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Tensors

n;

nq
* Order-2 tensor: matrix M € R™M*"2 M = (M;;) -

 Order-3 tensor T € R™M*"2*Ms T = (T;)
n

cu € R™M, v € R"2, w € R™ n,
 Rank-1 order-2 tensor (matrix) M =uv' M;; = u;v;

* Rank-1 order-3 tensor T=u@vRw T, =uvwg

* rank(T) = smallestr s.t. T is the sum of r rank-1 tensors —‘
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Matrix Decomposition

« Given M € R™*"2 can we efficiently compute...
e ...r:=rank(M)? Yes (ignoring numerical precision...)
e ...adecomposition of M into r rank-1 terms? Yes

* Using SVD...
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* ... butthe answer is not unique: M = Hm




Tensor Decomposition

« Given T € R™M*"2XM3 can we efficiently compute...
o ...r:=rank(T)? NP-hard [Hastad ’90; Hillar, Lim ‘09]
* ...adecomposition of T into r rank-1 terms?

* Can still hope to decompose “most” rank-r tensors (for small )

T
T = z U Qv Q w® with u®@, v w{ chosen generically
i=1

* Tensor decompositions (of order = 3) are often unique!



Formal Meaning of “Generic”

* A predicate P(x) depending on formalvariables x = (x4, ..., X;,) IS
“true generically” if there exists a not-identically-zero polynomial

g(x) suchthat: g(x) #0 > P(x)

* Implies that P(x) holds for “almost all” x

« Ex: Generically chosen vectors u(V, ..., u™ € R™ are linearly
iIndependent

e Pf: Lin. indep. & detM # 0

n
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u® oy



Motivation

* Why care about tensor decomposition?

e 2 answers...

1)
2)

Fundamental problem, needs no justification ©

Applications in statistics / data science

* Phylogenetic reconstruction, topic modeling, community detection, learning
Gaussian mixtures, independent component analysis, dictionary learning, ...

* Either used for analyzing tensor-valued data (higher-order PCA), or

Imagine samples drawn from a distribution y ~ D where y € R"

First moment: E|y] = 0 (assume centered)
Second moment: E[yy"] (n X n covariance matrix)

Third moment: E[ly @ y Q y] (n X n X n tensor)



Prior Work

* Goal:givenann xn xntensorT = Y7, u®® @ v @ w® with
generic components, want an algorithm to provably recover the rank-1
terms in polynomial time (as n — o)

« Decomposition is unique provided r < c¢n? [Bocci, Chiantini, Ottaviani ‘13]
e Classical (~1970) “Jennrich’s algorithm”: r <n
* [Chen, Rademacher‘20] r =n + 0(1)

* [Koiran‘24] r < %n
* Ourresult [Kothari, Moitra, W.’24] r < (2 —e)n

e Runtime n¢®

* More generally, for n; X n, X nz tensor withn; = n, = n; andn; - o andn, = nj:
r<(1-e)(n, +nj3)

* For random components, can reach r = n3/2 [Ma, Shi, Steurer “16]



Some proof ideas...



Rank Detection

* For simplicity, consider an easier task...

* Goal:givenann xn x ntensorT = Y1, u® @ v & w® with
generic components, want an algorithm to provably recover-the
ratik=tterms compute 7 in polynomial time (as n — ©0)

* [Persu‘18] r < %n
* Ourresult [Kothari, Moitra, W.’24] r < (2 — e)n
* Approach: construct a map (“flattening”) T - M(T)

* Hope: rank(T) can be deduced from rank(M(T))



“Trivial” Flattening

e Flattenn X n X ntensor to n? X n matrix: n n?
* Rank-1 T » Rank-1 M \/Xn

e Rank-r T » Rank-? M

* Answer: Rank-r ... provided r < n and components are generic

* Solves rank detection for r < n (we’ll beat this by a factor of 2)




Proof: Rank Detection by Trivial Flattening

cffu@QUV@weH (URQw)v'

» Goal: rank f(XI_; uP @ v Q w®) =7

o f(zz_‘:lu(i) R vV ® W(l’)) =Y_ (u® Q@ v®) (wiHT

» Sufficient: {u'’® v} and {w"} each linearly independent
* N(u,v,w) symbolic matrix

e Suff: det N # 0 for genericu,v,w r
* Suff: det N(u, v,w) £ 0 as apolynomialinu,v,w  »2 H
e Suff: 3u,v,w : det N(u,v,w) =0




From Rank Detection to Decomposition

cffu@RVR®weH (URw)v'
M= F(TT, 0D @ v® @ wd)

e Know: rank M =r

« Goal: recover u®, v yw®

e colspan M =7

* Answer: span{u® ® v{¥}

* Search for simple tensors (rank-1 matrices) in this linear subspace

* [Johnston, Lovitz, Vijayaraghavan ‘22] Canlfind the r rank-1 m X n matrices
that span a given subspace, provided r < " (m—1)(n—1)

* Forthcoming (w. Jeshu Dastidar & Tait Weicht) improvement % to %



Factor-2 Improvement: A Better Flattening

<2p+1
p

)

A(u)

* Linearmap T - M(T)
U@ VAW A(u) ® (vw')

2p +1
p+1

)

{1}
Eg.p=1. A(u) = (2)

3}

. rank(M(T)) = (pr) rank(T) when r < (2 —e)n

* Inspired by “Koszul-Young flattening” [Landsberg, Ottaviani ‘13]
* Parameterp = 1 (integer; large constant)

{1,2} {1,3} {2,3}
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Looking Forward...

* Isr = 2n the limit (for efficient algorithms)?

* Recall: for random tensors, can dor = n3/2

* For order-4 tensors, no gap between random and generic (r = n?)

* Lower bounds, building on [Efremenko, Garg, Oliveira, Wigderson '17]

e Linear flattenings of theformu @ v @ w » A(u) @ (vw') cannot
surpass 2n
* General linear flattenings cannot surpass 6n
* Degree-d polynomial flattenings cannot surpass Cyn
° 777
Thanks!
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