Estimation in the Presence of Group Actions

Alex Wein MIT Mathematics

Joint work with:

Amelia Perry 1991 – 2018

Joint work with:

Afonso Bandeira

Ben Blum-Smith

Jonathan Weed

Ankur Moitra

Group actions

- G compact group, e.g.
 - S_n (permutations of $\{1, 2, \ldots, n\}$)
 - \mathbb{Z}/n (cyclic / integers mod n)
 - any finite group
 - ► SO(2) (2D rotations)
 - SO(3) (3D rotations)

Group action $G \bigcirc V$: map $G \times V \rightarrow V$, write $g \cdot x$ Axioms: $1 \cdot x = x$ and $g \cdot (h \cdot x) = (gh) \cdot x$

- $S_n \circ \mathbb{R}^n$ (permute coordinates)
- $\mathbb{Z}/n \circ \mathbb{R}^n$ (permute coordinates cyclically)
- $SO(2) \circlearrowleft \mathbb{R}^2$ (rotate vector)
- $SO(3) \circlearrowleft \mathbb{R}^3$ (rotate vector)
- $SO(3) \circlearrowleft \mathbb{R}^n$ (rotate some object...)

Motivation: cryo-electron microscopy (cryo-EM)

Image credit: [Singer, Shkolnisky '11]

- Biological imaging method: determine structure of molecule
- 2017 Nobel Prize in Chemistry
- Given many noisy 2D images of a 3D molecule, taken from different unknown angles
- Goal is to reconstruct the 3D structure of the molecule
- Group action $SO(3) \circlearrowleft \mathbb{R}^n$

Other examples

Other problems involving random group actions:

Image registration
Multi-reference alignment

Image credit: [Bandeira, PhD thesis '15]

true signal

noisy data

Image credit: Jonathan Weed

Group: SO(2) (2D rotations)

Group: \mathbb{Z}/p (cyclic shifts)

- Applications: computer vision, radar, structural biology, robotics, geology, paleontology, ...
- Methods used in practice often lack provable guarantees...

Orbit recovery problem

Let G be a compact group acting linearly on a finite-dimensional real vector space $V = \mathbb{R}^{p}$.

Linear: homomorphism ρ : G → GL(V) GL(V) = {invertible p × p matrices}

• Action:
$$g \cdot x = \rho(g)x$$
 for $g \in G, x \in V$

• Equivalently: G is a subgroup of matrices GL(V)

Orbit recovery problem

Let G be a compact group acting linearly on a finite-dimensional real vector space $V = \mathbb{R}^{p}$.

Unknown signal $x \in V$ (e.g. the molecule)

For $i = 1, \ldots, n$ observe $y_i = g_i \cdot x + \varepsilon_i$ where...

• $g_i \sim \operatorname{Haar}(G)$ ("uniform distribution" on G)

• $\varepsilon_i \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_p)$ (noise)

Goal: Recover some \tilde{x} in the orbit $\{g \cdot x : g \in G\}$ of x

Special case: multi-reference alignment (MRA)

 $G = \mathbb{Z}/p$ acts on \mathbb{R}^p via cyclic shifts For i = 1, ..., n observe $y_i = g_i \cdot x + \varepsilon_i$ with $\varepsilon_i \sim \mathcal{N}(0, \sigma^2 I)$

noisy data

Image credit: Jonathan Weed

Special case: multi-reference alignment (MRA)

 $G = \mathbb{Z}/p$ acts on \mathbb{R}^p via cyclic shifts For i = 1, ..., n observe $y_i = g_i \cdot x + \varepsilon_i$ with $\varepsilon_i \sim \mathcal{N}(0, \sigma^2 I)$ How to solve this?

Maximum likelihood?

Optimal rate but computationally intractable [1]

Synchronization? (learn the group elements / align the samples) [2]

Can't learn the group elements if noise is too large

Iterative method? (EM, belief propagation)

Not sure how to analyze...

^[1] Bandeira, Rigollet, Weed, Optimal rates of estimation for multi-reference alignment, 2017

^[2] Singer, Angular Synchronization by Eigenvectors and Semidefinite Programming, 2011

Method of invariants

Idea: measure features of the signal x that are shift-invariant [1,2]

Degree-1: $\sum_{i} x_i$ (mean)

Degree-2: $\sum_{i} x_i^2$, $x_1x_2 + x_2x_3 + \cdots + x_px_1$, ... (autocorrelation)

Degree-3: $x_1x_2x_4 + x_2x_3x_5 + \dots$ (triple correlation)

Invariant features are easy to estimate from the samples

^[1] Bandeira, Rigollet, Weed, Optimal rates of estimation for multi-reference alignment, 2017

^[2] Perry, Weed, Bandeira, Rigollet, Singer, The sample complexity of multi-reference alignment, 2017

Sample complexity

Theorem [1]: (Upper bound) With noise level σ , can estimate degree-d invariants using $n = O(\sigma^{2d})$ samples. (Lower bound) If $x^{(1)}, x^{(2)}$ agree on all invariants of degree $\leq d - 1$ then $\Omega(\sigma^{2d})$ samples are required to distinguish them.

Method of invariants is optimal

Question: What degree d^* of invariants do we need to learn before we can recover x (up to orbit)?

• Optimal sample complexity is $n = \Theta(\sigma^{2d^*})$

Answer (for MRA) [1]:

- ► For "generic" x, degree 3 is sufficient, so sample complexity $n = \Theta(\sigma^6)$
- But for a measure-zero set of "bad" signals, need much higher degree (as high as p)

^[1] Bandeira, Rigollet, Weed, Optimal rates of estimation for multi-reference alignment, 2017

Another viewpoint: mixtures of Gaussians

MRA sample: $y = g \cdot x + \varepsilon$ with $g \sim G$, $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$

The distribution of y is a (uniform) mixture of |G| Gaussians centered at $\{g \cdot x : g \in G\}$

► For infinite groups, a mixture of infinitely-many Gaussians

Method of moments: Estimate moments $\mathbb{E}[y], \mathbb{E}[yy^{\top}], \ldots, \mathbb{E}[y^{\otimes d}]$

De-bias to get moments of signal term: $\mathbb{E}[y^{\otimes k}] \rightsquigarrow \mathbb{E}_g[(g \cdot x)^{\otimes k}]$

Fact: Moments are equivalent to invariants

► E_g[(g · x)^{⊗k}] contains the same information as the degree-k invariant polynomials

Our contributions

Joint work with Ben Blum-Smith, Afonso Bandeira, Amelia Perry, Jonathan Weed [1]

- ► We generalize from MRA to any compact group
- Again, the method of invariants/moments is optimal
 - Independently by [2]
- We give an (inefficient) algorithm that achieves optimal sample complexity: solve polynomial system
- To determine what degree of invariants are required, we use invariant theory and algebraic geometry

^[1] Bandeira, Blum-Smith, Perry, Weed, W., Estimation under group actions: recovering orbits from invariants, 2017

^[2] Abbe, Pereira, Singer, Estimation in the group action channel, 2018

Invariant theory

Variables x_1, \ldots, x_p (corresponding to the coordinates of x)

The invariant ring $\mathbb{R}[\mathbf{x}]^G$ is the subring of $\mathbb{R}[\mathbf{x}] := \mathbb{R}[x_1, \dots, x_p]$ consisting of polynomials f such that $f(g \cdot \mathbf{x}) = f(\mathbf{x}) \quad \forall g \in G$.

► Aside: A main result of invariant theory is that ℝ[x]^G is finitely-generated

$$\mathbb{R}[\mathbf{x}]_{\leq d}^{G}$$
 – invariants of degree $\leq d$

(Simple) algorithm:

- Pick d* (to be chosen later)
- Using Θ(σ^{2d*}) samples, estimate invariants up to degree d*: learn value f(x) for all f ∈ ℝ[x]^G_{≤d}
- ▶ Solve for an \hat{x} that is consistent with those values: $f(\hat{x}) = f(x) \ \forall f \in \mathbb{R}[\mathbf{x}]_{\leq d}^{G}$ (polynomial system of equations)

Example: norm recovery

$$G = SO(3)$$
 acting on \mathbb{R}^3 (by rotation)

Samples: noisy, randomly-rotated copies of $x \in \mathbb{R}^3$

To learn orbit, need to learn ||x||

Invariant ring is generated by $||x||^2 = \sum_i x_i^2$ $d^* = 2$

Sample complexity $\Theta(\sigma^{2d^*}) = \Theta(\sigma^4)$

Example: learning a "bag of numbers"

 $G = S_p$ acting on \mathbb{R}^p (by permuting coordinates) Samples: noisy copes of $x \in \mathbb{R}^p$ with entries permuted randomly To learn orbit, need to learn the multiset $\{x_i\}_{i \in [p]}$ Invariants are the symmetric polynomials

Generated by elementary symmetric polynomials:

$$e_1 = \sum_i x_i, \ e_2 = \sum_{i < j} x_i x_j, \ e_3 = \sum_{i < j < k} x_i x_j x_k, \ \dots$$

Can't learn $e_p = \prod_{i=1}^p x_i$ until degree p

• $d^* = p$ so sample complexity $\Theta(\sigma^{2p})$

All invariants determine orbit

Theorem [1]: If G is compact, for every $x \in V$, the full invariant ring $\mathbb{R}[\mathbf{x}]^G$ determines x up to orbit.

In the sense that if x, x' do not lie in the same orbit, there exists f ∈ ℝ[x]^G that separates them: f(x) ≠ f(x')

Corollary: Suppose that for some d, $\mathbb{R}[\mathbf{x}]_{\leq d}^{G}$ generates $\mathbb{R}[\mathbf{x}]^{G}$ (as an \mathbb{R} -algebra). Then $\mathbb{R}[\mathbf{x}]_{\leq d}^{G}$ determines x up to orbit and so sample complexity is $O(\sigma^{2d})$.

Problem: This is for worst-case $x \in V$. For MRA (cyclic shifts) this requires d = p whereas generic x only requires d = 3 [2].

Actually care about whether $\mathbb{R}[\mathbf{x}]_{\leq d}^{\mathcal{G}}$ generically determines $\mathbb{R}[\mathbf{x}]^{\mathcal{G}}$

 "Generic" means that x lies outside a particular measure-zero "bad" set.

^[1] Kač, Invariant theory lecture notes, 1994

^[2] Bandeira, Rigollet, Weed, Optimal rates of estimation for multi-reference alignment, 2017

Do polynomials generically determine other polynomials?

Say we have $A \subseteq B \subseteq \mathbb{R}[\mathbf{x}]$

(Technically need to assume B is finitely generated)

Question: Do the values $\{a(x) : a \in A\}$ generically determine the values $\{b(x) : b \in B\}$?

Formally: does there exist a full-measure set S ⊆ V such that if x ∈ S ("generic") then any x' ∈ V satisfying a(x) = a(x') ∀a ∈ A also satisfies b(x) = b(x') ∀b ∈ B

Definition: Polynomials f_1, \ldots, f_m are algebraically independent if there is no $P \in \mathbb{R}[y_1, \ldots, y_m]$ with $P(f_1, \ldots, f_m) \equiv 0$.

Definition: For $U \subseteq \mathbb{R}[\mathbf{x}]$, the transcendence degree trdeg(U) is the number of algebraically independent polynomials in U.

Do polynomials generically determine other polynomials?

Definition: For $U \subseteq \mathbb{R}[\mathbf{x}]$, the transcendence degree trdeg(U) is the number of algebraically independent polynomials in U.

Answer: Suppose trdeg(A) = trdeg(B). If x is generic then the values $\{a(x) : a \in A\}$ determine a finite number of possibilities for the entire collection $\{b(x) : b \in B\}$.

Formally: for generic x there is a finite list x⁽¹⁾,..., x^(s) such that for any x' satisfying a(x) = a(x') ∀a ∈ A there exists i such that b(x⁽ⁱ⁾) = b(x') ∀b ∈ B

A determines B (up to finite ambiguity) if A has as many algebraically independent polynomials as B

 Intuition: algebraically independent polynomials are "degrees-of-freedom"

Testing algebraic independence

Given polynomials $f_1, \ldots, f_m \in \mathbb{R}[x_1, \ldots, x_p]$, can you efficiently test whether they are algebraically independent?

Answer: yes!

Theorem (Jacobian criterion): Polynomials $f_1, \ldots, f_m \in \mathbb{R}[x_1, \ldots, x_p]$ are algebraically independent if and only if the $m \times p$ Jacobian matrix $J_{ij} = \frac{\partial f_i}{\partial x_j}$ has full row rank. (Still true if you evaluate J at a generic point x.)

► Why: Tests whether map (x₁,...,x_p) → (f₁(x),...,f_m(x)) is locally surjective

Generic list recovery

Our main result is an efficient procedure that takes the problem setup as input (group G and action on V) and outputs the degree d^* of invariants required for generic list recovery.

- ► List recovery: output a finite list x̂⁽¹⁾, x̂⁽²⁾,..., one of which (approximately) lies in the orbit of the true x
- List recovery may be good enough in practice?

Procedure:

- Need to test whether $\mathbb{R}[\mathbf{x}]_{\leq d}^{G}$ determines $\mathbb{R}[\mathbf{x}]^{G}$ (generically)
- ▶ So need to check if $trdeg(\mathbb{R}[\mathbf{x}]_{\leq d}^G) = trdeg(\mathbb{R}[\mathbf{x}]^G)$
- trdeg($\mathbb{R}[\mathbf{x}]^G$) = dim(x) dim(orbit) (d.o.f. needed)
- ► trdeg($\mathbb{R}[\mathbf{x}]_{\leq d}^{\mathsf{G}}$) via Jacobian criterion (d.o.f. have)

Generic list recovery

Our main result is an efficient procedure that takes the problem setup as input (group G and action on V) and outputs the degree d^* of invariants required for generic list recovery.

- List recovery: output a finite list x⁽¹⁾, x⁽²⁾,..., one of which (approximately) lies in the orbit of the true x
- List recovery may be good enough in practice?

Comments:

- For e.g. MRA (cyclic shifts), need to test each p separately on a computer
- Not an efficient algorithm to solve any particular instance
- There is also an algorithm to bound the size of the list (or test for unique recovery), but it is not efficient (Gröbner bases)

Generalized orbit recovery problem

Extensions:

- Post-projection (e.g. cryo-EM):
 - Observe $y_i = \Pi(g_i \cdot x) + \varepsilon_i$
 - $\Pi: V \rightarrow W$ linear
 - $\varepsilon_i \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$
- Heterogeneity (mixture of signals):
 - K signals $x^{(1)}, \ldots, x^{(K)}$
 - Mixing weights $(w_1, \ldots, w_K) \in \Delta_K$
 - Observe $y_i = \Pi(g_i \cdot x^{(k_i)}) + \varepsilon_i$
 - $k_i \sim \{1, \ldots, K\}$ according to w

Same methods apply!

- ► Order-*d* moments now only give access to a particular subspace of ℝ[**x**]^G
- For heterogeneity, work over a bigger group G^K acting on (x⁽¹⁾,...,x^(K)) ∈ V^{⊕K}

So information-theoretic sample complexity is $\Theta(\sigma^6)$

Open: polynomial time algorithm for cryo-EM

Efficient recovery: tensor decomposition

Restrict to finite group

Recall: with $O(\sigma^6)$ samples, can estimate the third moment:

$$T_3(x) = \sum_{g \in G} (g \cdot x)^{\otimes 3}$$

This is an instance of tensor decomposition: Given $\sum_{i=1}^{m} a_i^{\otimes 3}$ for some $a_1, \ldots, a_m \in \mathbb{R}^p$, recover $\{a_i\}$

For MRA: since $m \le p$ ("undercomplete") can apply Jennrich's algorithm to decompose tensor efficiently [1]

Note: unique (not list) recovery

^[1] Perry, Weed, Bandeira, Rigollet, Singer, The sample complexity of multi-reference alignment, 2017

Example: heterogeneous MRA

MRA with multiple signals $x^{(1)}, \ldots, x^{(K)}$ $T_d(x) = \sum_{k=1}^K \sum_{g \in G} (g \cdot x^{(k)})^{\otimes d}$

Jennrich's algorithm works if given 5th moment $\rightsquigarrow n = O(\sigma^{10})$ [1] Information-theoretically, 3rd moment suffices if $K \le p/6$

Can even show unique recovery (upcoming with Joe Kileel)

If signals $x^{(k)}$ are random (i.i.d. Gaussian), conjectured that efficient recovery is possible from 3rd moment iff $K \leq \sqrt{p}$ [2]

Theorem (with A. Moitra): if $K \leq \sqrt{p}/\text{polylog}(p)$ then for random signals, efficient recovery is possible from 3rd moment

Based on random overcomplete 3-tensor decomposition [3]

^[1] Perry, Weed, Bandeira, Rigollet, Singer '17

^[2] Boumal, Bendory, Lederman, Singer '17

^[3] Ma, Shi, Steurer '16

Open problems

- Analytic results for all problem sizes
- Efficiently test if unique recovery is possible
- Determine the computational limits
- Polynomial-time recovery for all groups

Thanks!