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Based on 2 papers...

 “Sharp Phase Transitions in Estimation with Low-Degree Polynomials”
(with Youngtak Sohn)

« “Stochastic Block Models with Many Communities and the Kesten-Stigum Bound”
(with Byron Chin, Elchanan Mossel, Youngtak Sohn)



Stochastic Block Model (SBM)



Stochastic Block Model (SBM)

* n vertices partitioned into g hidden “communities” of equal size



Stochastic Block Model (SBM)

* n vertices partitioned into g hidden “communities” of equal size
* Edge (i,j) occurs with probability...

* a/nifi,j same community
* b/nifi,j different community



Stochastic Block Model (SBM)

* n vertices partitioned into g hidden “communities” of equal size
* Edge (i,j) occurs with probability...

* a/nifi,j same community
* b/nifi,j different community

* Goal: given the graph, estimate the hidden partition



Stochastic Block Model (SBM)

* n vertices partitioned into g hidden “communities” of equal size
* Edge (i,j) occurs with probability...

* a/nifi,j same community
* b/nifi,j different community

* Goal: given the graph, estimate the hidden partition

/ ] N \

Image credit: Abbe ‘17



Stochastic Block Model (SBM)

* n vertices partitioned into g hidden “communities” of equal size

* Edge (i, j) occurs with probability...
* a/nifi,j same community
* b/nifi,j different community
* Goal: given the graph, estimate the hidden partition

* Alternative parametrization:
*d=|a+ (q—1)b]/q (average degree)
e A= (a—>b)/[a+ (1 —-q)b] (SNR)

Image credit: Abbe ‘17
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Kesten-Stigum (KS) Threshold

* For now: parameters g, d, A are fixed asn — o

« Landmark prediction: computational threshold is d1* = 1 (KS bound)
Decelle, Krzakala, Moore, Zdeborova ‘11]

* Ifd1? > 1, there is a poly-time algorithm (belief propagation)
e If d1? < 1, no poly-time algorithm
e Sharp threshold

* Poly-time algorithms rigorously reach KS bound
[Massoulié ‘13; Mossel, Neeman, Sly ‘13; Abbe, Sandon ‘15]

* For large enough g, exponential-time algorithms work below KS
[Abbe, Sandon ‘15; Banks, Moore, Neeman, Netrapalli ‘16]

Statistical-computation gap impossible hard? easy

0 ~ logq/q 1

dA?
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Tasks: Detection vs Recovery

* KSis the (conjectured) threshold for 2 different tasks:

* (Strong) detection: distinguish with prob 1 — 0(1) between...
* Null hypothesis: Erd6és—Rényi graph G(n,d/n)
* Alternative hypothesis: SBM with parameters g, d, 1

* (Weak) recovery: recover a partition with 1/g + € fraction of vertices
correct (beat random guessing) for a constante > 0

 Can’t hope for strong recovery in sparse graphs

* How are the two tasks related?
* Detection “feels” easietr...
* Made rigorous (in some sense) by
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Average-Case Hardness?

« How do we know there’s no poly-time alg for dA? < 1?
* Belief propagation fails
* Low-degree tests fail
* Inputvariable Y;; € {0,1} for each pair i < j (edge indicator)
* Edge count: ZK]- ij (degree-1 polynomial)
* Triangle count: Zl<]<kY Y Y (degree-3 polynomial)

* Surprisingly good track record at predicting computational thresholds
* “Conjecture”: if degree-w(log n) polynomials fail = no poly-time alg

* Question : Can low-degree polynomials recover?

* Other frameworks for average-case hardness (less applicable here)
* Reductions, statistical query model, sum-of-squares, overlap gap, ...
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Growing Number of Communities

* SBM is well-understood for fixed g (humber of communities)

* Now take g — oo (where d, A are still fixed)
e Similar to

* Fornow, say 1 < g < \/n

* We show: There is still a poly-time alg for weak recovery above KS
bound, d1* > 1

* Decide whether two vertices are in the same community by counting
(weighted) non-backtracking walks of length ~log n between them

* Detection becomes easy, even below KS!
* Triangle count works for any fixed d,A # 0, aslongas g = o
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Can We Do Better (For Recovery)?

1K qg<Kin

* Can do detection below KS, so can we do the same for recovery?
* Seems like no... So how do we show recovery is hard?

* What framework to use?

e Statistical physics / belief propagation?
* Unclear if applicable for this scaling regime?
* Low-degree polynomials?
 Seems more reliable for different scaling regimes (e.g. tensor PCA)

 But we can’t leverage hardness of testing (“detection-recovery gap”)
* Need to address recovery directly...
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Low-Degree Recovery Framework

e Goal: Given Y ~ SBM, estimate scalar
x := 1{vertices 1,2 same community}

* Estimator f: RGE) - R, polynomial of degree < D

* MMSEzp = inf_ E[(f(Y) = %)%

“Coarse” bounds on MMSE_p, no sharp thresholds

Sharp thresholds for MMSE_,: SBM with fixed q,
planted submatrix, ...

SBM with g < v/n, MMSE_, trivial below KS

* Conclusion: KS bound remains the computational threshold for weak
recovery when g grows... as long as g < \/n
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Low-Degree Phase Transition

e Goal: Given Y ~ SBM, estimate scalar

x = 1{vertices 1,2 same community} — 1/q
* MMSE,p is directly related to “correlation”:

E[f(Y)-x

Corr.p =

JELF(V)2] - E

x?2]

€ [0,1]

* Theorem [Chin, Mossel, Sohn, W 25] Consider SBM with g < /n.
* If dA* > 1then Correcogn = (1) for some constant € > 0

(Above KS bound, non-trivial recovery)

e If dA? < 1 then Corr_,s = 0(1) forsome constanto > 0

(Below KS bound, trivial recovery)
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Beating KSwhen g > +/n

g =nXforaconstanty € (1/2,1)
* We show: There is now a poly-time alg for weak recovery when
dA? > 1 or dAY* > C(log d)? [Chin, Mossel, Sohn, W ‘25]

e CanbeatKS: dA% > 1
* Algorithm is again based on non-backtracking walks

* Open: Is this the right threshold? Lower bounds?

* Similar phenomenon in Gaussian mixture models: behavior changes
when number of clusters passes v/n [Even, Giraud, Verzelen ‘24]
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