Sharp Phase Transitions in Estimation with Low-Degree Polynomials

Alex Wein University of California, Davis

Based on 2 papers...

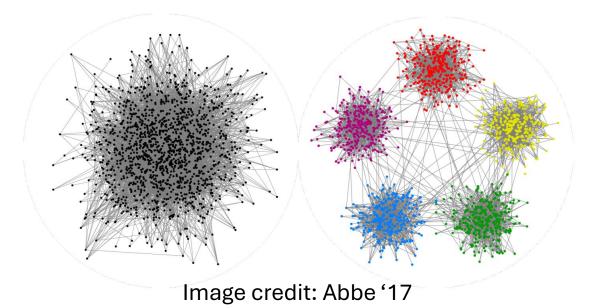
- "Sharp Phase Transitions in Estimation with Low-Degree Polynomials" (with Youngtak Sohn)
- "Stochastic Block Models with Many Communities and the Kesten-Stigum Bound" (with Byron Chin, Elchanan Mossel, Youngtak Sohn)

• *n* vertices partitioned into *q* hidden "communities" of equal size

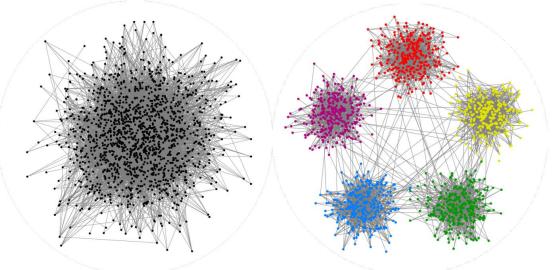
- *n* vertices partitioned into *q* hidden "communities" of equal size
- Edge (i, j) occurs with probability...
 - a/n if i, j same community
 - b/n if i, j different community

- *n* vertices partitioned into *q* hidden "communities" of equal size
- Edge (i, j) occurs with probability...
 - a/n if i, j same community
 - b/n if i, j different community
- Goal: given the graph, estimate the hidden partition

- *n* vertices partitioned into *q* hidden "communities" of equal size
- Edge (i, j) occurs with probability...
 - a/n if i, j same community
 - b/n if i, j different community
- Goal: given the graph, estimate the hidden partition



- *n* vertices partitioned into *q* hidden "communities" of equal size
- Edge (i, j) occurs with probability...
 - a/n if i, j same community
 - b/n if i, j different community
- Goal: given the graph, estimate the hidden partition
- Alternative parametrization:
 - d = [a + (q 1)b]/q (average degree)
 - $\lambda = (a b)/[a + (1 q)b]$ (SNR)



• For now: parameters q, d, λ are fixed as $n \to \infty$

- For now: parameters q, d, λ are fixed as $n \to \infty$
- Landmark prediction: computational threshold is $d\lambda^2 = 1$ (KS bound) [Decelle, Krzakala, Moore, Zdeborová '11]

- For now: parameters q, d, λ are fixed as $n \to \infty$
- Landmark prediction: computational threshold is $d\lambda^2 = 1$ (KS bound) [Decelle, Krzakala, Moore, Zdeborová '11]
 - If $d\lambda^2 > 1$, there is a poly-time algorithm (belief propagation)
 - If $d\lambda^2 < 1$, no poly-time algorithm

- For now: parameters q, d, λ are fixed as $n \to \infty$
- Landmark prediction: computational threshold is $d\lambda^2 = 1$ (KS bound) [Decelle, Krzakala, Moore, Zdeborová '11]
 - If $d\lambda^2 > 1$, there is a poly-time algorithm (belief propagation)
 - If $d\lambda^2 < 1$, no poly-time algorithm
 - Sharp threshold

- For now: parameters q, d, λ are fixed as $n \to \infty$
- Landmark prediction: computational threshold is $d\lambda^2 = 1$ (KS bound) [Decelle, Krzakala, Moore, Zdeborová '11]
 - If $d\lambda^2 > 1$, there is a poly-time algorithm (belief propagation)
 - If $d\lambda^2 < 1$, no poly-time algorithm
 - Sharp threshold
- Poly-time algorithms rigorously reach KS bound [Massoulié '13; Mossel, Neeman, Sly '13; Abbe, Sandon '15]

- For now: parameters q, d, λ are fixed as $n \to \infty$
- Landmark prediction: computational threshold is $d\lambda^2 = 1$ (KS bound) [Decelle, Krzakala, Moore, Zdeborová '11]
 - If $d\lambda^2 > 1$, there is a poly-time algorithm (belief propagation)
 - If $d\lambda^2 < 1$, no poly-time algorithm
 - Sharp threshold
- Poly-time algorithms rigorously reach KS bound [Massoulié '13; Mossel, Neeman, Sly '13; Abbe, Sandon '15]
- For large enough q, exponential-time algorithms work below KS [Abbe, Sandon '15; Banks, Moore, Neeman, Netrapalli '16]

- For now: parameters q, d, λ are fixed as $n \to \infty$
- Landmark prediction: computational threshold is $d\lambda^2 = 1$ (KS bound) [Decelle, Krzakala, Moore, Zdeborová '11]
 - If $d\lambda^2 > 1$, there is a poly-time algorithm (belief propagation)
 - If $d\lambda^2 < 1$, no poly-time algorithm
 - Sharp threshold
- Poly-time algorithms rigorously reach KS bound [Massoulié '13; Mossel, Neeman, Sly '13; Abbe, Sandon '15]
- For large enough q, exponential-time algorithms work below KS [Abbe, Sandon '15; Banks, Moore, Neeman, Netrapalli '16]
- Statistical-computation gap

• KS is the (conjectured) threshold for 2 different tasks:

- KS is the (conjectured) threshold for 2 different tasks:
- (Strong) detection: distinguish with prob 1 o(1) between...
 - Null hypothesis: Erdős–Rényi graph G(n, d/n)
 - Alternative hypothesis: SBM with parameters q, d, λ

- KS is the (conjectured) threshold for 2 different tasks:
- (Strong) detection: distinguish with prob 1 o(1) between...
 - Null hypothesis: Erdős–Rényi graph G(n, d/n)
 - Alternative hypothesis: SBM with parameters q, d, λ
- (Weak) recovery: recover a partition with $1/q + \epsilon$ fraction of vertices correct (beat random guessing) for a constant $\epsilon > 0$

- KS is the (conjectured) threshold for 2 different tasks:
- (Strong) detection: distinguish with prob 1 o(1) between...
 - Null hypothesis: Erdős–Rényi graph G(n, d/n)
 - Alternative hypothesis: SBM with parameters q, d, λ
- (Weak) recovery: recover a partition with $1/q + \epsilon$ fraction of vertices correct (beat random guessing) for a constant $\epsilon > 0$
 - Can't hope for strong recovery in sparse graphs

- KS is the (conjectured) threshold for 2 different tasks:
- (Strong) detection: distinguish with prob 1 o(1) between...
 - Null hypothesis: Erdős–Rényi graph G(n, d/n)
 - Alternative hypothesis: SBM with parameters q, d, λ
- (Weak) recovery: recover a partition with $1/q + \epsilon$ fraction of vertices correct (beat random guessing) for a constant $\epsilon > 0$
 - Can't hope for strong recovery in sparse graphs
- How are the two tasks related?

- KS is the (conjectured) threshold for 2 different tasks:
- (Strong) detection: distinguish with prob 1 o(1) between...
 - Null hypothesis: Erdős–Rényi graph G(n, d/n)
 - Alternative hypothesis: SBM with parameters q, d, λ
- (Weak) recovery: recover a partition with $1/q + \epsilon$ fraction of vertices correct (beat random guessing) for a constant $\epsilon > 0$
 - Can't hope for strong recovery in sparse graphs
- How are the two tasks related?
 - Detection "feels" easier...

- KS is the (conjectured) threshold for 2 different tasks:
- (Strong) detection: distinguish with prob 1 o(1) between...
 - Null hypothesis: Erdős–Rényi graph G(n, d/n)
 - Alternative hypothesis: SBM with parameters q, d, λ
- (Weak) recovery: recover a partition with $1/q + \epsilon$ fraction of vertices correct (beat random guessing) for a constant $\epsilon > 0$
 - Can't hope for strong recovery in sparse graphs
- How are the two tasks related?
 - Detection "feels" easier...
 - Made rigorous (in some sense) by [Ding, Hua, Slot, Steurer '25]

• How do we know there's no poly-time alg for $d\lambda^2 < 1$?

- How do we know there's no poly-time alg for $d\lambda^2 < 1$?
- Belief propagation fails [Decelle, Krzakala, Moore, Zdeborová '11]

- How do we know there's no poly-time alg for $d\lambda^2 < 1$?
- Belief propagation fails [Decelle, Krzakala, Moore, Zdeborová '11]
- Low-degree tests fail [Hopkins, Steurer '17, ...]

- How do we know there's no poly-time alg for $d\lambda^2 < 1$?
- Belief propagation fails [Decelle, Krzakala, Moore, Zdeborová '11]
- Low-degree tests fail [Hopkins, Steurer '17, ...]
 - Input variable $Y_{ij} \in \{0,1\}$ for each pair i < j (edge indicator)

- How do we know there's no poly-time alg for $d\lambda^2 < 1$?
- Belief propagation fails [Decelle, Krzakala, Moore, Zdeborová '11]
- Low-degree tests fail [Hopkins, Steurer '17, ...]
 - Input variable $Y_{ij} \in \{0,1\}$ for each pair i < j (edge indicator)
 - Edge count: $\sum_{i < j} Y_{ij}$ (degree-1 polynomial)

- How do we know there's no poly-time alg for $d\lambda^2 < 1$?
- Belief propagation fails [Decelle, Krzakala, Moore, Zdeborová '11]
- Low-degree tests fail [Hopkins, Steurer '17, ...]
 - Input variable $Y_{ij} \in \{0,1\}$ for each pair i < j (edge indicator)
 - Edge count: $\sum_{i < j} Y_{ij}$ (degree-1 polynomial)
 - Triangle count: $\sum_{i < j < k} Y_{ij} Y_{ik} Y_{jk}$ (degree-3 polynomial)

- How do we know there's no poly-time alg for $d\lambda^2 < 1$?
- Belief propagation fails [Decelle, Krzakala, Moore, Zdeborová '11]
- Low-degree tests fail [Hopkins, Steurer '17, ...]
 - Input variable $Y_{ij} \in \{0,1\}$ for each pair i < j (edge indicator)
 - Edge count: $\sum_{i < j} Y_{ij}$ (degree-1 polynomial)
 - Triangle count: $\sum_{i < j < k} Y_{ij} Y_{ik} Y_{jk}$ (degree-3 polynomial)
 - Surprisingly good track record at predicting computational thresholds

- How do we know there's no poly-time alg for $d\lambda^2 < 1$?
- Belief propagation fails [Decelle, Krzakala, Moore, Zdeborová '11]
- Low-degree tests fail [Hopkins, Steurer '17, ...]
 - Input variable $Y_{ij} \in \{0,1\}$ for each pair i < j (edge indicator)
 - Edge count: $\sum_{i < j} Y_{ij}$ (degree-1 polynomial)
 - Triangle count: $\sum_{i < j < k} Y_{ij} Y_{ik} Y_{jk}$ (degree-3 polynomial)
 - Surprisingly good track record at predicting computational thresholds
 - "Conjecture": if degree- $\omega(\log n)$ polynomials fail \Rightarrow no poly-time alg

- How do we know there's no poly-time alg for $d\lambda^2 < 1$?
- Belief propagation fails [Decelle, Krzakala, Moore, Zdeborová '11]
- Low-degree tests fail [Hopkins, Steurer '17, ...]
 - Input variable $Y_{ij} \in \{0,1\}$ for each pair i < j (edge indicator)
 - Edge count: $\sum_{i < j} Y_{ij}$ (degree-1 polynomial)
 - Triangle count: $\sum_{i < j < k} Y_{ij} Y_{ik} Y_{jk}$ (degree-3 polynomial)
 - Surprisingly good track record at predicting computational thresholds
 - "Conjecture": if degree- $\omega(\log n)$ polynomials fail \Rightarrow no poly-time alg
- Question (HS17): Can low-degree polynomials recover?

- How do we know there's no poly-time alg for $d\lambda^2 < 1$?
- Belief propagation fails [Decelle, Krzakala, Moore, Zdeborová '11]
- Low-degree tests fail [Hopkins, Steurer '17, ...]
 - Input variable $Y_{ij} \in \{0,1\}$ for each pair i < j (edge indicator)
 - Edge count: $\sum_{i < j} Y_{ij}$ (degree-1 polynomial)
 - Triangle count: $\sum_{i < j < k} Y_{ij} Y_{ik} Y_{jk}$ (degree-3 polynomial)
 - Surprisingly good track record at predicting computational thresholds
 - "Conjecture": if degree- $\omega(\log n)$ polynomials fail \Rightarrow no poly-time alg
- Question (HS17): Can low-degree polynomials recover?
- Other frameworks for average-case hardness (less applicable here)
 - Reductions, statistical query model, sum-of-squares, overlap gap, ...

Growing Number of Communities

Growing Number of Communities

• SBM is well-understood for fixed q (number of communities)

- SBM is well-understood for fixed q (number of communities)
- Now take $q \rightarrow \infty$ (where d, λ are still fixed)
 - Similar to [Chen, Xu '14]

- SBM is well-understood for fixed q (number of communities)
- Now take $q \rightarrow \infty$ (where d, λ are still fixed)
 - Similar to [Chen, Xu '14]
- For now, say $1 \ll q \ll \sqrt{n}$

- SBM is well-understood for fixed q (number of communities)
- Now take $q \rightarrow \infty$ (where d, λ are still fixed)
 - Similar to [Chen, Xu '14]
- For now, say $1 \ll q \ll \sqrt{n}$
- We show: There is still a poly-time alg for weak recovery above KS bound, $d\lambda^2 > 1$ [Chin, Mossel, Sohn, W '25]

- SBM is well-understood for fixed q (number of communities)
- Now take $q \rightarrow \infty$ (where d, λ are still fixed)
 - Similar to [Chen, Xu '14]
- For now, say $1 \ll q \ll \sqrt{n}$
- We show: There is still a poly-time alg for weak recovery above KS bound, $d\lambda^2 > 1$ [Chin, Mossel, Sohn, W '25]
 - Decide whether two vertices are in the same community by counting (weighted) non-backtracking walks of length $\sim \log n$ between them

- SBM is well-understood for fixed q (number of communities)
- Now take $q \rightarrow \infty$ (where d, λ are still fixed)
 - Similar to [Chen, Xu '14]
- For now, say $1 \ll q \ll \sqrt{n}$
- We show: There is still a poly-time alg for weak recovery above KS bound, $d\lambda^2 > 1$ [Chin, Mossel, Sohn, W '25]
 - Decide whether two vertices are in the same community by counting (weighted) non-backtracking walks of length $\sim \log n$ between them
- Detection becomes easy, even below KS!
 - Triangle count works for any fixed $d, \lambda \neq 0$, as long as $q \rightarrow \infty$

• $1 \ll q \ll \sqrt{n}$

- $1 \ll q \ll \sqrt{n}$
- Can do detection below KS, so can we do the same for recovery?

- $1 \ll q \ll \sqrt{n}$
- Can do detection below KS, so can we do the same for recovery?
- Seems like no... So how do we show recovery is hard?

- $1 \ll q \ll \sqrt{n}$
- Can do detection below KS, so can we do the same for recovery?
- Seems like no... So how do we show recovery is hard?
- What framework to use?

- $1 \ll q \ll \sqrt{n}$
- Can do detection below KS, so can we do the same for recovery?
- Seems like no... So how do we show recovery is hard?
- What framework to use?
- Statistical physics / belief propagation?

- $1 \ll q \ll \sqrt{n}$
- Can do detection below KS, so can we do the same for recovery?
- Seems like no... So how do we show recovery is hard?
- What framework to use?
- Statistical physics / belief propagation?
 - Unclear if applicable for this scaling regime?

- $1 \ll q \ll \sqrt{n}$
- Can do detection below KS, so can we do the same for recovery?
- Seems like no... So how do we show recovery is hard?
- What framework to use?
- Statistical physics / belief propagation?
 - Unclear if applicable for this scaling regime?
- Low-degree polynomials?

- $1 \ll q \ll \sqrt{n}$
- Can do detection below KS, so can we do the same for recovery?
- Seems like no... So how do we show recovery is hard?
- What framework to use?
- Statistical physics / belief propagation?
 - Unclear if applicable for this scaling regime?
- Low-degree polynomials?
 - Seems more reliable for different scaling regimes (e.g. tensor PCA)

- $1 \ll q \ll \sqrt{n}$
- Can do detection below KS, so can we do the same for recovery?
- Seems like no... So how do we show recovery is hard?
- What framework to use?
- Statistical physics / belief propagation?
 - Unclear if applicable for this scaling regime?
- Low-degree polynomials?
 - Seems more reliable for different scaling regimes (e.g. tensor PCA)
 - But we can't leverage hardness of testing ("detection-recovery gap")

- $1 \ll q \ll \sqrt{n}$
- Can do detection below KS, so can we do the same for recovery?
- Seems like no... So how do we show recovery is hard?
- What framework to use?
- Statistical physics / belief propagation?
 - Unclear if applicable for this scaling regime?
- Low-degree polynomials?
 - Seems more reliable for different scaling regimes (e.g. tensor PCA)
 - But we can't leverage hardness of testing ("detection-recovery gap")
 - Need to address recovery directly...

• Goal: Given $Y \sim SBM$, estimate scalar $x \coloneqq \mathbf{1}$ {vertices 1,2 same community}

- Goal: Given $Y \sim SBM$, estimate scalar $x \coloneqq \mathbf{1}$ {vertices 1,2 same community}
- Estimator $f: \mathbb{R}^{\binom{n}{2}} \to \mathbb{R}$, polynomial of degree $\leq D$

- Goal: Given $Y \sim SBM$, estimate scalar $x \coloneqq \mathbf{1}$ {vertices 1,2 same community}
- Estimator $f: \mathbb{R}^{\binom{n}{2}} \to \mathbb{R}$, polynomial of degree $\leq D$
 - $MMSE_{\leq D} \coloneqq \inf_{\deg(f) \leq D} E[(f(Y) x)^2]$

- Goal: Given $Y \sim SBM$, estimate scalar $x \coloneqq \mathbf{1}$ {vertices 1,2 same community}
- Estimator $f: \mathbb{R}^{\binom{n}{2}} \to \mathbb{R}$, polynomial of degree $\leq D$
 - $MMSE_{\leq D} \coloneqq \inf_{\deg(f) \leq D} E[(f(Y) x)^2]$
- [Schramm, W '20] "Coarse" bounds on $MMSE_{\leq D}$, no sharp thresholds

- Goal: Given $Y \sim SBM$, estimate scalar $x \coloneqq \mathbf{1}$ {vertices 1,2 same community}
- Estimator $f: \mathbb{R}^{\binom{n}{2}} \to \mathbb{R}$, polynomial of degree $\leq D$
 - $MMSE_{\leq D} \coloneqq \inf_{\deg(f) \leq D} E[(f(Y) x)^2]$
- [Schramm, W '20] "Coarse" bounds on $MMSE_{\leq D}$, no sharp thresholds
- [Sohn, W '25] Sharp thresholds for MMSE_{≤D}: SBM with fixed q, planted submatrix, ...

- Goal: Given $Y \sim SBM$, estimate scalar $x \coloneqq \mathbf{1}$ {vertices 1,2 same community}
- Estimator $f: \mathbb{R}^{\binom{n}{2}} \to \mathbb{R}$, polynomial of degree $\leq D$

•
$$\text{MMSE}_{\leq D} \coloneqq \inf_{\deg(f) \leq D} \mathbb{E}[(f(Y) - x)^2]$$

- [Schramm, W '20] "Coarse" bounds on $MMSE_{\leq D}$, no sharp thresholds
- [Sohn, W '25] Sharp thresholds for MMSE_{≤D}: SBM with fixed q, planted submatrix, ...
- [Chin, Mossel, Sohn, W '25] SBM with $q \ll \sqrt{n}$, MMSE_{$\leq D$} trivial below KS

- Goal: Given $Y \sim SBM$, estimate scalar $x \coloneqq \mathbf{1}$ {vertices 1,2 same community}
- Estimator $f: \mathbb{R}^{\binom{n}{2}} \to \mathbb{R}$, polynomial of degree $\leq D$

•
$$\text{MMSE}_{\leq D} \coloneqq \inf_{\deg(f) \leq D} \mathbb{E}[(f(Y) - x)^2]$$

- [Schramm, W '20] "Coarse" bounds on $MMSE_{\leq D}$, no sharp thresholds
- [Sohn, W '25] Sharp thresholds for MMSE_{≤D}: SBM with fixed q, planted submatrix, ...
- [Chin, Mossel, Sohn, W '25] SBM with $q \ll \sqrt{n}$, MMSE_{$\leq D$} trivial below KS
- Conclusion: KS bound remains the computational threshold for weak recovery when q grows... as long as $q \ll \sqrt{n}$

• Goal: Given $Y \sim SBM$, estimate scalar $x \coloneqq \mathbf{1}$ {vertices 1,2 same community} -1/q

- Goal: Given $Y \sim SBM$, estimate scalar $x \coloneqq \mathbf{1}$ {vertices 1,2 same community} -1/q
- MMSE_{\leq D} is directly related to "correlation": $\operatorname{Corr}_{\leq D} \coloneqq \frac{\operatorname{E}[f(Y) \cdot x]}{\sqrt{\operatorname{E}[f(Y)^2] \cdot \operatorname{E}[x^2]}} \in [0,1]$

- Goal: Given $Y \sim SBM$, estimate scalar $x \coloneqq \mathbf{1}$ {vertices 1,2 same community} -1/q
- MMSE_{\leq D} is directly related to "correlation": $Corr_{\leq D} \coloneqq \frac{E[f(Y) \cdot x]}{\sqrt{E[f(Y)^2] \cdot E[x^2]}} \in [0,1]$
- Theorem [Chin, Mossel, Sohn, W '25] Consider SBM with $q \ll \sqrt{n}$.
 - If $d\lambda^2 > 1$ then $\operatorname{Corr}_{\leq C \log n} = \Omega(1)$ for some constant C > 0(Above KS bound, non-trivial recovery)
 - If $d\lambda^2 < 1$ then $\operatorname{Corr}_{\leq n^{\delta}} = o(1)$ for some constant $\delta > 0$ (Below KS bound, trivial recovery)

• $q = n^{\chi}$ for a constant $\chi \in (1/2, 1)$

- $q = n^{\chi}$ for a constant $\chi \in (1/2, 1)$
- We show: There is now a poly-time alg for weak recovery when $d\lambda^2 > 1$ or $d\lambda^{1/\chi} > C(\log d)^2$ [Chin, Mossel, Sohn, W'25]

- $q = n^{\chi}$ for a constant $\chi \in (1/2, 1)$
- We show: There is now a poly-time alg for weak recovery when $d\lambda^2 > 1$ or $d\lambda^{1/\chi} > C(\log d)^2$ [Chin, Mossel, Sohn, W'25]
 - Can beat KS: $d\lambda^2 > 1$

- $q = n^{\chi}$ for a constant $\chi \in (1/2, 1)$
- We show: There is now a poly-time alg for weak recovery when $d\lambda^2 > 1$ or $d\lambda^{1/\chi} > C(\log d)^2$ [Chin, Mossel, Sohn, W'25]
 - Can beat KS: $d\lambda^2 > 1$
 - Algorithm is again based on non-backtracking walks

- $q = n^{\chi}$ for a constant $\chi \in (1/2, 1)$
- We show: There is now a poly-time alg for weak recovery when $d\lambda^2 > 1$ or $d\lambda^{1/\chi} > C(\log d)^2$ [Chin, Mossel, Sohn, W'25]
 - Can beat KS: $d\lambda^2 > 1$
 - Algorithm is again based on non-backtracking walks
- Open: Is this the right threshold? Lower bounds?

- $q = n^{\chi}$ for a constant $\chi \in (1/2, 1)$
- We show: There is now a poly-time alg for weak recovery when $d\lambda^2 > 1$ or $d\lambda^{1/\chi} > C(\log d)^2$ [Chin, Mossel, Sohn, W'25]
 - Can beat KS: $d\lambda^2 > 1$
 - Algorithm is again based on non-backtracking walks
- Open: Is this the right threshold? Lower bounds?
- Similar phenomenon in Gaussian mixture models: behavior changes when number of clusters passes \sqrt{n} [Even, Giraud, Verzelen '24]