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Based on 2 papers…
• “Sharp Phase Transitions in Estimation with Low-Degree Polynomials”

(with Youngtak Sohn)
• “Stochastic Block Models with Many Communities and the Kesten-Stigum Bound”

(with Byron Chin, Elchanan Mossel, Youngtak Sohn)
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• 𝑛 vertices partitioned into 𝑞 hidden “communities” of equal size
• Edge (𝑖, 𝑗) occurs with probability…

• 𝑎/𝑛 if 𝑖, 𝑗 same community
• 𝑏/𝑛 if 𝑖, 𝑗 different community

• Goal: given the graph, estimate the hidden partition
• Alternative parametrization:

• 𝑑 = 𝑎 + 𝑞 − 1 𝑏 /𝑞  (average degree)
• 𝜆 = (𝑎 − 𝑏)/[𝑎 + 1 − 𝑞 𝑏]  (SNR)

Image credit: Abbe ‘17
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• For now: parameters 𝑞, 𝑑, 𝜆 are fixed as 𝑛 → ∞

• Landmark prediction: computational threshold is 𝑑𝜆2 = 1 (KS bound)
[Decelle, Krzakala, Moore, Zdeborová ‘11]
• If 𝑑𝜆2 > 1, there is a poly-time algorithm (belief propagation)
• If 𝑑𝜆2 < 1, no poly-time algorithm
• Sharp threshold

• Poly-time algorithms rigorously reach KS bound
[Massoulié ‘13; Mossel, Neeman, Sly ‘13; Abbe, Sandon ‘15]

• For large enough q, exponential-time algorithms work below KS
[Abbe, Sandon ‘15; Banks, Moore, Neeman, Netrapalli ‘16]

• Statistical-computation gap
𝑑𝜆2

easyhard?impossible

≈ log 𝑞/𝑞 10
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Tasks: Detection vs Recovery
• KS is the (conjectured) threshold for 2 different tasks:
• (Strong) detection: distinguish with prob 1 − 𝑜(1) between…

• Null hypothesis: Erdős–Rényi graph 𝐺(𝑛, 𝑑/𝑛)

• Alternative hypothesis: SBM with parameters 𝑞, 𝑑, 𝜆

• (Weak) recovery: recover a partition with 1/𝑞 + 𝜖 fraction of vertices 
correct (beat random guessing) for a constant 𝜖 > 0
• Can’t hope for strong recovery in sparse graphs

• How are the two tasks related?
• Detection “feels” easier…
• Made rigorous (in some sense) by [Ding, Hua, Slot, Steurer ‘25]
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• How do we know there’s no poly-time alg for 𝑑𝜆2 < 1?
• Belief propagation fails [Decelle, Krzakala, Moore, Zdeborová ‘11]

• Low-degree tests fail [Hopkins, Steurer ‘17, …]
• Input variable 𝑌𝑖𝑗 ∈ {0,1} for each pair 𝑖 < 𝑗 (edge indicator)
• Edge count: σ𝑖<𝑗 𝑌𝑖𝑗   (degree-1 polynomial)
• Triangle count: σ𝑖<𝑗<𝑘 𝑌𝑖𝑗𝑌𝑖𝑘𝑌𝑗𝑘   (degree-3 polynomial)
• Surprisingly good track record at predicting computational thresholds
• “Conjecture”: if degree-𝜔(log 𝑛) polynomials fail ⇒ no poly-time alg

• Question (HS17): Can low-degree polynomials recover?
• Other frameworks for average-case hardness (less applicable here)

• Reductions, statistical query model, sum-of-squares, overlap gap, …
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Growing Number of Communities
• SBM is well-understood for fixed 𝑞 (number of communities)
• Now take 𝑞 → ∞ (where 𝑑, 𝜆 are still fixed)

• Similar to [Chen, Xu ‘14]

• For now, say 1 ≪ 𝑞 ≪ 𝑛

• We show: There is still a poly-time alg for weak recovery above KS 
bound, 𝑑𝜆2 > 1 [Chin, Mossel, Sohn, W ‘25]
• Decide whether two vertices are in the same community by counting 

(weighted) non-backtracking walks of length ~log 𝑛 between them

• Detection becomes easy, even below KS!
• Triangle count works for any fixed 𝑑, 𝜆 ≠ 0, as long as 𝑞 → ∞
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Can We Do Better (For Recovery)?
• 1 ≪ 𝑞 ≪ 𝑛 

• Can do detection below KS, so can we do the same for recovery?
• Seems like no… So how do we show recovery is hard?
• What framework to use?
• Statistical physics / belief propagation?

• Unclear if applicable for this scaling regime?

• Low-degree polynomials?
• Seems more reliable for different scaling regimes (e.g. tensor PCA)
• But we can’t leverage hardness of testing (“detection-recovery gap”)
• Need to address recovery directly…
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• [Schramm, W ‘20] “Coarse” bounds on MMSE≤𝐷, no sharp thresholds
• [Sohn, W ‘25] Sharp thresholds for MMSE≤𝐷: SBM with fixed 𝑞, 

planted submatrix, …
• [Chin, Mossel, Sohn, W ‘25] SBM with 𝑞 ≪ 𝑛, MMSE≤𝐷 trivial below KS
• Conclusion: KS bound remains the computational threshold for weak 

recovery when 𝑞 grows… as long as 𝑞 ≪ 𝑛
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• Goal: Given 𝑌 ∼ SBM, estimate scalar

𝑥 ≔ 𝟏 vertices 1,2 same community − 1/𝑞

• MMSE≤𝐷 is directly related to “correlation”:

Corr≤𝐷 ≔
E 𝑓 𝑌 ⋅ 𝑥

E 𝑓 𝑌 2 ⋅ E 𝑥2
∈ [0,1]

• Theorem [Chin, Mossel, Sohn, W ‘25] Consider SBM with 𝑞 ≪ 𝑛.
• If 𝑑𝜆2 > 1 then Corr≤𝐶 log 𝑛 = Ω(1) for some constant 𝐶 > 0 

(Above KS bound, non-trivial recovery)
• If 𝑑𝜆2 < 1 then Corr≤𝑛𝛿 = 𝑜(1) for some constant 𝛿 > 0 

(Below KS bound, trivial recovery)
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Beating KS when 𝑞 ≫ 𝑛

• 𝑞 = 𝑛𝜒 for a constant 𝜒 ∈ (1/2,1)

• We show: There is now a poly-time alg for weak recovery when 
𝑑𝜆2 > 1  or  𝑑𝜆1/𝜒 > 𝐶 log 𝑑 2 [Chin, Mossel, Sohn, W ‘25]
• Can beat KS: 𝑑𝜆2 > 1

• Algorithm is again based on non-backtracking walks

• Open: Is this the right threshold? Lower bounds?
• Similar phenomenon in Gaussian mixture models: behavior changes 

when number of clusters passes 𝑛 [Even, Giraud, Verzelen ‘24]
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