
Hardness of Certification for Constrained PCA

Alex Wein
Courant Institute, NYU

Joint work with:

Afonso Bandeira (NYU) Tim Kunisky (NYU)

1 / 19

Part I: Statistical-to-Computational Gaps and the
“Low-Degree Method”

2 / 19

Statistical-to-Computational Gaps

I Planted clique: G (n, 1/2) ∪ {k-clique}

3 / 19

Statistical-to-Computational Gaps

I Planted clique: G (n, 1/2) ∪ {k-clique}

I n vertices

3 / 19

Statistical-to-Computational Gaps

I Planted clique: G (n, 1/2) ∪ {k-clique}

I n vertices
I Each of the

(
n
2

)
edges occurs with probability 1/2

3 / 19

Statistical-to-Computational Gaps

I Planted clique: G (n, 1/2) ∪ {k-clique}

I n vertices
I Each of the

(
n
2

)
edges occurs with probability 1/2

I Planted clique on k vertices

3 / 19

Statistical-to-Computational Gaps

I Planted clique: G (n, 1/2) ∪ {k-clique}

I n vertices
I Each of the

(
n
2

)
edges occurs with probability 1/2

I Planted clique on k vertices

3 / 19

Statistical-to-Computational Gaps

I Planted clique: G (n, 1/2) ∪ {k-clique}

I n vertices
I Each of the

(
n
2

)
edges occurs with probability 1/2

I Planted clique on k vertices
I Goal: find the clique

3 / 19

Statistical-to-Computational Gaps

I Planted clique: G (n, 1/2) ∪ {k-clique}

I Statistically, can find planted clique of size (2 + ε) log n
I In poly-time, can only find clique of size Ω(

√
n)

I Sparse PCA

I Stochastic block model (community detection)

I Random constraint satisfaction problems (e.g. 3-SAT)

I Tensor PCA

I Tensor decomposition

I Synchronization / orbit recovery

Different from theory of NP-completeness: average-case

Q: What fundamentally makes a problem easy or hard?

4 / 19

Statistical-to-Computational Gaps

I Planted clique: G (n, 1/2) ∪ {k-clique}
I Statistically, can find planted clique of size (2 + ε) log n

I In poly-time, can only find clique of size Ω(
√
n)

I Sparse PCA

I Stochastic block model (community detection)

I Random constraint satisfaction problems (e.g. 3-SAT)

I Tensor PCA

I Tensor decomposition

I Synchronization / orbit recovery

Different from theory of NP-completeness: average-case

Q: What fundamentally makes a problem easy or hard?

4 / 19

Statistical-to-Computational Gaps

I Planted clique: G (n, 1/2) ∪ {k-clique}
I Statistically, can find planted clique of size (2 + ε) log n
I In poly-time, can only find clique of size Ω(

√
n)

I Sparse PCA

I Stochastic block model (community detection)

I Random constraint satisfaction problems (e.g. 3-SAT)

I Tensor PCA

I Tensor decomposition

I Synchronization / orbit recovery

Different from theory of NP-completeness: average-case

Q: What fundamentally makes a problem easy or hard?

4 / 19

Statistical-to-Computational Gaps

I Planted clique: G (n, 1/2) ∪ {k-clique}
I Statistically, can find planted clique of size (2 + ε) log n
I In poly-time, can only find clique of size Ω(

√
n)

I Sparse PCA

I Stochastic block model (community detection)

I Random constraint satisfaction problems (e.g. 3-SAT)

I Tensor PCA

I Tensor decomposition

I Synchronization / orbit recovery

Different from theory of NP-completeness: average-case

Q: What fundamentally makes a problem easy or hard?

4 / 19

Statistical-to-Computational Gaps

I Planted clique: G (n, 1/2) ∪ {k-clique}
I Statistically, can find planted clique of size (2 + ε) log n
I In poly-time, can only find clique of size Ω(

√
n)

I Sparse PCA

I Stochastic block model (community detection)

I Random constraint satisfaction problems (e.g. 3-SAT)

I Tensor PCA

I Tensor decomposition

I Synchronization / orbit recovery

Different from theory of NP-completeness: average-case

Q: What fundamentally makes a problem easy or hard?

4 / 19

Statistical-to-Computational Gaps

I Planted clique: G (n, 1/2) ∪ {k-clique}
I Statistically, can find planted clique of size (2 + ε) log n
I In poly-time, can only find clique of size Ω(

√
n)

I Sparse PCA

I Stochastic block model (community detection)

I Random constraint satisfaction problems (e.g. 3-SAT)

I Tensor PCA

I Tensor decomposition

I Synchronization / orbit recovery

Different from theory of NP-completeness: average-case

Q: What fundamentally makes a problem easy or hard?

4 / 19

Statistical-to-Computational Gaps

I Planted clique: G (n, 1/2) ∪ {k-clique}
I Statistically, can find planted clique of size (2 + ε) log n
I In poly-time, can only find clique of size Ω(

√
n)

I Sparse PCA

I Stochastic block model (community detection)

I Random constraint satisfaction problems (e.g. 3-SAT)

I Tensor PCA

I Tensor decomposition

I Synchronization / orbit recovery

Different from theory of NP-completeness: average-case

Q: What fundamentally makes a problem easy or hard?

4 / 19

Statistical-to-Computational Gaps

I Planted clique: G (n, 1/2) ∪ {k-clique}
I Statistically, can find planted clique of size (2 + ε) log n
I In poly-time, can only find clique of size Ω(

√
n)

I Sparse PCA

I Stochastic block model (community detection)

I Random constraint satisfaction problems (e.g. 3-SAT)

I Tensor PCA

I Tensor decomposition

I Synchronization / orbit recovery

Different from theory of NP-completeness: average-case

Q: What fundamentally makes a problem easy or hard?

4 / 19

Statistical-to-Computational Gaps

I Planted clique: G (n, 1/2) ∪ {k-clique}
I Statistically, can find planted clique of size (2 + ε) log n
I In poly-time, can only find clique of size Ω(

√
n)

I Sparse PCA

I Stochastic block model (community detection)

I Random constraint satisfaction problems (e.g. 3-SAT)

I Tensor PCA

I Tensor decomposition

I Synchronization / orbit recovery

Different from theory of NP-completeness: average-case

Q: What fundamentally makes a problem easy or hard?

4 / 19

Statistical-to-Computational Gaps

I Planted clique: G (n, 1/2) ∪ {k-clique}
I Statistically, can find planted clique of size (2 + ε) log n
I In poly-time, can only find clique of size Ω(

√
n)

I Sparse PCA

I Stochastic block model (community detection)

I Random constraint satisfaction problems (e.g. 3-SAT)

I Tensor PCA

I Tensor decomposition

I Synchronization / orbit recovery

Different from theory of NP-completeness: average-case

Q: What fundamentally makes a problem easy or hard?

4 / 19

Statistical-to-Computational Gaps

I Planted clique: G (n, 1/2) ∪ {k-clique}
I Statistically, can find planted clique of size (2 + ε) log n
I In poly-time, can only find clique of size Ω(

√
n)

I Sparse PCA

I Stochastic block model (community detection)

I Random constraint satisfaction problems (e.g. 3-SAT)

I Tensor PCA

I Tensor decomposition

I Synchronization / orbit recovery

Different from theory of NP-completeness: average-case

Q: What fundamentally makes a problem easy or hard?

4 / 19

Statistical-to-Computational Gaps

I Planted clique: G (n, 1/2) ∪ {k-clique}
I Statistically, can find planted clique of size (2 + ε) log n
I In poly-time, can only find clique of size Ω(

√
n)

I Sparse PCA

I Stochastic block model (community detection)

I Random constraint satisfaction problems (e.g. 3-SAT)

I Tensor PCA

I Tensor decomposition

I Synchronization / orbit recovery

Different from theory of NP-completeness: average-case

Q: What fundamentally makes a problem easy or hard?

4 / 19

How to Show that a Problem is Hard?

We don’t know how to prove that average-case problems are hard,
but various forms of evidence:

I Reductions (e.g. from planted clique) [Berthet, Rigollet ’13]

I Failure of MCMC [Jerrum ’92]

I Shattering of solution space [Achlioptas, Coja-Oghlan ’08]

I Failure of local algorithms [Gamarnik, Sudan ’13]

I Statistical physics, BP [Decelle, Krzakala, Moore, Zdeborová ’11]

I Optimization landscape, Kac-Rice [Auffinger, Ben Arous, Cerný ’10]

I Sum-of-squares lower bounds [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16]

I This talk: “low-degree method”
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16; Hopkins, Steurer ’17;

Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17; Hopkins ’18 (PhD thesis)]

5 / 19

How to Show that a Problem is Hard?

We don’t know how to prove that average-case problems are hard,
but various forms of evidence:

I Reductions (e.g. from planted clique) [Berthet, Rigollet ’13]

I Failure of MCMC [Jerrum ’92]

I Shattering of solution space [Achlioptas, Coja-Oghlan ’08]

I Failure of local algorithms [Gamarnik, Sudan ’13]

I Statistical physics, BP [Decelle, Krzakala, Moore, Zdeborová ’11]

I Optimization landscape, Kac-Rice [Auffinger, Ben Arous, Cerný ’10]

I Sum-of-squares lower bounds [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16]

I This talk: “low-degree method”
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16; Hopkins, Steurer ’17;

Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17; Hopkins ’18 (PhD thesis)]

5 / 19

How to Show that a Problem is Hard?

We don’t know how to prove that average-case problems are hard,
but various forms of evidence:

I Reductions (e.g. from planted clique) [Berthet, Rigollet ’13]

I Failure of MCMC [Jerrum ’92]

I Shattering of solution space [Achlioptas, Coja-Oghlan ’08]

I Failure of local algorithms [Gamarnik, Sudan ’13]

I Statistical physics, BP [Decelle, Krzakala, Moore, Zdeborová ’11]

I Optimization landscape, Kac-Rice [Auffinger, Ben Arous, Cerný ’10]

I Sum-of-squares lower bounds [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16]

I This talk: “low-degree method”
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16; Hopkins, Steurer ’17;

Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17; Hopkins ’18 (PhD thesis)]

5 / 19

How to Show that a Problem is Hard?

We don’t know how to prove that average-case problems are hard,
but various forms of evidence:

I Reductions (e.g. from planted clique) [Berthet, Rigollet ’13]

I Failure of MCMC [Jerrum ’92]

I Shattering of solution space [Achlioptas, Coja-Oghlan ’08]

I Failure of local algorithms [Gamarnik, Sudan ’13]

I Statistical physics, BP [Decelle, Krzakala, Moore, Zdeborová ’11]

I Optimization landscape, Kac-Rice [Auffinger, Ben Arous, Cerný ’10]

I Sum-of-squares lower bounds [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16]

I This talk: “low-degree method”
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16; Hopkins, Steurer ’17;

Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17; Hopkins ’18 (PhD thesis)]

5 / 19

How to Show that a Problem is Hard?

We don’t know how to prove that average-case problems are hard,
but various forms of evidence:

I Reductions (e.g. from planted clique) [Berthet, Rigollet ’13]

I Failure of MCMC [Jerrum ’92]

I Shattering of solution space [Achlioptas, Coja-Oghlan ’08]

I Failure of local algorithms [Gamarnik, Sudan ’13]

I Statistical physics, BP [Decelle, Krzakala, Moore, Zdeborová ’11]

I Optimization landscape, Kac-Rice [Auffinger, Ben Arous, Cerný ’10]

I Sum-of-squares lower bounds [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16]

I This talk: “low-degree method”
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16; Hopkins, Steurer ’17;

Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17; Hopkins ’18 (PhD thesis)]

5 / 19

How to Show that a Problem is Hard?

We don’t know how to prove that average-case problems are hard,
but various forms of evidence:

I Reductions (e.g. from planted clique) [Berthet, Rigollet ’13]

I Failure of MCMC [Jerrum ’92]

I Shattering of solution space [Achlioptas, Coja-Oghlan ’08]

I Failure of local algorithms [Gamarnik, Sudan ’13]

I Statistical physics, BP [Decelle, Krzakala, Moore, Zdeborová ’11]

I Optimization landscape, Kac-Rice [Auffinger, Ben Arous, Cerný ’10]

I Sum-of-squares lower bounds [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16]

I This talk: “low-degree method”
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16; Hopkins, Steurer ’17;

Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17; Hopkins ’18 (PhD thesis)]

5 / 19

How to Show that a Problem is Hard?

We don’t know how to prove that average-case problems are hard,
but various forms of evidence:

I Reductions (e.g. from planted clique) [Berthet, Rigollet ’13]

I Failure of MCMC [Jerrum ’92]

I Shattering of solution space [Achlioptas, Coja-Oghlan ’08]

I Failure of local algorithms [Gamarnik, Sudan ’13]

I Statistical physics, BP [Decelle, Krzakala, Moore, Zdeborová ’11]

I Optimization landscape, Kac-Rice [Auffinger, Ben Arous, Cerný ’10]

I Sum-of-squares lower bounds [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16]

I This talk: “low-degree method”
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16; Hopkins, Steurer ’17;

Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17; Hopkins ’18 (PhD thesis)]

5 / 19

How to Show that a Problem is Hard?

We don’t know how to prove that average-case problems are hard,
but various forms of evidence:

I Reductions (e.g. from planted clique) [Berthet, Rigollet ’13]

I Failure of MCMC [Jerrum ’92]

I Shattering of solution space [Achlioptas, Coja-Oghlan ’08]

I Failure of local algorithms [Gamarnik, Sudan ’13]

I Statistical physics, BP [Decelle, Krzakala, Moore, Zdeborová ’11]

I Optimization landscape, Kac-Rice [Auffinger, Ben Arous, Cerný ’10]

I Sum-of-squares lower bounds [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16]

I This talk: “low-degree method”
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16; Hopkins, Steurer ’17;

Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17; Hopkins ’18 (PhD thesis)]

5 / 19

How to Show that a Problem is Hard?

We don’t know how to prove that average-case problems are hard,
but various forms of evidence:

I Reductions (e.g. from planted clique) [Berthet, Rigollet ’13]

I Failure of MCMC [Jerrum ’92]

I Shattering of solution space [Achlioptas, Coja-Oghlan ’08]

I Failure of local algorithms [Gamarnik, Sudan ’13]

I Statistical physics, BP [Decelle, Krzakala, Moore, Zdeborová ’11]

I Optimization landscape, Kac-Rice [Auffinger, Ben Arous, Cerný ’10]

I Sum-of-squares lower bounds [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16]

I This talk: “low-degree method”
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16; Hopkins, Steurer ’17;

Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17; Hopkins ’18 (PhD thesis)]

5 / 19

The Low-Degree Method

Suppose we want to hypothesis test (with error probability o(1))
between two distributions:

I Null model Y ∼ Qn e.g. G (n, 1/2)

I Planted model Y ∼ Pn e.g. G (n, 1/2) ∪ {k-clique}

Look for a degree-D multivariate polynomial f that distinguishes P
from Q:

max
f ∈R[Y]D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Want f (Y) to be big when Y ∼ P and small when Y ∼ Q

6 / 19

The Low-Degree Method

Suppose we want to hypothesis test (with error probability o(1))
between two distributions:

I Null model Y ∼ Qn e.g. G (n, 1/2)

I Planted model Y ∼ Pn e.g. G (n, 1/2) ∪ {k-clique}

Look for a degree-D multivariate polynomial f that distinguishes P
from Q:

max
f ∈R[Y]D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Want f (Y) to be big when Y ∼ P and small when Y ∼ Q

6 / 19

The Low-Degree Method

Suppose we want to hypothesis test (with error probability o(1))
between two distributions:

I Null model Y ∼ Qn e.g. G (n, 1/2)

I Planted model Y ∼ Pn e.g. G (n, 1/2) ∪ {k-clique}

Look for a degree-D multivariate polynomial f that distinguishes P
from Q:

max
f ∈R[Y]D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Want f (Y) to be big when Y ∼ P and small when Y ∼ Q

6 / 19

The Low-Degree Method

Suppose we want to hypothesis test (with error probability o(1))
between two distributions:

I Null model Y ∼ Qn e.g. G (n, 1/2)

I Planted model Y ∼ Pn e.g. G (n, 1/2) ∪ {k-clique}

Look for a degree-D multivariate polynomial f that distinguishes P
from Q:

max
f ∈R[Y]D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Want f (Y) to be big when Y ∼ P and small when Y ∼ Q

6 / 19

The Low-Degree Method

Suppose we want to hypothesis test (with error probability o(1))
between two distributions:

I Null model Y ∼ Qn e.g. G (n, 1/2)

I Planted model Y ∼ Pn e.g. G (n, 1/2) ∪ {k-clique}

Look for a degree-D multivariate polynomial f that distinguishes P
from Q:

max
f ∈R[Y]D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

Want f (Y) to be big when Y ∼ P and small when Y ∼ Q

6 / 19

The Low-Degree Method

max
f ∈R[Y]D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

= max
f ∈R[Y]D

EY∼Q[L(Y)f (Y)]√
EY∼Q[f (Y)2]

R[Y]D : polynomials of
degree ≤ D (subspace)

Maximizer: f = L≤D := proj(R[Y]D)L

Norm of low-degree likelihood ratio

7 / 19

The Low-Degree Method

max
f ∈R[Y]D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

= max
f ∈R[Y]D

EY∼Q[L(Y)f (Y)]√
EY∼Q[f (Y)2]

R[Y]D : polynomials of
degree ≤ D (subspace)

L(Y) = dP
dQ(Y)

Maximizer: f = L≤D := proj(R[Y]D)L

Norm of low-degree likelihood ratio

7 / 19

The Low-Degree Method

max
f ∈R[Y]D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

= max
f ∈R[Y]D

EY∼Q[L(Y)f (Y)]√
EY∼Q[f (Y)2]

= max
f ∈R[Y]D

〈L, f 〉
‖f ‖

R[Y]D : polynomials of
degree ≤ D (subspace)

L(Y) = dP
dQ(Y)

〈f , g〉 = EY∼Q[f (Y)g(Y)]

‖f ‖ =
√
〈f , f 〉

Maximizer: f = L≤D := proj(R[Y]D)L

Norm of low-degree likelihood ratio

7 / 19

The Low-Degree Method

max
f ∈R[Y]D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

= max
f ∈R[Y]D

EY∼Q[L(Y)f (Y)]√
EY∼Q[f (Y)2]

= max
f ∈R[Y]D

〈L, f 〉
‖f ‖

= ‖L≤D‖

R[Y]D : polynomials of
degree ≤ D (subspace)

L(Y) = dP
dQ(Y)

〈f , g〉 = EY∼Q[f (Y)g(Y)]

‖f ‖ =
√
〈f , f 〉

Maximizer: f = L≤D := proj(R[Y]D)L

Norm of low-degree likelihood ratio

7 / 19

The Low-Degree Method

max
f ∈R[Y]D

EY∼P[f (Y)]√
EY∼Q[f (Y)2]

= max
f ∈R[Y]D

EY∼Q[L(Y)f (Y)]√
EY∼Q[f (Y)2]

= max
f ∈R[Y]D

〈L, f 〉
‖f ‖

= ‖L≤D‖

R[Y]D : polynomials of
degree ≤ D (subspace)

L(Y) = dP
dQ(Y)

〈f , g〉 = EY∼Q[f (Y)g(Y)]

‖f ‖ =
√
〈f , f 〉

Maximizer: f = L≤D := proj(R[Y]D)L

Norm of low-degree likelihood ratio

7 / 19

The Low-Degree Method

Conclusion: maxf ∈R[Y]D
EY∼P[f (Y)]√
EY∼Q[f (Y)2]

= ‖L≤D‖

Heuristically,

‖L≤D‖ =

{
ω(1) degree-D polynomial can distinguish Q,P
O(1) degree-D polynomials fail

Degree-O(log n) polynomials ⇔ Polynomial-time algorithms

I Spectral method: distinguish via top eigenvalue of matrix
M = M(Y) whose entries are O(1)-degree polynomials in Y

I Log-degree distinguisher: f (Y) = Tr(Mq) with q = Θ(log n)
I Spectral methods ⇔ sum-of-squares [HKPRSS ’17]

Conjecture (informal variant of [Hopkins ’18])

For “nice” Q,P, if ‖L≤D‖ = O(1) for D = log1+Ω(1)(n) then no
polynomial-time algorithm can distinguish Q,P with success
probability 1− o(1).

8 / 19

The Low-Degree Method

Conclusion: maxf ∈R[Y]D
EY∼P[f (Y)]√
EY∼Q[f (Y)2]

= ‖L≤D‖
Heuristically,

‖L≤D‖ =

{
ω(1) degree-D polynomial can distinguish Q,P
O(1) degree-D polynomials fail

Degree-O(log n) polynomials ⇔ Polynomial-time algorithms

I Spectral method: distinguish via top eigenvalue of matrix
M = M(Y) whose entries are O(1)-degree polynomials in Y

I Log-degree distinguisher: f (Y) = Tr(Mq) with q = Θ(log n)
I Spectral methods ⇔ sum-of-squares [HKPRSS ’17]

Conjecture (informal variant of [Hopkins ’18])

For “nice” Q,P, if ‖L≤D‖ = O(1) for D = log1+Ω(1)(n) then no
polynomial-time algorithm can distinguish Q,P with success
probability 1− o(1).

8 / 19

The Low-Degree Method

Conclusion: maxf ∈R[Y]D
EY∼P[f (Y)]√
EY∼Q[f (Y)2]

= ‖L≤D‖
Heuristically,

‖L≤D‖ =

{
ω(1) degree-D polynomial can distinguish Q,P
O(1) degree-D polynomials fail

Degree-O(log n) polynomials ⇔ Polynomial-time algorithms

I Spectral method: distinguish via top eigenvalue of matrix
M = M(Y) whose entries are O(1)-degree polynomials in Y

I Log-degree distinguisher: f (Y) = Tr(Mq) with q = Θ(log n)
I Spectral methods ⇔ sum-of-squares [HKPRSS ’17]

Conjecture (informal variant of [Hopkins ’18])

For “nice” Q,P, if ‖L≤D‖ = O(1) for D = log1+Ω(1)(n) then no
polynomial-time algorithm can distinguish Q,P with success
probability 1− o(1).

8 / 19

The Low-Degree Method

Conclusion: maxf ∈R[Y]D
EY∼P[f (Y)]√
EY∼Q[f (Y)2]

= ‖L≤D‖
Heuristically,

‖L≤D‖ =

{
ω(1) degree-D polynomial can distinguish Q,P
O(1) degree-D polynomials fail

Degree-O(log n) polynomials ⇔ Polynomial-time algorithms

I Spectral method: distinguish via top eigenvalue of matrix
M = M(Y) whose entries are O(1)-degree polynomials in Y

I Log-degree distinguisher: f (Y) = Tr(Mq) with q = Θ(log n)
I Spectral methods ⇔ sum-of-squares [HKPRSS ’17]

Conjecture (informal variant of [Hopkins ’18])

For “nice” Q,P, if ‖L≤D‖ = O(1) for D = log1+Ω(1)(n) then no
polynomial-time algorithm can distinguish Q,P with success
probability 1− o(1).

8 / 19

The Low-Degree Method

Conclusion: maxf ∈R[Y]D
EY∼P[f (Y)]√
EY∼Q[f (Y)2]

= ‖L≤D‖
Heuristically,

‖L≤D‖ =

{
ω(1) degree-D polynomial can distinguish Q,P
O(1) degree-D polynomials fail

Degree-O(log n) polynomials ⇔ Polynomial-time algorithms

I Spectral method: distinguish via top eigenvalue of matrix
M = M(Y) whose entries are O(1)-degree polynomials in Y

I Log-degree distinguisher: f (Y) = Tr(Mq) with q = Θ(log n)

I Spectral methods ⇔ sum-of-squares [HKPRSS ’17]

Conjecture (informal variant of [Hopkins ’18])

For “nice” Q,P, if ‖L≤D‖ = O(1) for D = log1+Ω(1)(n) then no
polynomial-time algorithm can distinguish Q,P with success
probability 1− o(1).

8 / 19

The Low-Degree Method

Conclusion: maxf ∈R[Y]D
EY∼P[f (Y)]√
EY∼Q[f (Y)2]

= ‖L≤D‖
Heuristically,

‖L≤D‖ =

{
ω(1) degree-D polynomial can distinguish Q,P
O(1) degree-D polynomials fail

Degree-O(log n) polynomials ⇔ Polynomial-time algorithms

I Spectral method: distinguish via top eigenvalue of matrix
M = M(Y) whose entries are O(1)-degree polynomials in Y

I Log-degree distinguisher: f (Y) = Tr(Mq) with q = Θ(log n)
I Spectral methods ⇔ sum-of-squares [HKPRSS ’17]

Conjecture (informal variant of [Hopkins ’18])

For “nice” Q,P, if ‖L≤D‖ = O(1) for D = log1+Ω(1)(n) then no
polynomial-time algorithm can distinguish Q,P with success
probability 1− o(1).

8 / 19

The Low-Degree Method

Conclusion: maxf ∈R[Y]D
EY∼P[f (Y)]√
EY∼Q[f (Y)2]

= ‖L≤D‖
Heuristically,

‖L≤D‖ =

{
ω(1) degree-D polynomial can distinguish Q,P
O(1) degree-D polynomials fail

Degree-O(log n) polynomials ⇔ Polynomial-time algorithms

I Spectral method: distinguish via top eigenvalue of matrix
M = M(Y) whose entries are O(1)-degree polynomials in Y

I Log-degree distinguisher: f (Y) = Tr(Mq) with q = Θ(log n)
I Spectral methods ⇔ sum-of-squares [HKPRSS ’17]

Conjecture (informal variant of [Hopkins ’18])

For “nice” Q,P, if ‖L≤D‖ = O(1) for D = log1+Ω(1)(n) then no
polynomial-time algorithm can distinguish Q,P with success
probability 1− o(1).

8 / 19

Advantages of the Low-Degree Method

I Can actually calculate/bound ‖L≤D‖ for many problems

I And the predictions are correct! (i.e. matching widely-believed
conjectures)

I Planted clique, sparse PCA, stochastic block model, tensor
PCA, ...

I Heuristically, low-degree prediction matches performance of
sum-of-squares

I But low-degree calculation is much easier than proving SOS
lower bounds

I By varying degree D, can explore power of
subexponential-time algorithms:

I Degree-nδ polynomials ⇔ Time-2nδ algorithms
δ ∈ (0, 1)

9 / 19

Advantages of the Low-Degree Method

I Can actually calculate/bound ‖L≤D‖ for many problems

I And the predictions are correct! (i.e. matching widely-believed
conjectures)

I Planted clique, sparse PCA, stochastic block model, tensor
PCA, ...

I Heuristically, low-degree prediction matches performance of
sum-of-squares

I But low-degree calculation is much easier than proving SOS
lower bounds

I By varying degree D, can explore power of
subexponential-time algorithms:

I Degree-nδ polynomials ⇔ Time-2nδ algorithms
δ ∈ (0, 1)

9 / 19

Advantages of the Low-Degree Method

I Can actually calculate/bound ‖L≤D‖ for many problems

I And the predictions are correct! (i.e. matching widely-believed
conjectures)

I Planted clique, sparse PCA, stochastic block model, tensor
PCA, ...

I Heuristically, low-degree prediction matches performance of
sum-of-squares

I But low-degree calculation is much easier than proving SOS
lower bounds

I By varying degree D, can explore power of
subexponential-time algorithms:

I Degree-nδ polynomials ⇔ Time-2nδ algorithms
δ ∈ (0, 1)

9 / 19

Advantages of the Low-Degree Method

I Can actually calculate/bound ‖L≤D‖ for many problems

I And the predictions are correct! (i.e. matching widely-believed
conjectures)

I Planted clique, sparse PCA, stochastic block model, tensor
PCA, ...

I Heuristically, low-degree prediction matches performance of
sum-of-squares

I But low-degree calculation is much easier than proving SOS
lower bounds

I By varying degree D, can explore power of
subexponential-time algorithms:

I Degree-nδ polynomials ⇔ Time-2nδ algorithms
δ ∈ (0, 1)

9 / 19

Advantages of the Low-Degree Method

I Can actually calculate/bound ‖L≤D‖ for many problems

I And the predictions are correct! (i.e. matching widely-believed
conjectures)

I Planted clique, sparse PCA, stochastic block model, tensor
PCA, ...

I Heuristically, low-degree prediction matches performance of
sum-of-squares

I But low-degree calculation is much easier than proving SOS
lower bounds

I By varying degree D, can explore power of
subexponential-time algorithms:

I Degree-nδ polynomials ⇔ Time-2nδ algorithms
δ ∈ (0, 1)

9 / 19

Advantages of the Low-Degree Method

I Can actually calculate/bound ‖L≤D‖ for many problems

I And the predictions are correct! (i.e. matching widely-believed
conjectures)

I Planted clique, sparse PCA, stochastic block model, tensor
PCA, ...

I Heuristically, low-degree prediction matches performance of
sum-of-squares

I But low-degree calculation is much easier than proving SOS
lower bounds

I By varying degree D, can explore power of
subexponential-time algorithms:

I Degree-nδ polynomials ⇔ Time-2nδ algorithms
δ ∈ (0, 1)

9 / 19

How to Compute ‖L≤D‖

Additive Gaussian noise: P : Y = X + Z vs Q : Y = Z
where X ∼ P, any distribution over RN

and Z is i.i.d. N (0, 1)

L(Y) =
dP
dQ

(Y) =
EX exp(−1

2‖Y − X‖2)

exp(−1
2‖Y ‖2)

= EX exp(〈Y ,X 〉−1

2
‖X‖2)

Write L =
∑

α cαhα where {hα} are Hermite polynomials
(orthonormal basis w.r.t. Q)

‖L≤D‖2 =
∑
|α|≤D c2

α where cα = 〈L, hα〉 = EY∼Q[L(Y)hα(Y)]

· · ·

Result: ‖L≤D‖2 =
∑D

d=0
1
d!EX ,X ′ [〈X ,X ′〉d]

10 / 19

How to Compute ‖L≤D‖

Additive Gaussian noise: P : Y = X + Z vs Q : Y = Z
where X ∼ P, any distribution over RN

and Z is i.i.d. N (0, 1)

L(Y) =
dP
dQ

(Y) =
EX exp(−1

2‖Y − X‖2)

exp(−1
2‖Y ‖2)

= EX exp(〈Y ,X 〉−1

2
‖X‖2)

Write L =
∑

α cαhα where {hα} are Hermite polynomials
(orthonormal basis w.r.t. Q)

‖L≤D‖2 =
∑
|α|≤D c2

α where cα = 〈L, hα〉 = EY∼Q[L(Y)hα(Y)]

· · ·

Result: ‖L≤D‖2 =
∑D

d=0
1
d!EX ,X ′ [〈X ,X ′〉d]

10 / 19

How to Compute ‖L≤D‖

Additive Gaussian noise: P : Y = X + Z vs Q : Y = Z
where X ∼ P, any distribution over RN

and Z is i.i.d. N (0, 1)

L(Y) =
dP
dQ

(Y) =
EX exp(−1

2‖Y − X‖2)

exp(−1
2‖Y ‖2)

= EX exp(〈Y ,X 〉−1

2
‖X‖2)

Write L =
∑

α cαhα where {hα} are Hermite polynomials
(orthonormal basis w.r.t. Q)

‖L≤D‖2 =
∑
|α|≤D c2

α where cα = 〈L, hα〉 = EY∼Q[L(Y)hα(Y)]

· · ·

Result: ‖L≤D‖2 =
∑D

d=0
1
d!EX ,X ′ [〈X ,X ′〉d]

10 / 19

How to Compute ‖L≤D‖

Additive Gaussian noise: P : Y = X + Z vs Q : Y = Z
where X ∼ P, any distribution over RN

and Z is i.i.d. N (0, 1)

L(Y) =
dP
dQ

(Y) =
EX exp(−1

2‖Y − X‖2)

exp(−1
2‖Y ‖2)

= EX exp(〈Y ,X 〉−1

2
‖X‖2)

Write L =
∑

α cαhα where {hα} are Hermite polynomials
(orthonormal basis w.r.t. Q)

‖L≤D‖2 =
∑
|α|≤D c2

α where cα = 〈L, hα〉 = EY∼Q[L(Y)hα(Y)]

· · ·

Result: ‖L≤D‖2 =
∑D

d=0
1
d!EX ,X ′ [〈X ,X ′〉d]

10 / 19

How to Compute ‖L≤D‖

Additive Gaussian noise: P : Y = X + Z vs Q : Y = Z
where X ∼ P, any distribution over RN

and Z is i.i.d. N (0, 1)

L(Y) =
dP
dQ

(Y) =
EX exp(−1

2‖Y − X‖2)

exp(−1
2‖Y ‖2)

= EX exp(〈Y ,X 〉−1

2
‖X‖2)

Write L =
∑

α cαhα where {hα} are Hermite polynomials
(orthonormal basis w.r.t. Q)

‖L≤D‖2 =
∑
|α|≤D c2

α where cα = 〈L, hα〉 = EY∼Q[L(Y)hα(Y)]

· · ·

Result: ‖L≤D‖2 =
∑D

d=0
1
d!EX ,X ′ [〈X ,X ′〉d]

10 / 19

How to Compute ‖L≤D‖

Additive Gaussian noise: P : Y = X + Z vs Q : Y = Z
where X ∼ P, any distribution over RN

and Z is i.i.d. N (0, 1)

L(Y) =
dP
dQ

(Y) =
EX exp(−1

2‖Y − X‖2)

exp(−1
2‖Y ‖2)

= EX exp(〈Y ,X 〉−1

2
‖X‖2)

Write L =
∑

α cαhα where {hα} are Hermite polynomials
(orthonormal basis w.r.t. Q)

‖L≤D‖2 =
∑
|α|≤D c2

α where cα = 〈L, hα〉 = EY∼Q[L(Y)hα(Y)]

· · ·

Result: ‖L≤D‖2 =
∑D

d=0
1
d!EX ,X ′ [〈X ,X ′〉d]

10 / 19

Part II: Hardness of Certification for Constrained
PCA Problems

11 / 19

Constrained PCA

Let W ∼ GOE(n) “Gaussian orthogonal ensemble”

I n × n random symmetric matrix:
Wij = Wji ∼ N (0, 1/n), Wii ∼ N (0, 2/n)

I Eigenvalues follow semicircle law on [−2, 2]

PCA: max
‖x‖=1

x>Wx = λmax(W)→ 2 as n→∞

Constrained PCA: φ(W) := max
x∈{±1/

√
n}n

x>Wx

Statistical physics: “Sherrington–Kirkpatrick spin glass model”

I φ(W)→ 2P∗ ≈ 1.5264 as n→∞ [Parisi ’80; Talagrand ’06]

12 / 19

Constrained PCA

Let W ∼ GOE(n) “Gaussian orthogonal ensemble”

I n × n random symmetric matrix:
Wij = Wji ∼ N (0, 1/n), Wii ∼ N (0, 2/n)

I Eigenvalues follow semicircle law on [−2, 2]

PCA: max
‖x‖=1

x>Wx = λmax(W)→ 2 as n→∞

Constrained PCA: φ(W) := max
x∈{±1/

√
n}n

x>Wx

Statistical physics: “Sherrington–Kirkpatrick spin glass model”

I φ(W)→ 2P∗ ≈ 1.5264 as n→∞ [Parisi ’80; Talagrand ’06]

12 / 19

Constrained PCA

Let W ∼ GOE(n) “Gaussian orthogonal ensemble”

I n × n random symmetric matrix:
Wij = Wji ∼ N (0, 1/n), Wii ∼ N (0, 2/n)

I Eigenvalues follow semicircle law on [−2, 2]

PCA: max
‖x‖=1

x>Wx

= λmax(W)→ 2 as n→∞

Constrained PCA: φ(W) := max
x∈{±1/

√
n}n

x>Wx

Statistical physics: “Sherrington–Kirkpatrick spin glass model”

I φ(W)→ 2P∗ ≈ 1.5264 as n→∞ [Parisi ’80; Talagrand ’06]

12 / 19

Constrained PCA

Let W ∼ GOE(n) “Gaussian orthogonal ensemble”

I n × n random symmetric matrix:
Wij = Wji ∼ N (0, 1/n), Wii ∼ N (0, 2/n)

I Eigenvalues follow semicircle law on [−2, 2]

PCA: max
‖x‖=1

x>Wx = λmax(W)→ 2 as n→∞

Constrained PCA: φ(W) := max
x∈{±1/

√
n}n

x>Wx

Statistical physics: “Sherrington–Kirkpatrick spin glass model”

I φ(W)→ 2P∗ ≈ 1.5264 as n→∞ [Parisi ’80; Talagrand ’06]

12 / 19

Constrained PCA

Let W ∼ GOE(n) “Gaussian orthogonal ensemble”

I n × n random symmetric matrix:
Wij = Wji ∼ N (0, 1/n), Wii ∼ N (0, 2/n)

I Eigenvalues follow semicircle law on [−2, 2]

PCA: max
‖x‖=1

x>Wx = λmax(W)→ 2 as n→∞

Constrained PCA: φ(W) := max
x∈{±1/

√
n}n

x>Wx

Statistical physics: “Sherrington–Kirkpatrick spin glass model”

I φ(W)→ 2P∗ ≈ 1.5264 as n→∞ [Parisi ’80; Talagrand ’06]

12 / 19

Constrained PCA

Let W ∼ GOE(n) “Gaussian orthogonal ensemble”

I n × n random symmetric matrix:
Wij = Wji ∼ N (0, 1/n), Wii ∼ N (0, 2/n)

I Eigenvalues follow semicircle law on [−2, 2]

PCA: max
‖x‖=1

x>Wx = λmax(W)→ 2 as n→∞

Constrained PCA: φ(W) := max
x∈{±1/

√
n}n

x>Wx

Statistical physics: “Sherrington–Kirkpatrick spin glass model”

I φ(W)→ 2P∗ ≈ 1.5264 as n→∞ [Parisi ’80; Talagrand ’06]

12 / 19

Search vs Certification

φ(W) := max
x∈{±1/

√
n}n

x>Wx , W ∼ GOE (n)

Two computational problems:

I Search: given W , find x ∈ {±1/
√
n}n with large x>Wx

I Proves a lower bound on φ(W)

I Certification: given W , prove φ(W) ≤ B for some bound B

I Formally: algorithm {fn} outputs fn(W) ∈ R such that:

(i) φ(W) ≤ fn(W) ∀W ∈ Rn×n

(ii) if W ∼ GOE (n), fn(W) ≤ B + o(1) w.p. 1− o(1)
I Note: cannot just output fn(W) = 2P∗ + ε

13 / 19

Search vs Certification

φ(W) := max
x∈{±1/

√
n}n

x>Wx , W ∼ GOE (n)

Two computational problems:

I Search: given W , find x ∈ {±1/
√
n}n with large x>Wx

I Proves a lower bound on φ(W)

I Certification: given W , prove φ(W) ≤ B for some bound B

I Formally: algorithm {fn} outputs fn(W) ∈ R such that:

(i) φ(W) ≤ fn(W) ∀W ∈ Rn×n

(ii) if W ∼ GOE (n), fn(W) ≤ B + o(1) w.p. 1− o(1)
I Note: cannot just output fn(W) = 2P∗ + ε

13 / 19

Search vs Certification

φ(W) := max
x∈{±1/

√
n}n

x>Wx , W ∼ GOE (n)

Two computational problems:

I Search: given W , find x ∈ {±1/
√
n}n with large x>Wx

I Proves a lower bound on φ(W)

I Certification: given W , prove φ(W) ≤ B for some bound B

I Formally: algorithm {fn} outputs fn(W) ∈ R such that:

(i) φ(W) ≤ fn(W) ∀W ∈ Rn×n

(ii) if W ∼ GOE (n), fn(W) ≤ B + o(1) w.p. 1− o(1)
I Note: cannot just output fn(W) = 2P∗ + ε

13 / 19

Search vs Certification

φ(W) := max
x∈{±1/

√
n}n

x>Wx , W ∼ GOE (n)

Two computational problems:

I Search: given W , find x ∈ {±1/
√
n}n with large x>Wx

I Proves a lower bound on φ(W)

I Certification: given W , prove φ(W) ≤ B for some bound B

I Formally: algorithm {fn} outputs fn(W) ∈ R such that:

(i) φ(W) ≤ fn(W) ∀W ∈ Rn×n

(ii) if W ∼ GOE (n), fn(W) ≤ B + o(1) w.p. 1− o(1)
I Note: cannot just output fn(W) = 2P∗ + ε

13 / 19

Search vs Certification

φ(W) := max
x∈{±1/

√
n}n

x>Wx , W ∼ GOE (n)

Two computational problems:

I Search: given W , find x ∈ {±1/
√
n}n with large x>Wx

I Proves a lower bound on φ(W)

I Certification: given W , prove φ(W) ≤ B for some bound B

I Formally: algorithm {fn} outputs fn(W) ∈ R such that:

(i) φ(W) ≤ fn(W) ∀W ∈ Rn×n

(ii) if W ∼ GOE (n), fn(W) ≤ B + o(1) w.p. 1− o(1)
I Note: cannot just output fn(W) = 2P∗ + ε

13 / 19

Search vs Certification

φ(W) := max
x∈{±1/

√
n}n

x>Wx , W ∼ GOE (n)

Two computational problems:

I Search: given W , find x ∈ {±1/
√
n}n with large x>Wx

I Proves a lower bound on φ(W)

I Certification: given W , prove φ(W) ≤ B for some bound B

I Formally: algorithm {fn} outputs fn(W) ∈ R such that:

(i) φ(W) ≤ fn(W) ∀W ∈ Rn×n

(ii) if W ∼ GOE (n), fn(W) ≤ B + o(1) w.p. 1− o(1)
I Note: cannot just output fn(W) = 2P∗ + ε

13 / 19

Search vs Certification

φ(W) := max
x∈{±1/

√
n}n

x>Wx , W ∼ GOE (n)

Two computational problems:

I Search: given W , find x ∈ {±1/
√
n}n with large x>Wx

I Proves a lower bound on φ(W)

I Certification: given W , prove φ(W) ≤ B for some bound B

I Formally: algorithm {fn} outputs fn(W) ∈ R such that:

(i) φ(W) ≤ fn(W) ∀W ∈ Rn×n

(ii) if W ∼ GOE (n), fn(W) ≤ B + o(1) w.p. 1− o(1)
I Note: cannot just output fn(W) = 2P∗ + ε

13 / 19

Search vs Certification

φ(W) := max
x∈{±1/

√
n}n

x>Wx , W ∼ GOE (n)

Two computational problems:

I Search: given W , find x ∈ {±1/
√
n}n with large x>Wx

I Proves a lower bound on φ(W)

I Certification: given W , prove φ(W) ≤ B for some bound B

I Formally: algorithm {fn} outputs fn(W) ∈ R such that:

(i) φ(W) ≤ fn(W) ∀W ∈ Rn×n

(ii) if W ∼ GOE (n), fn(W) ≤ B + o(1) w.p. 1− o(1)

I Note: cannot just output fn(W) = 2P∗ + ε

13 / 19

Search vs Certification

φ(W) := max
x∈{±1/

√
n}n

x>Wx , W ∼ GOE (n)

Two computational problems:

I Search: given W , find x ∈ {±1/
√
n}n with large x>Wx

I Proves a lower bound on φ(W)

I Certification: given W , prove φ(W) ≤ B for some bound B

I Formally: algorithm {fn} outputs fn(W) ∈ R such that:

(i) φ(W) ≤ fn(W) ∀W ∈ Rn×n

(ii) if W ∼ GOE (n), fn(W) ≤ B + o(1) w.p. 1− o(1)
I Note: cannot just output fn(W) = 2P∗ + ε

13 / 19

Search vs Certification

φ(W) := max
x∈{±1/

√
n}n

x>Wx , W ∼ GOE (n)

Two computational problems:

I Search: given W , find x ∈ {±1/
√
n}n with large x>Wx

I Proves a lower bound on φ(W)

I Certification: given W , prove φ(W) ≤ B for some bound B

I Formally: algorithm {fn} outputs fn(W) ∈ R such that:

(i) φ(W) ≤ fn(W) ∀W ∈ Rn×n

(ii) if W ∼ GOE (n), fn(W) ≤ B + o(1) w.p. 1− o(1)
I Note: cannot just output fn(W) = 2P∗ + ε

13 / 19

Search vs Certification: Prior Work

Perfect search is possible in poly time

I Can find x ∈ {±1/
√
n}n such that x>Wx ≥ 2P∗− ε [Montanari ’18]

I Optimization of full-RSB models [Subag ’18]

Trivial spectral certification:

φ(W) ≤ max
‖x‖=1

x>Wx = λmax(W)→ 2

Can we do better (in poly time)?

I Convex relaxation?

I Sum-of-squares?

Answer: no!

I In particular, any convex relaxation fails

14 / 19

Search vs Certification: Prior Work

Perfect search is possible in poly time

I Can find x ∈ {±1/
√
n}n such that x>Wx ≥ 2P∗− ε [Montanari ’18]

I Optimization of full-RSB models [Subag ’18]

Trivial spectral certification:

φ(W) ≤ max
‖x‖=1

x>Wx = λmax(W)→ 2

Can we do better (in poly time)?

I Convex relaxation?

I Sum-of-squares?

Answer: no!

I In particular, any convex relaxation fails

14 / 19

Search vs Certification: Prior Work

Perfect search is possible in poly time

I Can find x ∈ {±1/
√
n}n such that x>Wx ≥ 2P∗− ε [Montanari ’18]

I Optimization of full-RSB models [Subag ’18]

Trivial spectral certification:

φ(W) ≤ max
‖x‖=1

x>Wx = λmax(W)→ 2

Can we do better (in poly time)?

I Convex relaxation?

I Sum-of-squares?

Answer: no!

I In particular, any convex relaxation fails

14 / 19

Search vs Certification: Prior Work

Perfect search is possible in poly time

I Can find x ∈ {±1/
√
n}n such that x>Wx ≥ 2P∗− ε [Montanari ’18]

I Optimization of full-RSB models [Subag ’18]

Trivial spectral certification:

φ(W) ≤ max
‖x‖=1

x>Wx = λmax(W)→ 2

Can we do better (in poly time)?

I Convex relaxation?

I Sum-of-squares?

Answer: no!

I In particular, any convex relaxation fails

14 / 19

Search vs Certification: Prior Work

Perfect search is possible in poly time

I Can find x ∈ {±1/
√
n}n such that x>Wx ≥ 2P∗− ε [Montanari ’18]

I Optimization of full-RSB models [Subag ’18]

Trivial spectral certification:

φ(W) ≤ max
‖x‖=1

x>Wx = λmax(W)→ 2

Can we do better (in poly time)?

I Convex relaxation?

I Sum-of-squares?

Answer: no!

I In particular, any convex relaxation fails

14 / 19

Search vs Certification: Prior Work

Perfect search is possible in poly time

I Can find x ∈ {±1/
√
n}n such that x>Wx ≥ 2P∗− ε [Montanari ’18]

I Optimization of full-RSB models [Subag ’18]

Trivial spectral certification:

φ(W) ≤ max
‖x‖=1

x>Wx = λmax(W)→ 2

Can we do better (in poly time)?

I Convex relaxation?

I Sum-of-squares?

Answer: no!

I In particular, any convex relaxation fails

14 / 19

Search vs Certification: Prior Work

Perfect search is possible in poly time

I Can find x ∈ {±1/
√
n}n such that x>Wx ≥ 2P∗− ε [Montanari ’18]

I Optimization of full-RSB models [Subag ’18]

Trivial spectral certification:

φ(W) ≤ max
‖x‖=1

x>Wx = λmax(W)→ 2

Can we do better (in poly time)?

I Convex relaxation?

I Sum-of-squares?

Answer: no!

I In particular, any convex relaxation fails

14 / 19

Search vs Certification: Prior Work

Perfect search is possible in poly time

I Can find x ∈ {±1/
√
n}n such that x>Wx ≥ 2P∗− ε [Montanari ’18]

I Optimization of full-RSB models [Subag ’18]

Trivial spectral certification:

φ(W) ≤ max
‖x‖=1

x>Wx = λmax(W)→ 2

Can we do better (in poly time)?

I Convex relaxation?

I Sum-of-squares?

Answer: no!

I In particular, any convex relaxation fails

14 / 19

Search vs Certification: Prior Work

Perfect search is possible in poly time

I Can find x ∈ {±1/
√
n}n such that x>Wx ≥ 2P∗− ε [Montanari ’18]

I Optimization of full-RSB models [Subag ’18]

Trivial spectral certification:

φ(W) ≤ max
‖x‖=1

x>Wx = λmax(W)→ 2

Can we do better (in poly time)?

I Convex relaxation?

I Sum-of-squares?

Answer: no!

I In particular, any convex relaxation fails

14 / 19

Search vs Certification: Prior Work

Perfect search is possible in poly time

I Can find x ∈ {±1/
√
n}n such that x>Wx ≥ 2P∗− ε [Montanari ’18]

I Optimization of full-RSB models [Subag ’18]

Trivial spectral certification:

φ(W) ≤ max
‖x‖=1

x>Wx = λmax(W)→ 2

Can we do better (in poly time)?

I Convex relaxation?

I Sum-of-squares?

Answer: no!

I In particular, any convex relaxation fails

14 / 19

Search vs Certification: Prior Work

Perfect search is possible in poly time

I Can find x ∈ {±1/
√
n}n such that x>Wx ≥ 2P∗− ε [Montanari ’18]

I Optimization of full-RSB models [Subag ’18]

Trivial spectral certification:

φ(W) ≤ max
‖x‖=1

x>Wx = λmax(W)→ 2

Can we do better (in poly time)?

I Convex relaxation?

I Sum-of-squares?

Answer: no!

I In particular, any convex relaxation fails

14 / 19

Search vs Certification: Prior Work

Perfect search is possible in poly time

I Can find x ∈ {±1/
√
n}n such that x>Wx ≥ 2P∗− ε [Montanari ’18]

I Optimization of full-RSB models [Subag ’18]

Trivial spectral certification:

φ(W) ≤ max
‖x‖=1

x>Wx = λmax(W)→ 2

Can we do better (in poly time)?

I Convex relaxation?

I Sum-of-squares?

Answer: no!

I In particular, any convex relaxation fails

14 / 19

Main Result

Theorem (informal)

Conditional on the low-degree method, for any ε > 0, no
polynomial-time algorithm can certify an upper bound of 2− ε on
φ(W).

I In fact, need essentially exponential time: 2n
1−o(1)

I Also for constraint sets other than {±1/
√
n}n

Proof outline:

(i) Reduction from a hypothesis testing problem (negatively-spiked
Wishart) to certification problem

(ii) Use low-degree method to show that the hypothesis testing
problem is hard

15 / 19

Main Result

Theorem (informal)

Conditional on the low-degree method, for any ε > 0, no
polynomial-time algorithm can certify an upper bound of 2− ε on
φ(W).

I In fact, need essentially exponential time: 2n
1−o(1)

I Also for constraint sets other than {±1/
√
n}n

Proof outline:

(i) Reduction from a hypothesis testing problem (negatively-spiked
Wishart) to certification problem

(ii) Use low-degree method to show that the hypothesis testing
problem is hard

15 / 19

Main Result

Theorem (informal)

Conditional on the low-degree method, for any ε > 0, no
polynomial-time algorithm can certify an upper bound of 2− ε on
φ(W).

I In fact, need essentially exponential time: 2n
1−o(1)

I Also for constraint sets other than {±1/
√
n}n

Proof outline:

(i) Reduction from a hypothesis testing problem (negatively-spiked
Wishart) to certification problem

(ii) Use low-degree method to show that the hypothesis testing
problem is hard

15 / 19

Main Result

Theorem (informal)

Conditional on the low-degree method, for any ε > 0, no
polynomial-time algorithm can certify an upper bound of 2− ε on
φ(W).

I In fact, need essentially exponential time: 2n
1−o(1)

I Also for constraint sets other than {±1/
√
n}n

Proof outline:

(i) Reduction from a hypothesis testing problem (negatively-spiked
Wishart) to certification problem

(ii) Use low-degree method to show that the hypothesis testing
problem is hard

15 / 19

Main Result

Theorem (informal)

Conditional on the low-degree method, for any ε > 0, no
polynomial-time algorithm can certify an upper bound of 2− ε on
φ(W).

I In fact, need essentially exponential time: 2n
1−o(1)

I Also for constraint sets other than {±1/
√
n}n

Proof outline:

(i) Reduction from a hypothesis testing problem (negatively-spiked
Wishart) to certification problem

(ii) Use low-degree method to show that the hypothesis testing
problem is hard

15 / 19

Main Result

Theorem (informal)

Conditional on the low-degree method, for any ε > 0, no
polynomial-time algorithm can certify an upper bound of 2− ε on
φ(W).

I In fact, need essentially exponential time: 2n
1−o(1)

I Also for constraint sets other than {±1/
√
n}n

Proof outline:

(i) Reduction from a hypothesis testing problem (negatively-spiked
Wishart) to certification problem

(ii) Use low-degree method to show that the hypothesis testing
problem is hard

15 / 19

Main Result

Theorem (informal)

Conditional on the low-degree method, for any ε > 0, no
polynomial-time algorithm can certify an upper bound of 2− ε on
φ(W).

I In fact, need essentially exponential time: 2n
1−o(1)

I Also for constraint sets other than {±1/
√
n}n

Proof outline:

(i) Reduction from a hypothesis testing problem (negatively-spiked
Wishart) to certification problem

(ii) Use low-degree method to show that the hypothesis testing
problem is hard

15 / 19

Spiked Wishart Model

Q : Observe N independent samples y1, . . . , yN where yi ∼ N (0, In)

P : Planted vector x ∼ Unif({±1/
√
n}n)

Observe y1, . . . , yN with yi ∼ N (0, In + βxx>)

Parameters: n/N → γ, β ∈ [−1,∞)

Spectral threshold: if β2 > γ, can distinguish Q,P using
top/bottom eigenvalue of sample covariance matrix
Y = 1

N

∑
i yiy

>
i [Baik, Ben Arous, Péché ’05]

Using low-degree method, we show: if β2 < γ, cannot distinguish
Q,P (unless given exponential time)

16 / 19

Spiked Wishart Model

Q : Observe N independent samples y1, . . . , yN where yi ∼ N (0, In)

P : Planted vector x ∼ Unif({±1/
√
n}n)

Observe y1, . . . , yN with yi ∼ N (0, In + βxx>)

Parameters: n/N → γ, β ∈ [−1,∞)

Spectral threshold: if β2 > γ, can distinguish Q,P using
top/bottom eigenvalue of sample covariance matrix
Y = 1

N

∑
i yiy

>
i [Baik, Ben Arous, Péché ’05]

Using low-degree method, we show: if β2 < γ, cannot distinguish
Q,P (unless given exponential time)

16 / 19

Spiked Wishart Model

Q : Observe N independent samples y1, . . . , yN where yi ∼ N (0, In)

P : Planted vector x ∼ Unif({±1/
√
n}n)

Observe y1, . . . , yN with yi ∼ N (0, In + βxx>)

Parameters: n/N → γ, β ∈ [−1,∞)

Spectral threshold: if β2 > γ, can distinguish Q,P using
top/bottom eigenvalue of sample covariance matrix
Y = 1

N

∑
i yiy

>
i [Baik, Ben Arous, Péché ’05]

Using low-degree method, we show: if β2 < γ, cannot distinguish
Q,P (unless given exponential time)

16 / 19

Spiked Wishart Model

Q : Observe N independent samples y1, . . . , yN where yi ∼ N (0, In)

P : Planted vector x ∼ Unif({±1/
√
n}n)

Observe y1, . . . , yN with yi ∼ N (0, In + βxx>)

Parameters: n/N → γ, β ∈ [−1,∞)

Spectral threshold: if β2 > γ, can distinguish Q,P using
top/bottom eigenvalue of sample covariance matrix
Y = 1

N

∑
i yiy

>
i [Baik, Ben Arous, Péché ’05]

Using low-degree method, we show: if β2 < γ, cannot distinguish
Q,P (unless given exponential time)

16 / 19

Spiked Wishart Model

Q : Observe N independent samples y1, . . . , yN where yi ∼ N (0, In)

P : Planted vector x ∼ Unif({±1/
√
n}n)

Observe y1, . . . , yN with yi ∼ N (0, In + βxx>)

Parameters: n/N → γ, β ∈ [−1,∞)

Spectral threshold: if β2 > γ, can distinguish Q,P using
top/bottom eigenvalue of sample covariance matrix
Y = 1

N

∑
i yiy

>
i [Baik, Ben Arous, Péché ’05]

Using low-degree method, we show: if β2 < γ, cannot distinguish
Q,P (unless given exponential time)

16 / 19

Negatively-Spiked Wishart Model

Our case of interest: β = −1 (technically β > −1, β ≈ −1)

Q : observe N random vectors in Rn

P : observe N random vectors that are all orthogonal to a planted
hypercube vector x ∈ {±1/

√
n}n

I yi ∼ N (0, In − xx>)

Spectral threshold: if N ≥ n, can distinguish using
rank(y1, . . . , yN)

I Q: rank n

I P: rank n − 1

Low-degree method: if N < n, cannot distinguish (unless given
exponential time)

I But statistically possible

17 / 19

Negatively-Spiked Wishart Model

Our case of interest: β = −1 (technically β > −1, β ≈ −1)

Q : observe N random vectors in Rn

P : observe N random vectors that are all orthogonal to a planted
hypercube vector x ∈ {±1/

√
n}n

I yi ∼ N (0, In − xx>)

Spectral threshold: if N ≥ n, can distinguish using
rank(y1, . . . , yN)

I Q: rank n

I P: rank n − 1

Low-degree method: if N < n, cannot distinguish (unless given
exponential time)

I But statistically possible

17 / 19

Negatively-Spiked Wishart Model

Our case of interest: β = −1 (technically β > −1, β ≈ −1)

Q : observe N random vectors in Rn

P : observe N random vectors that are all orthogonal to a planted
hypercube vector x ∈ {±1/

√
n}n

I yi ∼ N (0, In − xx>)

Spectral threshold: if N ≥ n, can distinguish using
rank(y1, . . . , yN)

I Q: rank n

I P: rank n − 1

Low-degree method: if N < n, cannot distinguish (unless given
exponential time)

I But statistically possible

17 / 19

Negatively-Spiked Wishart Model

Our case of interest: β = −1 (technically β > −1, β ≈ −1)

Q : observe N random vectors in Rn

P : observe N random vectors that are all orthogonal to a planted
hypercube vector x ∈ {±1/

√
n}n

I yi ∼ N (0, In − xx>)

Spectral threshold: if N ≥ n, can distinguish using
rank(y1, . . . , yN)

I Q: rank n

I P: rank n − 1

Low-degree method: if N < n, cannot distinguish (unless given
exponential time)

I But statistically possible

17 / 19

Negatively-Spiked Wishart Model

Our case of interest: β = −1 (technically β > −1, β ≈ −1)

Q : observe N random vectors in Rn

P : observe N random vectors that are all orthogonal to a planted
hypercube vector x ∈ {±1/

√
n}n

I yi ∼ N (0, In − xx>)

Spectral threshold: if N ≥ n, can distinguish using
rank(y1, . . . , yN)

I Q: rank n

I P: rank n − 1

Low-degree method: if N < n, cannot distinguish (unless given
exponential time)

I But statistically possible

17 / 19

Negatively-Spiked Wishart Model

Our case of interest: β = −1 (technically β > −1, β ≈ −1)

Q : observe N random vectors in Rn

P : observe N random vectors that are all orthogonal to a planted
hypercube vector x ∈ {±1/

√
n}n

I yi ∼ N (0, In − xx>)

Spectral threshold: if N ≥ n, can distinguish using
rank(y1, . . . , yN)

I Q: rank n

I P: rank n − 1

Low-degree method: if N < n, cannot distinguish (unless given
exponential time)

I But statistically possible

17 / 19

Reduction from Wishart to Certification

I Suppose you can certify φ(W) ≤ 2− ε when W ∼ GOE(n)
I Recall φ(W) = maxx∈{±1/

√
n}n x

>Wx

18 / 19

Reduction from Wishart to Certification

I Suppose you can certify φ(W) ≤ 2− ε when W ∼ GOE(n)
I Recall φ(W) = maxx∈{±1/

√
n}n x

>Wx

I Then you can certify that the top δn-dimensional eigenspace
of W does not contain a hypercube vector

I If hypercube vector x is a linear combination of the top δn
eigenvectors, it would satisfy x>Wx ≥ 2− ε

18 / 19

Reduction from Wishart to Certification

I Suppose you can certify φ(W) ≤ 2− ε when W ∼ GOE(n)
I Recall φ(W) = maxx∈{±1/

√
n}n x

>Wx

I Then you can certify that the top δn-dimensional eigenspace
of W does not contain a hypercube vector

18 / 19

Reduction from Wishart to Certification

I Suppose you can certify φ(W) ≤ 2− ε when W ∼ GOE(n)
I Recall φ(W) = maxx∈{±1/

√
n}n x

>Wx

I Then you can certify that the top δn-dimensional eigenspace
of W does not contain a hypercube vector

I So you can certify that a random δn-dimensional subspace
does not contain a hypercube vector

18 / 19

Reduction from Wishart to Certification

I Suppose you can certify φ(W) ≤ 2− ε when W ∼ GOE(n)
I Recall φ(W) = maxx∈{±1/

√
n}n x

>Wx

I Then you can certify that the top δn-dimensional eigenspace
of W does not contain a hypercube vector

I So you can certify that a random δn-dimensional subspace
does not contain a hypercube vector

I So you can distinguish between a random δn-dimensional
subspace and a δn-dimensional subspace containing a
hypercube vector

18 / 19

Reduction from Wishart to Certification

I Suppose you can certify φ(W) ≤ 2− ε when W ∼ GOE(n)
I Recall φ(W) = maxx∈{±1/

√
n}n x

>Wx

I Then you can certify that the top δn-dimensional eigenspace
of W does not contain a hypercube vector

I So you can certify that a random δn-dimensional subspace
does not contain a hypercube vector

I So you can distinguish between a random δn-dimensional
subspace and a δn-dimensional subspace containing a
hypercube vector

I So you can distinguish between a random
(1− δ)n-dimensional subspace and a (1− δ)n-dimensional
subspace that is orthogonal to a hypercube vector

18 / 19

Reduction from Wishart to Certification

I Suppose you can certify φ(W) ≤ 2− ε when W ∼ GOE(n)
I Recall φ(W) = maxx∈{±1/

√
n}n x

>Wx

I Then you can certify that the top δn-dimensional eigenspace
of W does not contain a hypercube vector

I So you can certify that a random δn-dimensional subspace
does not contain a hypercube vector

I So you can distinguish between a random δn-dimensional
subspace and a δn-dimensional subspace containing a
hypercube vector

I So you can distinguish between a random
(1− δ)n-dimensional subspace and a (1− δ)n-dimensional
subspace that is orthogonal to a hypercube vector

I But this is exactly the Wishart problem with β = −1 and
N = (1− δ)n, which is hard ⇒ contradiction

18 / 19

Summary

I Low-degree method: systematic way to predict when
hypothesis testing problems are computationally easy/hard

I But what about other types of average-case problems?
I Search
I Certification
I Recovery (e.g. tensor decomposition)
I Sampling
I Counting solutions

I For constrained PCA, we gave low-degree evidence that
certification is hard by reduction from a hypothesis testing
problem (negatively-spiked Wishart)

I Future direction: how to systematically predict hardness for
other types of certification/search/etc problems?

Thanks!

19 / 19

Summary

I Low-degree method: systematic way to predict when
hypothesis testing problems are computationally easy/hard

I But what about other types of average-case problems?
I Search
I Certification
I Recovery (e.g. tensor decomposition)
I Sampling
I Counting solutions

I For constrained PCA, we gave low-degree evidence that
certification is hard by reduction from a hypothesis testing
problem (negatively-spiked Wishart)

I Future direction: how to systematically predict hardness for
other types of certification/search/etc problems?

Thanks!

19 / 19

Summary

I Low-degree method: systematic way to predict when
hypothesis testing problems are computationally easy/hard

I But what about other types of average-case problems?

I Search
I Certification
I Recovery (e.g. tensor decomposition)
I Sampling
I Counting solutions

I For constrained PCA, we gave low-degree evidence that
certification is hard by reduction from a hypothesis testing
problem (negatively-spiked Wishart)

I Future direction: how to systematically predict hardness for
other types of certification/search/etc problems?

Thanks!

19 / 19

Summary

I Low-degree method: systematic way to predict when
hypothesis testing problems are computationally easy/hard

I But what about other types of average-case problems?
I Search

I Certification
I Recovery (e.g. tensor decomposition)
I Sampling
I Counting solutions

I For constrained PCA, we gave low-degree evidence that
certification is hard by reduction from a hypothesis testing
problem (negatively-spiked Wishart)

I Future direction: how to systematically predict hardness for
other types of certification/search/etc problems?

Thanks!

19 / 19

Summary

I Low-degree method: systematic way to predict when
hypothesis testing problems are computationally easy/hard

I But what about other types of average-case problems?
I Search
I Certification

I Recovery (e.g. tensor decomposition)
I Sampling
I Counting solutions

I For constrained PCA, we gave low-degree evidence that
certification is hard by reduction from a hypothesis testing
problem (negatively-spiked Wishart)

I Future direction: how to systematically predict hardness for
other types of certification/search/etc problems?

Thanks!

19 / 19

Summary

I Low-degree method: systematic way to predict when
hypothesis testing problems are computationally easy/hard

I But what about other types of average-case problems?
I Search
I Certification
I Recovery (e.g. tensor decomposition)

I Sampling
I Counting solutions

I For constrained PCA, we gave low-degree evidence that
certification is hard by reduction from a hypothesis testing
problem (negatively-spiked Wishart)

I Future direction: how to systematically predict hardness for
other types of certification/search/etc problems?

Thanks!

19 / 19

Summary

I Low-degree method: systematic way to predict when
hypothesis testing problems are computationally easy/hard

I But what about other types of average-case problems?
I Search
I Certification
I Recovery (e.g. tensor decomposition)
I Sampling

I Counting solutions

I For constrained PCA, we gave low-degree evidence that
certification is hard by reduction from a hypothesis testing
problem (negatively-spiked Wishart)

I Future direction: how to systematically predict hardness for
other types of certification/search/etc problems?

Thanks!

19 / 19

Summary

I Low-degree method: systematic way to predict when
hypothesis testing problems are computationally easy/hard

I But what about other types of average-case problems?
I Search
I Certification
I Recovery (e.g. tensor decomposition)
I Sampling
I Counting solutions

I For constrained PCA, we gave low-degree evidence that
certification is hard by reduction from a hypothesis testing
problem (negatively-spiked Wishart)

I Future direction: how to systematically predict hardness for
other types of certification/search/etc problems?

Thanks!

19 / 19

Summary

I Low-degree method: systematic way to predict when
hypothesis testing problems are computationally easy/hard

I But what about other types of average-case problems?
I Search
I Certification
I Recovery (e.g. tensor decomposition)
I Sampling
I Counting solutions

I For constrained PCA, we gave low-degree evidence that
certification is hard by reduction from a hypothesis testing
problem (negatively-spiked Wishart)

I Future direction: how to systematically predict hardness for
other types of certification/search/etc problems?

Thanks!

19 / 19

Summary

I Low-degree method: systematic way to predict when
hypothesis testing problems are computationally easy/hard

I But what about other types of average-case problems?
I Search
I Certification
I Recovery (e.g. tensor decomposition)
I Sampling
I Counting solutions

I For constrained PCA, we gave low-degree evidence that
certification is hard by reduction from a hypothesis testing
problem (negatively-spiked Wishart)

I Future direction: how to systematically predict hardness for
other types of certification/search/etc problems?

Thanks!

19 / 19

Summary

I Low-degree method: systematic way to predict when
hypothesis testing problems are computationally easy/hard

I But what about other types of average-case problems?
I Search
I Certification
I Recovery (e.g. tensor decomposition)
I Sampling
I Counting solutions

I For constrained PCA, we gave low-degree evidence that
certification is hard by reduction from a hypothesis testing
problem (negatively-spiked Wishart)

I Future direction: how to systematically predict hardness for
other types of certification/search/etc problems?

Thanks!

19 / 19

