Overcomplete Tensor Decomposition via Koszul-Young Flattenings

Alex Wein
UC Davis

Joint work with Pravesh Kothari (Princeton) and Ankur Moitra (MIT) arXiv:2411.14344

Tensors

- Order-2 tensor: matrix
- $M \in \mathbb{R}^{n_1 \times n_2}$

 $M = (M_{ij})$

Order-3 tensor

- $T \in \mathbb{R}^{n_1 \times n_2 \times n_3}$
- $T=(T_{ijk})$

- Equivalent: $T \in \mathbb{R}^{n_1} \otimes \mathbb{R}^{n_2} \otimes \mathbb{R}^{n_3}$
- $u \in \mathbb{R}^{n_1}$, $v \in \mathbb{R}^{n_2}$, $w \in \mathbb{R}^{n_3}$
- Rank-1 order-2 tensor (matrix) $M = uv^{\top}$ $M_{ij} = u_iv_j$
- Rank-1 order-3 tensor $T=u\otimes v\otimes w$ $T_{ijk}=u_iv_jw_k$
- rank(T) = smallest r s.t. T is the sum of r rank-1 tensors

Matrix Decomposition

Polynomial-time algorithm

- Given $M \in \mathbb{R}^{n_1 \times n_2}$, can we efficiently compute...
 - ... r := rank(M)? Yes (ignoring numerical precision...)
 - ... a decomposition of M into r rank-1 terms? Yes
- Using SVD...

$$M = n_1 \underbrace{ \begin{bmatrix} r \\ n_2 \\ r \end{bmatrix}}_{u^{(1)}, \dots, u^{(r)}} r \underbrace{ \begin{bmatrix} n_2 \\ v^{(1)}, \dots, v^{(r)} \end{bmatrix}}_{v^{(1)}, \dots, v^{(r)}} = \sum_{i=1}^r u^{(i)} v^{(i) \top}$$

• ... but the answer is not unique:

 $R \times R^{-1}$

Tensor Decomposition

- Given $T \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, can we efficiently compute...
 - ... r := rank(T)? NP-hard [Håstad '90; Hillar, Lim '09]
 - ... a decomposition of T into r rank-1 terms?
- Can still hope to decompose "most" rank-r tensors (for small r)

$$T = \sum_{i=1}^{r} u^{(i)} \otimes v^{(i)} \otimes w^{(i)} \qquad \text{with } u^{(i)}, v^{(i)}, w^{(i)} \text{ chosen } generically$$

Probability 1

- Tensor decompositions (of order ≥ 3) are often unique!
 - Inherent ambiguity: $u \otimes v \otimes w = 2u \otimes \frac{1}{2}v \otimes w$

Formal Meaning of "Generic"

- A predicate P(x) depending on formal variables $x = (x_1, ..., x_m)$ is "true generically" if there exists a not-identically-zero polynomial g(x) such that: $g(x) \neq 0 \Rightarrow P(x)$
 - Implies that P(x) holds for "almost all" x
- Ex: Generically chosen vectors $u^{(1)},\dots,u^{(n)}\in\mathbb{R}^n$ are linearly independent
- Pf: Lin. indep. $\Leftrightarrow \det M \neq 0$

$$M = n \iiint_{u^{(1)}, \dots, u^{(n)}} n$$

Motivation

- Why care about tensor decomposition?
- 2 answers...
 - 1) Fundamental problem, needs no justification ©
 - 2) Applications in statistics / data science
 - Phylogenetic reconstruction, topic modeling, community detection, learning Gaussian mixtures, independent component analysis, dictionary learning, ...
 - Either used for analyzing tensor-valued data (higher-order PCA), or method of moments
 - Imagine samples drawn from a distribution $y \sim D$ where $y \in \mathbb{R}^n$ First moment: $\mathbb{E}[y] = \vec{0}$ (assume centered)

Second moment: $\mathbb{E}[yy^{\mathsf{T}}]$ $(n \times n \text{ covariance matrix})$

Third moment: $\mathbb{E}[y \otimes y \otimes y]$ $(n \times n \times n \text{ tensor})$

Prior Work

- Goal: given an $n \times n \times n$ tensor $T = \sum_{i=1}^r u^{(i)} \otimes v^{(i)} \otimes w^{(i)}$ with generic components, want an algorithm to provably recover the rank-1 terms in polynomial time (as $n \to \infty$)
 - Decomposition is unique provided $r \leq cn^2$ [Bocci, Chiantini, Ottaviani '13]
 - Classical (~1970) "Jennrich's algorithm": $r \le n$ ("undercomplete")
 - [Chen, Rademacher '20] r = n + O(1) "overcomplete": r > n
 - [Koiran '24] $r \le \frac{4}{3}n$
 - Our result [Kothari, Moitra, W. '24] $r \leq (2 \epsilon)n$
 - Runtime $n^{C(\epsilon)}$
 - More generally, for $n_1 \times n_2 \times n_3$ tensor with $n_3 \ge n_2 \ge n_1$ and $n_1 \to \infty$ and $n_2 = n_3$: $r \le (1 \epsilon)(n_2 + n_3)$
 - For random components, can reach $r \approx n^{3/2}$ [Ma, Shi, Steurer '16]

Some proof ideas...

Rank Detection

- For simplicity, consider an easier task...
- Goal: given an $n \times n \times n$ tensor $T = \sum_{i=1}^r u^{(i)} \otimes v^{(i)} \otimes w^{(i)}$ with generic components, want an algorithm to provably recover the rank-1 terms compute r in polynomial time (as $n \to \infty$)
 - [Persu '18] $r \leq \frac{3}{2}n$
 - Our result [Kothari, Moitra, W. '24] $r \leq (2 \epsilon)n$
- Approach: construct a map ("flattening") $T \mapsto M(T)$
- Hope: rank(T) can be deduced from rank(M(T))

"Trivial" Flattening

- Flatten $n \times n \times n$ tensor to $n^2 \times n$ matrix:
- Rank-1 $T \mapsto \text{Rank-1 } M$
 - $u \otimes v \otimes w \mapsto (u \otimes w)v^{\mathsf{T}}$

n

- Rank- $r T \mapsto \text{Rank-} M$
 - Answer: Rank-r ... provided $r \leq n$ and components are generic
- Solves rank detection for $r \leq n$ (we'll beat this by a factor of 2)

Proof: Rank Detection by Trivial Flattening

- $f: u \otimes v \otimes w \mapsto (u \otimes w)v^{\mathsf{T}}$
- Goal: rank $f(\sum_{i=1}^r u^{(i)} \otimes v^{(i)} \otimes w^{(i)}) = r$ (if $r \leq n$ and generic)
- $f(\sum_{i=1}^{r} u^{(i)} \otimes v^{(i)} \otimes w^{(i)}) = \sum_{i=1}^{r} (u^{(i)} \otimes v^{(i)}) (w^{(i)})^{\mathsf{T}}$
- Sufficient: $\{u^{(i)} \otimes v^{(i)}\}$ and $\{w^{(i)}\}$ each linearly independent
- N(u, v, w) symbolic matrix
- Suff: $\det N \neq 0$ for generic u, v, w
- Suff: det $N(u, v, w) \not\equiv 0$ as a polynomial in u, v, w
- Suff: $\exists u, v, w : \det N(u, v, w) = 0$

$$u^{(1)} \otimes v^{(1)}, \dots, u^{(r)} \otimes v^{(r)}$$

From Rank Detection to Decomposition

- $f: u \otimes v \otimes w \mapsto (u \otimes w)v^{\mathsf{T}}$
- $M = f(\sum_{i=1}^r u^{(i)} \otimes v^{(i)} \otimes w^{(i)})$
- Know: rank M = r (if $r \le n$ and generic)
- Goal: recover $u^{(i)}$, $v^{(i)}$, $w^{(i)}$
- colspan M = ?
- Answer: span $\{u^{(i)} \otimes v^{(i)}\}$
- Search for simple tensors (rank-1 matrices) in this linear subspace
- [Johnston, Lovitz, Vijayaraghavan '22] Can find the r rank-1 $m \times n$ matrices that span a given subspace, provided $r \leq \frac{1}{4}(m-1)(n-1)$
- Forthcoming (w. Jeshu Dastidar & Tait Weicht) improvement $\frac{1}{4}$ to $\frac{1}{2}$

Factor-2 Improvement: A Better Flattening

- Inspired by "Koszul-Young flattening" [Landsberg, Ottaviani '13]
- Parameter $p \ge 1$ (integer; large constant)
- Linear map $T \mapsto M(T)$
- $u \otimes v \otimes w \mapsto A(u) \otimes (vw^{\mathsf{T}})$

$$\begin{pmatrix} 2p+1 \\ p \end{pmatrix} \longrightarrow A(u)$$

E.g.
$$p = 1$$
: $A(u) = \begin{cases} 1 \\ -u_2 & -u_3 & 0 \end{cases}$
 $\begin{cases} 3 \\ 0 & u_1 & u_2 \end{cases}$

{1,2} {1,3} {2,3}

• $\operatorname{rank}(M(T)) = {2p \choose p} \operatorname{rank}(T)$ when $r \le (2 - \epsilon)n$

Looking Forward...

- Is $r \approx 2n$ the limit (for efficient algorithms)?
- Recall: for random tensors, can do $r \approx n^{3/2}$
- For order-4 tensors, no gap between random and generic ($r \approx n^2$)
- Lower bounds, building on [Efremenko, Garg, Oliveira, Wigderson '17]
 - Linear flattenings of the form $u \otimes v \otimes w \mapsto A(u) \otimes (vw^{\top})$ cannot surpass 2n
 - General linear flattenings cannot surpass 6n
 - Degree-d polynomial flattenings cannot surpass $\mathcal{C}_d n$
- ???