) (gerthet, Rigollet '13]
» Failure of MCMC perrum '92)

» Shattering of solution space [achlioptas, Coja-Oghlan '08]

» Failure of local algorithms [camarmik, Sudan '13]

» Statistical physics, BP [Decelle, Krzakala, Moore, Zdeborovs '11]

» Optimization landscape, Kac-Rice [auffinger, Ben Arous, Cerny '10]

5/19

How to Show that a Problem is Hard?

We don’t know how to prove that average-case problems are hard,
but various forms of evidence:

>

Reductions (e.g. from planted clique) (gerthet, Rigolet '13]
Failure of MCMC pserrum '92]

Shattering of solution space [Achlioptas, Coja-Oghlan 08]

Failure of local algorithms [amarmik, Sudan '13]

Statistical physics, BP [Decelle, Krzakala, Moore, Zdeborovs '11]
Optimization landscape, Kac-Rice [auffinger, Ben Arous, Cerny '10]

Sum-of-sq uares |0Wer bOU ndS [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]

19

How to Show that a Problem is Hard?

We don’t know how to prove that average-case problems are hard,
but various forms of evidence:

» Reductions (e.g. from planted clique) (gerthet, Rigollet '13]

» Failure of MCMC perrum '92)

» Shattering of solution space [achlioptas, Coja-Oghlan '08]

» Failure of local algorithms [camarmik, Sudan '13]

» Statistical physics, BP [Decelle, Krzakala, Moore, Zdeborovs '11]

» Optimization landscape, Kac-Rice [auffinger, Ben Arous, Cerny '10]

» Sum-of-squares lower bounds [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]

» This talk: “low-degree method”

[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16; Hopkins, Steurer '17;

Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17; Hopkins '18 (PhD thesis)]

19

The Low-Degree Method

Suppose we want to hypothesis test (with error probability o(1))
between two distributions:

6/19

The Low-Degree Method

Suppose we want to hypothesis test (with error probability o(1))
between two distributions:

> Null model Y ~ Q, e.g. G(n,1/2)

6/19

The Low-Degree Method

Suppose we want to hypothesis test (with error probability o(1))
between two distributions:

> Null model Y ~ Q, e.g. G(n,1/2)
> Planted model Y ~ P, e.g. G(n,1/2) U {k-clique}

6

19

The Low-Degree Method

Suppose we want to hypothesis test (with error probability o(1))
between two distributions:

> Null model Y ~ Q, e.g. G(n,1/2)
> Planted model Y ~ P, e.g. G(n,1/2) U {k-clique}

Look for a degree-D multivariate polynomial f that distinguishes P
from Q:
Eyp[f(Y
max _Eyrlf(Y)]
feR[Y]p EYNQ[I((Y)2]

6

19

The Low-Degree Method

Suppose we want to hypothesis test (with error probability o(1))
between two distributions:

> Null model Y ~ Q, e.g. G(n,1/2)

> Planted model Y ~ P, e.g. G(n,1/2) U {k-clique}

Look for a degree-D multivariate polynomial f that distinguishes P
from Q:
Eyp[f(Y
max _Eyrlf(Y)]
feR[Y]p EYNQ[I((Y)2]

Want f(Y) to be big when Y ~ P and small when Y ~ Q

6

19

The Low-Degree Method

. Eyp[f(Y)]
feR[Y]o /Ey.q[f(Y)?]

R[Y]p: polynomials of
degree < D (subspace)

19

The Low-Degree Method

. Eyp[f(Y)]
feR[Y]o /Ey.q[f(Y)?]
_ Ey o[L(Y)f(Y)]

= ax
feRYlo /Ey-glf(Y)3]

R[Y]p: polynomials of
degree < D (subspace)

L(Y) = Gg(Y)

3%

19

The Low-Degree Method

. Eyp[f(Y)]
feR[Y]o /Ey.q[f(Y)?]
_ Ey o[L(Y)f(Y)]

= ax
feRYlo /Ey-glf(Y)3]

(L, f)
= max
fFer[Y1p ||fll

R[Y]p: polynomials of
degree < D (subspace)

L(Y) = £(Y)
(. &) = Ev~glf(Y)g(Y)]
Il = VTFF)

19

The Low-Degree Method

Eyp[f(Y)]
max
FER[Y]o \/Ey~g[f(Y)?]

o Brolt(MF(Y)]
rexivio /Ey—alf(Y)2]
_ (L,f)
~ reRpl]

IL=P))

Maximizer: f = LSP = Proj(r[y],) L

R[Y]p: polynomials of
degree < D (subspace)

L(Y) = £(Y)
(. &) = Ev~glf(Y)g(Y)]

1]l = /A, F)

The Low-Degree Method

Eyp[f(Y)]
max
FER[Y]o \/Ey~g[f(Y)?]

o Brolt(MF(Y)]
rexivio /Ey—alf(Y)2]
_ (L,f)
~ reRpl]
= ||L=P))

Maximizer: f = LSP = Proj(r[y],) L

Norm of low-degree likelihood ratio

R[Y]p: polynomials of
degree < D (subspace)

L(Y) = £(Y)
(. &) = Ev~glf(Y)g(Y)]

1]l = /A, F)

19

The Low-Degree Method

By p[f(Y)]

Conclusion: maXf'eR[y]D m

= L2

19

The Low-Degree Method

Eyp[f(Y)] _ HLgD”

Conclusion: maxscr(y], TS

Heuristically,

11D = w(1) degree-D polynomial can distinguish Q, P
| O(1) degree-D polynomials fail

19

The Low-Degree Method

Eyp[f(Y)] _ HLgDH

Conclusion: maxscr(y], oIV

Heuristically,

1L<2| = w(1) degree-D polynomial can distinguish Q, P
| O(1) degree-D polynomials fail

Degree-O(log n) polynomials < Polynomial-time algorithms

19

The Low-Degree Method

Eyp[f(Y)] _ HLgD”

Conclusion: maxscr(y], oIV

Heuristically,
11D = w(1) degree-D polynomial can distinguish Q, P
| O(1) degree-D polynomials fail
Degree-O(log n) polynomials < Polynomial-time algorithms

» Spectral method: distinguish via top eigenvalue of matrix
M = M(Y') whose entries are O(1)-degree polynomials in Y

19

The Low-Degree Method

Eyp[f(Y)] _ HLgD”

Conclusion: maxscr(y], oIV

Heuristically,

11D = w(1) degree-D polynomial can distinguish Q, P
| O(1) degree-D polynomials fail

Degree-O(log n) polynomials < Polynomial-time algorithms

» Spectral method: distinguish via top eigenvalue of matrix
M = M(Y') whose entries are O(1)-degree polynomials in Y

> Log-degree distinguisher: f(Y) = Tr(M?) with g = ©(log n)

19

The Low-Degree Method

: Ey.p[f(Y
Conclusion: maxfer[y], % — ||L§D|]
Heuristically,

11D = w(1) degree-D polynomial can distinguish Q, P
| O(1) degree-D polynomials fail

Degree-O(log n) polynomials < Polynomial-time algorithms
» Spectral method: distinguish via top eigenvalue of matrix
M = M(Y') whose entries are O(1)-degree polynomials in Y
> Log-degree distinguisher: f(Y) = Tr(M?) with g = ©(log n)
» Spectral methods < sum-of-squares [Hkprss '17]

19

The Low-Degree Method

Eyp[f(Y)] _ HLgD”

Conclusion: maxscr(y], oIV

Heuristically,

11D = w(1) degree-D polynomial can distinguish Q, P
| O(1) degree-D polynomials fail

Degree-O(log n) polynomials < Polynomial-time algorithms
» Spectral method: distinguish via top eigenvalue of matrix
M = M(Y') whose entries are O(1)-degree polynomials in Y
> Log-degree distinguisher: f(Y) = Tr(M?) with g = ©(log n)
» Spectral methods < sum-of-squares [Hkprss '17]

Conjecture (informal variant of [Hopkins '18])

For “nice” Q,P, if |L=P|| = O(1) for D = log***M)(n) then no
polynomial-time algorithm can distinguish Q,P with success
probability 1 — o(1).

19

Advantages of the Low-Degree Method

» Can actually calculate/bound ||L=P|| for many problems

19

Advantages of the Low-Degree Method

» Can actually calculate/bound ||L=P|| for many problems

» And the predictions are correct! (i.e. matching widely-believed
conjectures)

19

Advantages of the Low-Degree Method

» Can actually calculate/bound ||L=P|| for many problems

» And the predictions are correct! (i.e. matching widely-believed
conjectures)

» Planted clique, sparse PCA, stochastic block model, tensor
PCA, ..

19

Advantages of the Low-Degree Method

» Can actually calculate/bound ||L=P|| for many problems

» And the predictions are correct! (i.e. matching widely-believed
conjectures)
» Planted clique, sparse PCA, stochastic block model, tensor
PCA, ...

» Heuristically, low-degree prediction matches performance of
sum-of-squares

19

Advantages of the Low-Degree Method

» Can actually calculate/bound ||L=P|| for many problems

» And the predictions are correct! (i.e. matching widely-believed
conjectures)
» Planted clique, sparse PCA, stochastic block model, tensor
PCA, ...

» Heuristically, low-degree prediction matches performance of
sum-of-squares
» But low-degree calculation is much easier than proving SOS
lower bounds

19

Advantages of the Low-Degree Method

» Can actually calculate/bound ||L=P|| for many problems

» And the predictions are correct! (i.e. matching widely-believed
conjectures)

» Planted clique, sparse PCA, stochastic block model, tensor
PCA, ..

» Heuristically, low-degree prediction matches performance of
sum-of-squares

» But low-degree calculation is much easier than proving SOS
lower bounds

» By varying degree D, can explore power of
subexponential-time algorithms:

» Degree-n® polynomials < Time-2’ algorithms
§€(0,1)

19

How to Compute ||L=P||

Additive Gaussian noise: P: Y =X+Z vs Q:Y=Z7
where X ~ P, any distribution over RV
and Z is i.i.d. N(0,1)

10/19

How to Compute ||L=P||

Additive Gaussian noise: P: Y =X+Z vs Q:Y=Z7
where X ~ P, any distribution over RV
and Z is i.i.d. N(0,1)

dP, . Exexp(-3|Y - XIP)

1
Ex exp({Y, X)— S| X|?)
exp(—3|YI1?) 2

10/19

How to Compute ||L=P||

Additive Gaussian noise: P: Y =X+Z vs Q:Y=Z7
where X ~ P, any distribution over RV
and Z is i.i.d. N(0,1)

dP . Exexp(—3llY — X|?)

_ dP Lo
= o = T e = Ex el X))

L(Y)

Write L =)" cohq where {h,} are Hermite polynomials
(orthonormal basis w.r.t. Q)

10/19

How to Compute ||L=P||

Additive Gaussian noise: P: Y =X+Z vs Q:Y=Z7
where X ~ P, any distribution over RV
and Z is i.i.d. N(0,1)

dQ exp(—3|YI1?)

L(Y) Ex exp({Y, X) 3 |IX]P)

Write L =)" cohq where {h,} are Hermite polynomials
(orthonormal basis w.r.t. Q)

IL=PI? = 32 aj<p 4 where ca = (L, ha) = Ey~g[L(Y)ha(Y)]

10/19

How to Compute ||L=P||

Additive Gaussian noise: P: Y =X+Z vs Q:Y=Z7
where X ~ P, any distribution over RV
and Z is i.i.d. N(0,1)

dQ exp(—3|YI1?)

L(Y) Ex exp({Y, X) 3 |IX]P)

Write L =)" cohq where {h,} are Hermite polynomials
(orthonormal basis w.r.t. Q)

IL=PI? = 32 aj<p 4 where ca = (L, ha) = Ey~g[L(Y)ha(Y)]

10/19

How to Compute ||L=P||

Additive Gaussian noise: P: Y =X+Z vs Q:Y=Z7
where X ~ P, any distribution over RV
and Z is i.i.d. N(0,1)

_dP . Exexp(-3[Y — X|P)
dQ exp(—3[Y[?)

1
=FEx exp((Y,X>—§||X||2)

Write L =)" cohq where {h,} are Hermite polynomials
(orthonormal basis w.r.t. Q)

IL=PI? = 32 aj<p 4 where ca = (L, ha) = Ey~g[L(Y)ha(Y)]

Result: ||[L=P|?2 = de oduEXX'KX X")9]

10/19

Part IlI: Hardness of Certification for Constrained
PCA Problems

11/19

Constrained PCA

Let W ~ GOE(n) “Gaussian orthogonal ensemble”

> n x n random symmetric matrix:
VVU: VVjiNN(Ovl/n)a VVIINN(072/n)

12 /19

Constrained PCA

Let W ~ GOE(n) “Gaussian orthogonal ensemble”

> n x n random symmetric matrix:
VVU: VVjiNN(Ovl/n)a VVIINN(072/n)

» Eigenvalues follow semicircle law on [-2,2]

12 /19

Constrained PCA

Let W ~ GOE(n) “Gaussian orthogonal ensemble”

> n x n random symmetric matrix:
VVU: VVjiNN(Ovl/n)a VVIINN(072/n)

» Eigenvalues follow semicircle law on [-2,2]

PCA: max x| Wx
[Ix||=1

12 /19

Constrained PCA

Let W ~ GOE(n) “Gaussian orthogonal ensemble”

> n x n random symmetric matrix:
VVij: VVjiNN(Ovl/n)a VVIINN(072/n)

» Eigenvalues follow semicircle law on [-2,2]

-2 2

PCA: max x"Wx = Amax(W) =2 as n— oo
X|l=

12 /19

Constrained PCA

Let W ~ GOE(n) “Gaussian orthogonal ensemble”

> n x n random symmetric matrix:
VVU: VVjiNN(Ovl/n)a VVIINN(072/n)

» Eigenvalues follow semicircle law on [-2,2]

-2 2

PCA: max x"Wx = Amax(W) =2 as n— oo
X|l=

Constrained PCA: ¢(W):= max_ x' Wx
x€{£1//n}"

12 /19

Constrained PCA

Let W ~ GOE(n) “Gaussian orthogonal ensemble”

> n x n random symmetric matrix:
VVij: VVjiNN(Ovl/n)a VVIINN(072/n)

» Eigenvalues follow semicircle law on [-2,2]

PCA: max x"Wx = Amax(W) =2 as n— oo
X|l=

Constrained PCA: ¢(W):= max_ x' Wx
x€{£1//n}"

Statistical physics: “Sherrington—Kirkpatrick spin glass model”
> ¢(W) — 2P* [15264 aS N —» OO [Parisi '80; Talagrand '06]

12 /19

Search vs Certification

W):= max x'Wx, W ~ GOE(n
ow)i= _max (n)

13/19

Search vs Certification

W):= max x'Wx, W ~ GOE(n
ow)i= _max (n)

Two computational problems:

13 /19

Search vs Certification

W):= max x'Wx, W ~ GOE(n
ow)i= _max (n)

Two computational problems:

» Search: given W, find x € {£1/y/n}" with large x " Wx

13 /19

Search vs Certification

W):= max x'Wx, W ~ GOE(n
ow)i= _max (n)

Two computational problems:

» Search: given W, find x € {£1/y/n}" with large x " Wx

» Proves a lower bound on ¢(W)

13 /19

Search vs Certification

W):= max x'Wx, W ~ GOE(n
ow)i= _max (n)

Two computational problems:

» Search: given W, find x € {£1/y/n}" with large x " Wx

» Proves a lower bound on ¢(W)

» Certification: given W, prove ¢(W) < B for some bound B

13 /19

Search vs Certification

W):= max x'Wx, W ~ GOE(n
ow)i= _max (n)

Two computational problems:

» Search: given W, find x € {£1/y/n}" with large x " Wx

» Proves a lower bound on ¢(W)

» Certification: given W, prove ¢(W) < B for some bound B
» Formally: algorithm {f,} outputs f,(W) € R such that:

13 /19

Search vs Certification

W):= max x'Wx, W ~ GOE(n
ow)i= _max (n)

Two computational problems:
» Search: given W, find x € {£1/y/n}" with large x " Wx
» Proves a lower bound on ¢(W)

» Certification: given W, prove ¢(W) < B for some bound B

» Formally: algorithm {f,} outputs f,(W) € R such that:
(i) p(W) < (W) YW € R™"

13 /19

Search vs Certification

W):= max x'Wx, W ~ GOE(n
ow)i= _max (n)

Two computational problems:
» Search: given W, find x € {£1/y/n}" with large x " Wx
» Proves a lower bound on ¢(W)

» Certification: given W, prove ¢(W) < B for some bound B

» Formally: algorithm {f,} outputs f,(W) € R such that:
(i) (W) < (W) YW € R™"
(i) if W ~ GOE(n), f,(W) < B+o0(1) w.p.1—0(1)

13 /19

Search vs Certification

W):= max x'Wx, W ~ GOE(n
ow)i= _max (n)

Two computational problems:
» Search: given W, find x € {£1/y/n}" with large x " Wx
» Proves a lower bound on ¢(W)

» Certification: given W, prove ¢(W) < B for some bound B

» Formally: algorithm {f,} outputs f,(W) € R such that:
(i) (W) < fo(W) YW € R™"
(i) if W ~ GOE(n), f,(W)<B+o(1) w.p. 1—0(1)
» Note: cannot just output f,(W) =2P, +¢

13 /19

Search vs Certification

W):= max x'Wx, W ~ GOE(n
ow)i= _max (n)

Two computational problems:

» Search: given W, find x € {£1/y/n}" with large x " Wx

» Proves a lower bound on ¢(W)

» Certification: given W, prove ¢(W) < B for some bound B

» Formally: algorithm {f,} outputs f,(W) € R such that:
(i) (W) < fo(W) YW € R™"
(i) if W ~ GOE(n), f,(W)<B+o(1) w.p. 1—0(1)
» Note: cannot just output f,(W) =2P, +¢

(True Value)
2P«
L
T

Search——— | |<— Certification

13 /19

Search vs Certification: Prior Work

14/19

Search vs Certification: Prior Work

Perfect search is possible in poly time

14/19

Search vs Certification: Prior Work

Perfect search is possible in poly time
» Can find x € {£1/y/n}" such that x" Wx > 2P — & (Montanari 18]

14 /19

Search vs Certification: Prior Work

Perfect search is possible in poly time
» Can find x € {£1/y/n}" such that x" Wx > 2P — & (Montanari 18]
» Optimization of full-RSB models [subag 18]

14 /19

Search vs Certification: Prior Work

Perfect search is possible in poly time
» Can find x € {£1/y/n}" such that x" Wx > 2P — & (Montanari 18]
» Optimization of full-RSB models [subag 18]

Trivial spectral certification:

14 /19

Search vs Certification: Prior Work

Perfect search is possible in poly time
» Can find x € {£1/y/n}" such that x" Wx > 2P — & (Montanari 18]
» Optimization of full-RSB models [subag 18]

Trivial spectral certification:

p(W) < max xTWx = Amax(W) — 2

14 /19

Search vs Certification: Prior Work

Perfect search is possible in poly time
» Can find x € {£1/y/n}" such that x" Wx > 2P — & (Montanari 18]
» Optimization of full-RSB models [subag 18]

Trivial spectral certification:

p(W) < max xTWx = Amax(W) — 2

Can we do better (in poly time)?

14 /19

Search vs Certification: Prior Work

Perfect search is possible in poly time
» Can find x € {£1/y/n}" such that x" Wx > 2P — & (Montanari 18]
» Optimization of full-RSB models [subag 18]
Trivial spectral certification:
(W) < ||m”ax xTWx = Amax(W) — 2
x||=1
Can we do better (in poly time)?

» Convex relaxation?

14 /19

Search vs Certification: Prior Work

Perfect search is possible in poly time

» Can find x € {£1/y/n}" such that x" Wx > 2P — & (Montanari 18]

» Optimization of full-RSB models [subag 18]
Trivial spectral certification:

(W) < ||m”ax xTWx = Amax(W) — 2
x||=1

Can we do better (in poly time)?

» Convex relaxation?

» Sum-of-squares?

14 /19

Search vs Certification: Prior Work

Perfect search is possible in poly time
» Can find x € {£1/y/n}" such that x" Wx > 2P — & (Montanari 18]
» Optimization of full-RSB models [subag 18]
Trivial spectral certification:
(W) < ||m”ax xTWx = Amax(W) — 2
x||=1
Can we do better (in poly time)?
» Convex relaxation?
» Sum-of-squares?

Answer: nol

14 /19

Search vs Certification: Prior Work

Perfect search is possible in poly time
» Can find x € {£1/y/n}" such that x" Wx > 2P — & (Montanari 18]
» Optimization of full-RSB models [subag 18]
Trivial spectral certification:
(W) < ||m”ax xTWx = Amax(W) — 2
x||=1
Can we do better (in poly time)?
» Convex relaxation?
» Sum-of-squares?
Answer: no!

> In particular, any convex relaxation fails

14 /19

Search vs Certification: Prior Work

Perfect search is possible in poly time
» Can find x € {£1/y/n}" such that x" Wx > 2P — & (Montanari 18]
» Optimization of full-RSB models [subag 18]
Trivial spectral certification:
(W) < ||m”ax xTWx = Amax(W) — 2
x||=1
Can we do better (in poly time)?
» Convex relaxation?
» Sum-of-squares?
Answer: no!

> In particular, any convex relaxation fails

(True Value)
2Ps 2
1

T
Search—— > |<— Certification

14 /19

Main Result

15/19

Main Result

Theorem (informal)

Conditional on the low-degree method, for any € > 0, no
polynomial-time algorithm can certify an upper bound of 2 — ¢ on

P(W).

15/19

Main Result

Theorem (informal)

Conditional on the low-degree method, for any € > 0, no
polynomial-time algorithm can certify an upper bound of 2 — ¢ on

P(W).

. . . 1—o(1
> In fact, need essentially exponential time: 2" o)

15/19

Main Result

Theorem (informal)

Conditional on the low-degree method, for any € > 0, no
polynomial-time algorithm can certify an upper bound of 2 — ¢ on

P(W).

» In fact, need essentially exponential time: 27~
» Also for constraint sets other than {£1/y/n}"

o(1)

15/19

Main Result

Theorem (informal)

Conditional on the low-degree method, for any € > 0, no
polynomial-time algorithm can certify an upper bound of 2 — ¢ on

P(W).

. . . 1—o(1
> In fact, need essentially exponential time: 2" o)

» Also for constraint sets other than {£1/y/n}"

Proof outline:

15/19

Main Result

Theorem (informal)

Conditional on the low-degree method, for any € > 0, no
polynomial-time algorithm can certify an upper bound of 2 — ¢ on

P(W).

» In fact, need essentially exponential time: 27~
» Also for constraint sets other than {£1//n}"

o(1)

Proof outline:

(i) Reduction from a hypothesis testing problem (negatively-spiked
Wishart) to certification problem

15/19

Main Result

Theorem (informal)

Conditional on the low-degree method, for any € > 0, no
polynomial-time algorithm can certify an upper bound of 2 — ¢ on

P(W).

» In fact, need essentially exponential time: 27~
» Also for constraint sets other than {£1//n}"

o(1)

Proof outline:

(i) Reduction from a hypothesis testing problem (negatively-spiked
Wishart) to certification problem

(ii) Use low-degree method to show that the hypothesis testing
problem is hard

15/19

Spiked Wishart Model

16/19

Spiked Wishart Model

Q : Observe N independent samples y1, ..., yy where y; ~ N(0, I,)

16/19

Spiked Wishart Model

Q : Observe N independent samples y1, ..., yy where y; ~ N(0, I,)

PP : Planted vector x ~ Unif({%1/y/n}")
Observe y1,. .., yn with y; ~ N(0, I, + Bxx")

Parameters: n/N — v, B€[-1,00)

16 /19

Spiked Wishart Model

Q : Observe N independent samples y1, ..., yy where y; ~ N(0, I,)

PP : Planted vector x ~ Unif({%1/y/n}")
Observe y1,. .., yn with y; ~ N(0, I, + Bxx")

Parameters: n/N —~, € [-1,00)
Spectral threshold: if 3% > ~, can distinguish Q, P using

top/bottom eigenvalue of sample covariance matrix
Y = % > y,'yl-—r [Baik, Ben Arous, Péché '05]

16 /19

Spiked Wishart Model

Q : Observe N independent samples y1, ..., yy where y; ~ N(0, I,)

PP : Planted vector x ~ Unif({%1/y/n}")

Observe y1,. .., yn with y; ~ N(0, I, + Bxx")
Parameters: n/N — v, B€[-1,00)

Spectral threshold: if 3% > ~, can distinguish Q, P using
top/bottom eigenvalue of sample covariance matrix

Y = % > y,'yl-—r [Baik, Ben Arous, Péché '05]

Using low-degree method, we show: if 32 < 7, cannot distinguish
Q, P (unless given exponential time)

16 /19

Negatively-Spiked Wishart Model

Our case of interest: f = —1 (technically 8 > —1,8 ~ —1)

17 /19

Negatively-Spiked Wishart Model

Our case of interest: f = —1 (technically 8 > —1,8 ~ —1)

Q : observe N random vectors in R”

17 /19

Negatively-Spiked Wishart Model

Our case of interest: f = —1 (technically 8 > —1,8 ~ —1)
Q : observe N random vectors in R”

P : observe N random vectors that are all orthogonal to a planted
hypercube vector x € {£1//n}"

> Vi NN(Oa In _XXT)

17 /19

Negatively-Spiked Wishart Model

Our case of interest: f = —1 (technically 8 > —1,8 ~ —1)
Q : observe N random vectors in R”

P : observe N random vectors that are all orthogonal to a planted
hypercube vector x € {£1//n}"

> i N(Oa In — XXT)
Spectral threshold: if N > n, can distinguish using
rank(yl, cee ayN)

> Q: rank n
» P: rank n—1

17 /19

Negatively-Spiked Wishart Model

Our case of interest: f = —1 (technically 8 > —1,8 ~ —1)
Q : observe N random vectors in R”

P : observe N random vectors that are all orthogonal to a planted
hypercube vector x € {£1//n}"

> Vi NN(Oa In — XXT)
Spectral threshold: if N > n, can distinguish using
rank(yl, cee ayN)

> Q: rank n
» P: rank n—1

Low-degree method: if N < n, cannot distinguish (unless given
exponential time)

17 /19

Negatively-Spiked Wishart Model

Our case of interest: f = —1 (technically 8 > —1,8 ~ —1)
Q : observe N random vectors in R”

P : observe N random vectors that are all orthogonal to a planted
hypercube vector x € {£1//n}"

> Vi NN(Oa In _XXT)

Spectral threshold: if N > n, can distinguish using
rank(y1, ..., yn)

> Q: rank n

> P: rank n—1

Low-degree method: if N < n, cannot distinguish (unless given
exponential time)

» But statistically possible

17 /19

Reduction from Wishart to Certification

» Suppose you can certify (W) < 2 — e when W ~ GOE(n)
» Recall (]5(W) = maxxe{il/ﬁ}n x T Wx

18/19

Reduction from Wishart to Certification

» Suppose you can certify (W) < 2 — e when W ~ GOE(n)
» Recall gb(W) = maxxe{il/ﬁ}n x T Wx

» Then you can certify that the top dn-dimensional eigenspace
of W does not contain a hypercube vector

én eigenvalues

-2 2-e 2

> If hypercube vector x is a linear combination of the top dn
eigenvectors, it would satisfy xTWx>2—¢

18 /19

Reduction from Wishart to Certification

» Suppose you can certify (W) < 2 — e when W ~ GOE(n)
» Recall (]5(W) = maxxe{il/ﬁ}n x T Wx

» Then you can certify that the top dn-dimensional eigenspace
of W does not contain a hypercube vector

18 /19

Reduction from Wishart to Certification

» Suppose you can certify (W) < 2 — e when W ~ GOE(n)
» Recall (]5(W) = maxxe{il/ﬁ}n X—r Wix
» Then you can certify that the top dn-dimensional eigenspace
of W does not contain a hypercube vector

» So you can certify that a random §n-dimensional subspace
does not contain a hypercube vector

18 /19

Reduction from Wishart to Certification

» Suppose you can certify (W) < 2 — e when W ~ GOE(n)
» Recall gb(W) = maxxe{il/ﬁ}n X—r Wix

» Then you can certify that the top dn-dimensional eigenspace
of W does not contain a hypercube vector

» So you can certify that a random §n-dimensional subspace
does not contain a hypercube vector

» So you can distinguish between a random dn-dimensional
subspace and a dn-dimensional subspace containing a
hypercube vector

18 /19

Reduction from Wishart to Certification

» Suppose you can certify (W) < 2 — e when W ~ GOE(n)
» Recall gb(W) = maxxe{il/ﬁ}n X—r Wix

» Then you can certify that the top dn-dimensional eigenspace
of W does not contain a hypercube vector

» So you can certify that a random §n-dimensional subspace
does not contain a hypercube vector

» So you can distinguish between a random dn-dimensional
subspace and a dn-dimensional subspace containing a
hypercube vector

» So you can distinguish between a random
(1 — d)n-dimensional subspace and a (1 — ¢)n-dimensional
subspace that is orthogonal to a hypercube vector

18 /19

Reduction from Wishart to Certification

» Suppose you can certify (W) < 2 — e when W ~ GOE(n)
» Recall gb(W) = maxxe{il/ﬁ}n X—r Wix

» Then you can certify that the top dn-dimensional eigenspace
of W does not contain a hypercube vector

» So you can certify that a random §n-dimensional subspace
does not contain a hypercube vector

» So you can distinguish between a random dn-dimensional
subspace and a dn-dimensional subspace containing a
hypercube vector

» So you can distinguish between a random
(1 — d)n-dimensional subspace and a (1 — ¢)n-dimensional
subspace that is orthogonal to a hypercube vector

» But this is exactly the Wishart problem with = —1 and
N = (1 — 6)n, which is hard = contradiction

18 /19

Summary

19/19

Summary

» Low-degree method: systematic way to predict when
hypothesis testing problems are computationally easy/hard

19/19

Summary
» Low-degree method: systematic way to predict when

hypothesis testing problems are computationally easy/hard

» But what about other types of average-case problems?

19/19

Summary

» Low-degree method: systematic way to predict when
hypothesis testing problems are computationally easy/hard

» But what about other types of average-case problems?
» Search

19/19

Summary

» Low-degree method: systematic way to predict when
hypothesis testing problems are computationally easy/hard

» But what about other types of average-case problems?

» Search
» Certification

19/19

Summary

» Low-degree method: systematic way to predict when
hypothesis testing problems are computationally easy/hard

» But what about other types of average-case problems?

» Search
» Certification
» Recovery (e.g. tensor decomposition)

19/19

Summary

» Low-degree method: systematic way to predict when
hypothesis testing problems are computationally easy/hard

» But what about other types of average-case problems?
» Search

Certification

Recovery (e.g. tensor decomposition)

Sampling

vV VvYyy

19/19

Summary

» Low-degree method: systematic way to predict when
hypothesis testing problems are computationally easy/hard

» But what about other types of average-case problems?

» Search

Certification

Recovery (e.g. tensor decomposition)
Sampling

Counting solutions

vV vy VvYyy

19/19

Summary

» Low-degree method: systematic way to predict when
hypothesis testing problems are computationally easy/hard

» But what about other types of average-case problems?
» Search

Certification

Recovery (e.g. tensor decomposition)

Sampling

Counting solutions

vV vy VvYyy

» For constrained PCA, we gave low-degree evidence that
certification is hard by reduction from a hypothesis testing
problem (negatively-spiked Wishart)

19/19

Summary

» Low-degree method: systematic way to predict when
hypothesis testing problems are computationally easy/hard

» But what about other types of average-case problems?

» Search

Certification

Recovery (e.g. tensor decomposition)
Sampling

Counting solutions

vV vy VvYyy

» For constrained PCA, we gave low-degree evidence that
certification is hard by reduction from a hypothesis testing
problem (negatively-spiked Wishart)

» Future direction: how to systematically predict hardness for
other types of certification/search /etc problems?

19/19

Summary

» Low-degree method: systematic way to predict when
hypothesis testing problems are computationally easy/hard

» But what about other types of average-case problems?

» Search

Certification

Recovery (e.g. tensor decomposition)
Sampling

Counting solutions

vV vy VvYyy

» For constrained PCA, we gave low-degree evidence that
certification is hard by reduction from a hypothesis testing
problem (negatively-spiked Wishart)

» Future direction: how to systematically predict hardness for
other types of certification/search /etc problems?

Thanks!

19/19

