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“High-Dimensional Statistics”

* Spiked Wigner model: “rank-1 matrix plus noise”
« P (“planted”): V = Auu' + W
* Q (“null”): Y =W
* “Noise” W is symmetric, i.i.d. N(0,1)
* Planted signal u € R" drawn from some prior

* Planted clique problem
*P: G(n,1/2) + {k-clique}
cQ: Gn,1/2)

 Statistical-computational gaps... , Impossible hard?

1 2 log,n



Heuristics for Hardness

* AMP (approximate message passing + replica symmetric potential)
* OGP (overlap gap property)

* SOS (sum-of-squares hierarchy)

* SQ (statistical query model)

* LD (low-degree polynomials)

e “Unify” these: Can we prove they all make the same predictions?

* Two issues:
1. Sometimes they are NOT equivalent...
2. Often they are not even answering the same question...



Tasks

* Using planted clique as a running example...

* Detection (a.k.a. Testing): Decide if a given graph came from [P or Q
* Recovery (a.k.a. Estimation): Given ¢ ~P, find the planted clique

* (Non-planted) optimization: Given G~Q, find a k-clique

* Refutation (or Certification): Given G~Q, prove there’s no k-clique

* “Gaps”: trivial detection via total edge count, but recovery is harder



Frameworks vs Tasks

* Which frameworks can give hardness results for which tasks?

Detection

Recovery

Optimization

Refutation




Tensor PCA

* AMP (and other “local search” algorithms) get the “wrong” threshold!
* LD (and SOS, spectral methods) get the “correct” threshold

Info-Theory LD n AMP

» SNR

 “Redemption”
* Kikuchi hierarchy (in place of Bethe free energy)
* Averaged gradient descent
* ... butthese are somewhat problem specific (?)



Known Connections

* Despite many caveats, some known connections among frameworks

“Statistical Physics” “Theoretical Computer Science”
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This Talk

* Two stories about connecting physics with low-degree polynomials

* Part 1: “Annealed Franz-Parisi Potential”
* Connecting low-degree detection with a “physics-style” object

* Part 2: AMP vs Low-Degree Estimation

 Can low-degree polynomials recover the sharp estimation predictions made
by physics?



Part 1. “Annealed Franz-Parisi Potential”

Joint with: Afonso Bandeira, Ahmed El Alaoui, Sam Hopkins,
Tselil Schramm, Ilias Zadik

“The Franz-Parisi Criterion and Computational Trade-offs in High Dimensional Statistics”



Testing Y ~PvsY ~Q

» Optimal test statistic is likelihood ratio L(Y) = (dIP/dQ)(Y)
* If P involves planted signalu then L = E,L,, where L, = dP,/dQ

* Physics: This is a partition function

* Xz (P”@) + 1= IEY~IP[L(Y)] — EQ[LZ] — IEu,vIE(@[LuLv]
* Physics: Annealed free energy
e Statistics: If 0(1) then impossible to distinguish w.h.p.; if w(1) then ???
* X2p (PQ) + 1 = Ey_p[LP (V)] = Eg[(L5")?] = By Eq[L3 L3"]
e Think D = (logn)**€
* If 0(1) then “low-degree hard” to distinguish; if w(1) then ???



Two Different “Truncations” f

Hard

Xz (P”@) + 1= ]Eu,v]EQ[LuLv]

Low degree / \ Low overlap

LD(D) = [Eu,v [E(@ [LftD LTS]D]

U

* Thm: Two truncations are “equivalent” for various models
* General additive Gaussian models, “planted sparse models”

e Relation Dvs 6: Pr(|{u,v)| = 6) ~ e7P

(u, v)

FP(0) = Eu,vﬂl(u,v)lsdlEQ [LuLv]

“Annealed Franz-Parisi Potential”

Easy

(u, v)

* If FP(6) = 0(1) then “FP-hard”, implies “LD-hard”; if w(1) then ???




Summary: FP vs LD

* Connects “algebraic” hardness with “landscape” hardness

* But some caveats:
* FP is not directly related to AMP or RS potential
* FP does not say anything precise about recovery error or MSE
* I[n fact, FP is more tied to detection rather than recovery

* FP makes the “right” prediction for tensor PCA, while AMP fails
* FP is also a useful tool for proving low-degree lower bounds



Part 2. AMP vs Low-Degree Estimation

Joint with: Andrea Montanari

“Equivalence of AMP and Low-Degree Polynomials in Rank-One Matrix Estimation”



Another Approach...

* Let’s meet AMP on its home turf: estimation
* Focus on a problem (spiked Wigner) where we expect AMP is optimal
* RS potential makes precise predictions about MSE

* For a start, can we recover these using low-degree polynomials?

* Spiked Wigner: Y = Auu' + W with u i.i.d. from some (fixed) prior
 Estimator f: R™™ — R multivariate polynomial of deg < D

* Degree-D MMSE:

o— . _ 2
MMSE,, = degl(r}§SD E[(f(Y) —uy)?]



AMP for (Rank-1) Spiked Wigner

e Signal u; ~ m where E|m] # 0
* AMP with optimal denoiser, t iter
*n — oo followed by t — oo

* Conj: AMP has best MSE among
poly-time algorithms

* Thm: AMP has best MSE among
degree-0(1) polynomials

* Conj: AMP has best MSE among
degree-n1=° polynomials
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Why AMP = LD?
* AMP is equivalent to “tree-structured” polynomials

All polynomials

tree non-tree
3 6 2
8
2 )/0507
1 2 1 5
Tree polynomials
f(Y) =Y13Y14Y46Ys7 g¥) = Y12Y15Y25Y528 ~ AMP

* In spiked Wigner, tree polynomials are
optimal among all polynomials




Higher Degree

* |deally we should rule out polynomials of higher degree, say n 1)

Forthcoming work with Byron Chin, Elchanan Mossel, Youngtak Sohn...

* LD matches some sharp phase transitions predicted by physics
* But we don’t (yet) match the exact MSE...

» Spiked Wigner: LD estimation fails below BBP transition A =1
* Even for any sub-extensive rankm <K n

e Stochastic Block Model: LD estimation fails below KS threshold
* Even for growing number of communities



Concluding Thoughts

* We know AMP makes extremely sharp predictions
* But not applicable to all settings (tensor PCA, extensive rank, ...)

* LD gives a stronger form of hardness (all polyn’s vs tree-polyn’s)
* But current results are less sharp than AMP

* Ongoing challenge: Sharpen LD lower bounds to match AMP
* And in the process, understand when AMP is optimal (and when it’s not)

Thanks!
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