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Max Independent Set

Example (max independent set): given sparse graph G (n, d/n),

max
S⊆[n]

|S | s.t. S independent

OPT = 2
log d

d
n

ALG =
log d

d
n (d large constant)

[Frieze ’90]

[Karp ’76]: Is there a better algorithm?

Structural evidence suggests no!
[Achlioptas, Coja-Oghlan ’08; Coja-Oghlan, Efthymiou ’10]

Local algorithms achieve value ALG and no better
[Gamarnik, Sudan ’13; Rahman, Virág ’14]
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Spherical Spin Glass

Example (spherical p-spin model): for Y ∈ (Rn)⊗p i.i.d. N (0, 1),

max
‖v‖=1

1√
n
〈Y , v⊗p〉

(maximize random degree-p polynomial over the sphere)

OPTp = Θ(1) [Auffinger, Ben Arous, Černý ’13]

ALGp = Θ(1) [Subag ’18]

ALGp < OPTp (for p ≥ 3)

Approximate message passing (AMP) algorithms achieve value
ALGp and no better [El Alaoui, Montanari, Sellke ’20]
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What’s Missing?

How to give the best “evidence” that there are no better
algorithms?

Prior work rules out certain classes of algorithms (local, AMP), but
do we expect these to be optimal?

I AMP is not optimal for tensor PCA [Montanari, Richard ’14]

Would like a unified framework for lower bounds

I Local algorithms only make sense on sparse graphs

Solution: lower bounds against a larger class of algorithms
(low-degree polynomials) that contains both local and AMP
algorithms
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The Low-Degree Polynomial Framework

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RM → RN

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: e.g. v ∈ Rn

I “Low” degree means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1

I Approximate message passing

I Local algorithms on sparse graphs

I Or any of the above applied to Ỹ = g(Y )
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6 / 17



The Low-Degree Polynomial Framework

Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RM → RN

I Input: e.g. graph Y ∈ {0, 1}(
n
2)

I Output: e.g. v ∈ Rn

I “Low” degree means O(log n) where n is dimension

Examples of low-degree algorithms: input Y ∈ Rn×n

I Power iteration: Y k1

I Approximate message passing

I Local algorithms on sparse graphs

I Or any of the above applied to Ỹ = g(Y )
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Planted Problems

Low-degree algorithms are already well-studied for problems with a
planted signal
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16]

[Hopkins, Steurer ’17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17]

[Hopkins ’18] (PhD thesis)

For a wide range of planted problems, O(log n)-degree polynomials
are as powerful as the best known poly-time algorithms
Planted clique, sparse PCA, community detection, tensor PCA, spiked

Wigner/Wishart, planted submatrix, planted dense subgraph, ...

[BHKKMP16,HS17,HKPRSS17,Hop18,BKW19,KWB19,DKWB19,SW20,. . . ]

This work: extend low-degree framework to non-planted setting
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Results: Spherical Spin Glass

Example (spherical p-spin model): for Y ∈ (Rn)⊗p i.i.d. N (0, 1),

max
‖v‖=1

1√
n
〈Y , v⊗p〉

ALG < OPT (for p ≥ 3)

Result: no low-degree polynomial can achieve value OPT− ε

Theorem [Gamarnik, Jagannath, W. ’20] Let p ≥ 4 be even.
For some ε > 0, no f : (Rn)⊗p → Rn of degree polylog(n)
achieves both of the following with probability 1− exp(−nΩ(1)):

I Objective: H(f (Y )) ≥ OPT− ε
I Normalization: ‖f (Y )‖ ≈ 1
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Results: Max Independent Set

Example (max independent set): given sparse graph G (n, d/n),

max
S⊆[n]

|S | s.t. S independent

OPT = 2
log d

d
n ALG =

log d

d
n

Result: no low-degree polynomial can achieve (1 + ε) log d
d n

Theorem [Gamarnik, Jagannath, W. ’20; W. ’20]

No polynomial f : {0, 1}(
n
2) → Rn of degree polylog(n) achieves

both of the following with probability 1− exp(−nΩ(1)):

I fi (Y ) ∈ [0, 1/3] ∪ [2/3, 1] for most i

I {i : fi (Y ) ∈ [2/3, 1]} is a near-indep set of size (1 + ε) log d
d n
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I fi (Y ) ∈ [0, 1/3] ∪ [2/3, 1] for most i

I {i : fi (Y ) ∈ [2/3, 1]} is a near-indep set of size (1 + ε) log d
d n
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Proof Techniques

How to prove failure of low-degree polynomials?

For problems with a planted signal:

I Detection: linear algebra [BHKKMP’16; HS’17; HKPRSS’17]

I Recovery: Jensen + linear algebra [Schramm, W. ’20]

For random optimization problems, need different approach:

I Stability of low-degree polynomials

I Overlap gap property (OGP)
[Gamarnik, Sudan ’13]

[Rahman, Virág ’14]

[Chen, Gamarnik, Panchenko, Rahman ’17]

[Gamarnik, Jagannath ’19]
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Low-Degree Polynomials are Stable

Y ∼ i.i.d. Bernoulli(p)

Interpolation path: Y (0) Y (1) Y (2) · · · Y (m−1) Y (m)

Fix f : {0, 1}m → Rn degree D

Definition: Step i is “c-bad” if

‖f (Y (i))− f (Y (i−1))‖2 > c E
Y
‖f (Y )‖2

Theorem
Pr

Y (0),...,Y (m)
[@ c-bad i ] ≥ p4D/c

With non-trivial probability (over path), f ’s output is “smooth”
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Overlap Gap Property [Gamarnik, Sudan ’13]

Overlap gap property (OGP): with high probability over
Y ∼ G (n, d/n), there does not exist S ,T ⊆ [n] such that

I S ,T independent sets

I |S |, |T | ≥ (1 + 1√
2

)Φ Φ := log d
d n

I |S ∩ T | ≈ Φ

Proof: first moment method [Gamarnik, Sudan ’13]
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Ensemble OGP [CGPR’17, GJ’19]

Ensemble OGP: with high probability over

Y (0) Y (1) Y (2) · · · Y (m−1) Y (m)

there does not exist S ,T ⊆ [n] such that

I S independent set in some Y (i)

I T independent set in some Y (j)

I |S |, |T | ≥ (1 + 1√
2

)Φ Φ := log d
d n

I |S ∩ T | ≈ Φ

13 / 17



Proof [Gamarnik, Jagannath, W. ’20]

Proof that low-degree polynomials cannot reach (1 + 1√
2

)Φ:

Suppose f (Y ) outputs independent sets of size (1 + 1√
2

)Φ

Y (0) Y (1) Y (2) · · · Y (m−1) Y (m)

Separation: f (Y (0)) and f (Y (m)) are “far apart”

Stability: with probability & n−D , there are no big “jumps”

f (Y (i))→ f (Y (i+1))

Contradicts OGP

14 / 17
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Optimal Threshold (1 + ε)Φ [W. ’20]

Forbidden structure: with high probability over

Y (0) Y (1) · · · Y (Lm) (L ≈ 1/ε2)

there does not exist S0, . . . ,SL ⊆ [n] such that

I Sk independent set in some Y (tk )

I |Sk | ≥ (1 + ε)Φ

I |Sk \ (∪i<kSi )| ∈ [ ε4 Φ, ε2 Φ]

Proof (low-degree cannot achieve (1 + ε)Φ)

I Suppose we had a stable algorithm that finds sets of size
≥ (1 + ε)Φ

I Use this to construct forbidden structure ⇒ contradiction
I After m steps, algorithm’s output must change
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Comments

I Proof of OGP for p-spin (for p ≥ 4 even)
[Chen, Sen ’15; Auffinger, Chen ’17]

I Langevin dynamics

I Connections between heuristics
I OGP → Low-Degree
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References for the Low-Degree Framework

I Detection (survey article)
Notes on Computational Hardness of Hypothesis Testing:
Predictions using the Low-Degree Likelihood Ratio

Kunisky, W., Bandeira

arXiv:1907.11636

I Recovery
Computational Barriers to Estimation from Low-Degree
Polynomials

Schramm, W.

arXiv:2008.02269

I Optimization
Low-Degree Hardness of Random Optimization Problems
Gamarnik, Jagannath, W.

arXiv:2004.12063
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