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“High-Dimensional Statistics”
• Spiked Wigner model: “rank-1 matrix plus noise”

• ℙ (“planted”): 𝑌 = 𝜆𝑢𝑢⊤ + 𝑊

• ℚ (“null”): 𝑌 = 𝑊

• “Noise” 𝑊 is symmetric, i.i.d. 𝑁(0,1)

• Planted signal 𝑢 ∈ ℝ𝑛 drawn from some prior

• Planted clique problem
• ℙ:        𝐺(𝑛, 1/2) + {𝑘-clique}

• ℚ:       𝐺(𝑛, 1/2)

• Statistical-computational gaps…
𝑘

easyhard?impossible

2 log2 𝑛 𝑛1

𝑘 = 5



Heuristics for Hardness
• AMP (approximate message passing + replica symmetric potential)
• OGP (overlap gap property)
• SOS (sum-of-squares hierarchy)
• SQ (statistical query model)
• LD (low-degree polynomials)

• “Unify” these: Can we prove they all make the same predictions?

• Two issues:
1. Sometimes they are NOT equivalent…
2. Often they are not even answering the same question…



Tasks
• Using planted clique as a running example…
• Detection (a.k.a. Testing): Decide if a given graph came from ℙ or ℚ
• Recovery (a.k.a. Estimation): Given 𝐺~ℙ, find the planted clique
• (Non-planted) optimization: Given 𝐺~ℚ, find a 𝑘-clique
• Refutation (or Certification): Given 𝐺~ℚ, prove there’s no 𝑘-clique

• “Gaps”: trivial detection via total edge count, but recovery is harder
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Frameworks vs Tasks
• Which frameworks can give hardness results for which tasks?
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Tensor PCA
• AMP (and other “local search” algorithms) get the “wrong” threshold!
• LD (and SOS, spectral methods) get the “correct” threshold

• “Redemption”
• Kikuchi hierarchy (in place of Bethe free energy) [W,Alaoui,Moore’19]

• Averaged gradient descent [Biroli,Cammarota,Ricci-Tersenghi’19]

• … but these are somewhat problem specific (?)

SNR
Info-Theory LD AMP!!!



Known Connections
• Despite many caveats, some known connections among frameworks

“Statistical Physics”

Belief Propagation (BP)

Approximate Message 
Passing (AMP)

Free Energy Barriers

“Theoretical Computer Science”

Sum-of-Squares (SoS)

Spectral Methods

Low-Degree 
Polynomials

Overlap Gap Property 
(OGP)

[HKPRSS’17]

Power Iter
[GJ’19]

[BAHSWZ’22]

Statistical Query (SQ)
[BBHLS’20]



This Talk
• Two stories about connecting physics with low-degree polynomials

• Part 1: “Annealed Franz-Parisi Potential”
• Connecting low-degree detection with a “physics-style” object

• Part 2: AMP vs Low-Degree Estimation
• Can low-degree polynomials recover the sharp estimation predictions made 

by physics?



Part 1. “Annealed Franz-Parisi Potential”

Joint with: Afonso Bandeira, Ahmed El Alaoui, Sam Hopkins,          
         Tselil Schramm, Ilias Zadik

“The Franz-Parisi Criterion and Computational Trade-offs in High Dimensional Statistics”



Testing  𝑌 ∼ ℙ  vs  𝑌 ∼ ℚ

• Optimal test statistic is likelihood ratio 𝐿 𝑌 = (dℙ/dℚ)(𝑌)

• If ℙ involves planted signal 𝑢 then 𝐿 = 𝔼𝑢𝐿𝑢 where 𝐿u = dℙ𝑢/dℚ
• Physics: This is a partition function

• 𝜒2 ԡℙ ℚ + 1 = 𝔼𝑌∼ℙ 𝐿 𝑌 = 𝔼ℚ 𝐿2 = 𝔼𝑢,𝑣𝔼ℚ[𝐿𝑢𝐿𝑣]
• Physics: Annealed free energy
• Statistics: If 𝑂 1  then impossible to distinguish w.h.p.; if 𝜔 1  then ???

• 𝜒≤𝐷
2 ԡℙ ℚ + 1 = 𝔼𝑌∼ℙ 𝐿≤𝐷 𝑌 = 𝔼ℚ (𝐿≤𝐷)2 = 𝔼𝑢,𝑣𝔼ℚ[𝐿𝑢

≤𝐷𝐿𝑣
≤𝐷]

• Think 𝐷 = log 𝑛 1+𝜖

• If 𝑂 1  then “low-degree hard” to distinguish; if 𝜔 1  then ???



Two Different “Truncations”

𝜒2 ԡℙ ℚ + 1 = 𝔼𝑢,𝑣𝔼ℚ[𝐿𝑢𝐿𝑣]

LD 𝐷 = 𝔼𝑢,𝑣𝔼ℚ[𝐿𝑢
≤𝐷𝐿𝑣

≤𝐷] FP(𝛿) = 𝔼𝑢,𝑣𝟙 𝑢,𝑣 ≤𝛿𝔼ℚ[𝐿𝑢𝐿𝑣]

Low degree Low overlap

“Annealed Franz-Parisi Potential”

≈

• Thm: Two truncations are “equivalent” for various models
• General additive Gaussian models, “planted sparse models”

• Relation 𝐷 vs 𝛿:  Pr 𝑢, 𝑣 ≥ 𝛿 ≈ 𝑒−𝐷

• If FP 𝛿 = 𝑂(1) then “FP-hard”, implies “LD-hard”; if 𝜔(1) then ???

𝑓 𝑓

⟨𝑢, 𝑣⟩ ⟨𝑢, 𝑣⟩

Hard Easy



Summary: FP vs LD
• Connects “algebraic” hardness with “landscape” hardness
• But some caveats:

• FP is not directly related to AMP or RS potential
• FP does not say anything precise about recovery error or MSE
• In fact, FP is more tied to detection rather than recovery

• FP makes the “right” prediction for tensor PCA, while AMP fails
• FP is also a useful tool for proving low-degree lower bounds



Part 2. AMP vs Low-Degree Estimation

Joint with: Andrea Montanari
“Equivalence of AMP and Low-Degree Polynomials in Rank-One Matrix Estimation”



Another Approach…
• Let’s meet AMP on its home turf: estimation
• Focus on a problem (spiked Wigner) where we expect AMP is optimal
• RS potential makes precise predictions about MSE
• For a start, can we recover these using low-degree polynomials?

• Spiked Wigner:  𝑌 = 𝜆𝑢𝑢⊤ + 𝑊  with 𝑢 i.i.d. from some (fixed) prior
• Estimator  𝑓: ℝ𝑛×𝑛 → ℝ  multivariate polynomial of deg ≤ 𝐷

• Degree-𝐷 MMSE:
MMSE≤𝐷 ≔ inf

deg 𝑓 ≤ 𝐷
𝔼 𝑓 𝑌 − 𝑢1

2



AMP for (Rank-1) Spiked Wigner
• Signal  𝑢𝑖 ∼ 𝜋  where  𝔼 𝜋 ≠ 0

• AMP with optimal denoiser, 𝑡 iter
• 𝑛 → ∞  followed by  𝑡 → ∞

• Conj: AMP has best MSE among
poly-time algorithms

• Thm: AMP has best MSE among
degree-𝑂(1) polynomials

• Conj: AMP has best MSE among
degree-𝑛1−𝑜(1) polynomials

SNR
A

c
c
u
ra

c
y

AMP

Bayes

AMP = Bayes

AMP = Bayes

3-pt prior



Why AMP ≈ LD?
• AMP is equivalent to “tree-structured” polynomials

• In spiked Wigner, tree polynomials are
optimal among all polynomials
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Higher Degree
• Ideally we should rule out polynomials of higher degree, say 𝑛Ω(1)

Forthcoming work with Byron Chin, Elchanan Mossel, Youngtak Sohn…
• LD matches some sharp phase transitions predicted by physics

• But we don’t (yet) match the exact MSE…

• Spiked Wigner: LD estimation fails below BBP transition 𝜆 = 1
• Even for any sub-extensive rank 𝑚 ≪ 𝑛

• Stochastic Block Model: LD estimation fails below KS threshold
• Even for growing number of communities



Concluding Thoughts
• We know AMP makes extremely sharp predictions

• But not applicable to all settings (tensor PCA, extensive rank, …)

• LD gives a stronger form of hardness (all polyn’s vs tree-polyn’s)
• But current results are less sharp than AMP

• Ongoing challenge: Sharpen LD lower bounds to match AMP
• And in the process, understand when AMP is optimal (and when it’s not)

Thanks!
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