Unifying Statistical Physics and Low-Degree Polynomials?

Alex Wein University of California, Davis

"High-Dimensional Statistics"

- Spiked Wigner model: "rank-1 matrix plus noise"
 - \mathbb{P} ("planted"): $Y = \lambda u u^{\top} + W$
 - \mathbb{Q} ("null"): Y = W
 - "Noise" W is symmetric, i.i.d. N(0,1)
 - Planted signal $u \in \mathbb{R}^n$ drawn from some prior
- Planted clique problem
 - \mathbb{P} : $G(n, 1/2) + \{k \text{-clique}\}$
 - Q: G(n, 1/2)

Statistical-computational gaps...

Heuristics for Hardness

- AMP (approximate message passing + replica symmetric potential)
- OGP (overlap gap property)
- SOS (sum-of-squares hierarchy)
- SQ (statistical query model)
- LD (low-degree polynomials)
- "Unify" these: Can we prove they all make the same predictions?
- Two issues:
 - 1. Sometimes they are NOT equivalent...
 - 2. Often they are not even answering the same question...

Tasks

- Using planted clique as a running example...
- Detection (a.k.a. Testing): Decide if a given graph came from \mathbb{P} or \mathbb{Q}
- **Recovery (a.k.a. Estimation)**: Given $G \sim \mathbb{P}$, find the planted clique
- (Non-planted) optimization: Given $G \sim \mathbb{Q}$, find a k-clique
- **Refutation (or Certification)**: Given $G \sim \mathbb{Q}$, prove there's no k-clique

• "Gaps": trivial detection via total edge count, but recovery is harder

Frameworks vs Tasks

• Which frameworks can give hardness results for which tasks?

	AMP	OGP	SOS	SQ	LD
Detection					
Recovery		~		~	
Optimization					
Refutation					

Tensor PCA

- AMP (and other "local search" algorithms) get the "wrong" threshold!
- LD (and SOS, spectral methods) get the "correct" threshold

- "Redemption"
 - Kikuchi hierarchy (in place of Bethe free energy) [W,Alaoui,Moore'19]
 - Averaged gradient descent [Biroli,Cammarota,Ricci-Tersenghi'19]
 - ... but these are somewhat problem specific (?)

Known Connections

• Despite **many** caveats, some known connections among frameworks

This Talk

- Two stories about connecting physics with low-degree polynomials
- Part 1: "Annealed Franz-Parisi Potential"
 - Connecting low-degree **detection** with a "physics-style" object
- Part 2: AMP vs Low-Degree Estimation
 - Can low-degree polynomials recover the sharp estimation predictions made by physics?

Part 1. "Annealed Franz-Parisi Potential"

Joint with: Afonso Bandeira, Ahmed El Alaoui, Sam Hopkins, Tselil Schramm, Ilias Zadik

"The Franz-Parisi Criterion and Computational Trade-offs in High Dimensional Statistics"

Testing $Y \sim \mathbb{P}$ vs $Y \sim \mathbb{Q}$

- Optimal test statistic is likelihood ratio $L(Y) = (d\mathbb{P}/d\mathbb{Q})(Y)$
- If \mathbb{P} involves planted signal u then $L = \mathbb{E}_u L_u$ where $L_u = d\mathbb{P}_u/d\mathbb{Q}$
 - Physics: This is a *partition function*
- $\chi^2(\mathbb{P}||\mathbb{Q}) + 1 = \mathbb{E}_{Y \sim \mathbb{P}}[L(Y)] = \mathbb{E}_{\mathbb{Q}}[L^2] = \mathbb{E}_{u,v}\mathbb{E}_{\mathbb{Q}}[L_uL_v]$
 - Physics: Annealed free energy
 - Statistics: If O(1) then impossible to distinguish w.h.p.; if $\omega(1)$ then ???
- $\chi^2_{\leq D}(\mathbb{P}||\mathbb{Q}) + 1 = \mathbb{E}_{Y \sim \mathbb{P}}[L^{\leq D}(Y)] = \mathbb{E}_{\mathbb{Q}}[(L^{\leq D})^2] = \mathbb{E}_{u,v}\mathbb{E}_{\mathbb{Q}}[L_u^{\leq D}L_v^{\leq D}]$
 - Think $D = (\log n)^{1+\epsilon}$
 - If O(1) then "low-degree hard" to distinguish; if $\omega(1)$ then ???

"Annealed Franz-Parisi Potential"

- Thm: Two truncations are "equivalent" for various models
 - General additive Gaussian models, "planted sparse models"
- Relation *D* vs δ : Pr($|\langle u, v \rangle| \ge \delta$) $\approx e^{-D}$
- If $FP(\delta) = O(1)$ then "FP-hard", implies "LD-hard"; if $\omega(1)$ then ???

Summary: FP vs LD

- Connects "algebraic" hardness with "landscape" hardness
- But some caveats:
 - FP is not directly related to AMP or RS potential
 - FP does not say anything precise about recovery error or MSE
 - In fact, FP is more tied to detection rather than recovery
- FP makes the "right" prediction for tensor PCA, while AMP fails
- FP is also a useful tool for proving low-degree lower bounds

Part 2. AMP vs Low-Degree Estimation

Joint with: Andrea Montanari

"Equivalence of AMP and Low-Degree Polynomials in Rank-One Matrix Estimation"

Another Approach...

- Let's meet AMP on its home turf: estimation
- Focus on a problem (spiked Wigner) where we expect AMP is optimal
- RS potential makes precise predictions about MSE
- For a start, can we recover these using low-degree polynomials?
- Spiked Wigner: $Y = \lambda u u^{\top} + W$ with u i.i.d. from some (fixed) prior
- Estimator $f: \mathbb{R}^{n \times n} \to \mathbb{R}$ multivariate polynomial of deg $\leq D$
- Degree-*D* MMSE:

$$\text{MMSE}_{\leq D} \coloneqq \inf_{\deg(f) \leq D} \mathbb{E}[(f(Y) - u_1)^2]$$

AMP for (Rank-1) Spiked Wigner

- Signal $u_i \sim \pi$ where $\mathbb{E}[\pi] \neq 0$
- AMP with optimal denoiser, t iter
- $n \to \infty$ followed by $t \to \infty$
- **Conj**: AMP has best MSE among poly-time algorithms
- **Thm**: AMP has best MSE among degree-*O*(1) polynomials
- Conj: AMP has best MSE among degree- $n^{1-o(1)}$ polynomials

Why AMP \approx LD?

• AMP is equivalent to "tree-structured" polynomials

• In spiked Wigner, tree polynomials are optimal among all polynomials

Higher Degree

• Ideally we should rule out polynomials of higher degree, say $n^{\Omega(1)}$

Forthcoming work with Byron Chin, Elchanan Mossel, Youngtak Sohn...

- LD matches some sharp phase transitions predicted by physics
 - But we don't (yet) match the exact MSE...
- Spiked Wigner: LD estimation fails below BBP transition $\lambda = 1$
 - Even for any sub-extensive rank $m \ll n$
- Stochastic Block Model: LD estimation fails below KS threshold
 - Even for growing number of communities

Concluding Thoughts

- We know AMP makes extremely sharp predictions
 - But not applicable to all settings (tensor PCA, extensive rank, ...)
- LD gives a stronger form of hardness (all polyn's vs tree-polyn's)
 - But current results are less sharp than AMP
- Ongoing challenge: Sharpen LD lower bounds to match AMP
 - And in the process, understand when AMP is optimal (and when it's not)

Thanks!