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Group actions

G – compact group, e.g.

I Sn (permutations of {1, 2, . . . , n})
I Z/n (cyclic / integers mod n)

I any finite group

I SO(2) (2D rotations)

I SO(3) (3D rotations)

Group action G 	 V : map G × V → V , write g · x
Axioms: 1 · x = x and g · (h · x) = (gh) · x
I Sn 	 Rn (permute coordinates)

I Z/n 	 Rn (permute coordinates cyclically)

I SO(2) 	 R2 (rotate vector)

I SO(3) 	 R3 (rotate vector)

I SO(3) 	 Rn (rotate some object...)
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Motivation: cryo-electron microscopy (cryo-EM)

Image credit: [Singer, Shkolnisky ’11]

I Biological imaging method: determine structure of molecule
I 2017 Nobel Prize in Chemistry
I Given many noisy 2D images of a 3D molecule, taken from

different unknown angles
I Goal is to reconstruct the 3D structure of the molecule
I Group action SO(3) 	 Rn

5 / 28



Other examples

Other problems involving random group actions:

I Image registration

Image credit: [Bandeira, PhD thesis ’15]

Group: SO(2) (2D rotations)

I Multi-reference alignment

Image credit: Jonathan Weed

Group: Z/p (cyclic shifts)

I Applications: computer vision, radar, structural biology,
robotics, geology, paleontology, ...

I Methods used in practice often lack provable guarantees...
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Orbit recovery problem

Let G be a compact group acting linearly on a finite-dimensional
real vector space V = Rp.

I Linear: homomorphism ρ : G → GL(V )

GL(V ) = {invertible p × p matrices}

I Action: g · x = ρ(g)x for g ∈ G , x ∈ V

I Equivalently: G is a subgroup of matrices GL(V )
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Orbit recovery problem

Let G be a compact group acting linearly on a finite-dimensional
real vector space V = Rp.

Unknown signal x ∈ V (e.g. the molecule)

For i = 1, . . . , n observe yi = gi · x + εi where. . .

I gi ∼ Haar(G ) (“uniform distribution” on G )

I εi ∼ N (0, σ2Ip) (noise)

Goal: Recover some x̃ in the orbit {g · x : g ∈ G} of x
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Special case: multi-reference alignment (MRA)

G = Z/p acts on Rp via cyclic shifts

For i = 1, . . . , n observe yi = gi · x + εi with εi ∼ N (0, σ2I)

Image credit: Jonathan Weed
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Special case: multi-reference alignment (MRA)

G = Z/p acts on Rp via cyclic shifts

For i = 1, . . . , n observe yi = gi · x + εi with εi ∼ N (0, σ2I)

How to solve this?

Maximum likelihood?

I Optimal rate but computationally intractable [1]

Synchronization? (learn the group elements / align the samples) [2]

I Can’t learn the group elements if noise is too large

Iterative method? (EM, belief propagation)

I Not sure how to analyze...

[1] Bandeira, Rigollet, Weed, Optimal rates of estimation for multi-reference alignment, 2017

[2] Singer, Angular Synchronization by Eigenvectors and Semidefinite Programming, 2011
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Method of invariants

Idea: measure features of the signal x that are shift-invariant [1,2]

Degree-1:
∑

i xi (mean)

Degree-2:
∑

i x
2
i , x1x2 + x2x3 + · · ·+ xpx1, . . . (autocorrelation)

Degree-3: x1x2x4 + x2x3x5 + . . . (triple correlation)

Invariant features are easy to estimate from the samples

[1] Bandeira, Rigollet, Weed, Optimal rates of estimation for multi-reference alignment, 2017

[2] Perry, Weed, Bandeira, Rigollet, Singer, The sample complexity of multi-reference alignment, 2017
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Sample complexity

Theorem [1]:
(Upper bound) With noise level σ, can estimate degree-d
invariants using n = O(σ2d) samples.
(Lower bound) If x (1), x (2) agree on all invariants of degree
≤ d − 1 then Ω(σ2d) samples are required to distinguish them.

I Method of invariants is optimal

Question: What degree d∗ of invariants do we need to learn before
we can recover x (up to orbit)?

I Optimal sample complexity is n = Θ(σ2d∗
)

Answer (for MRA) [1]:

I For “generic” x , degree 3 is sufficient, so sample complexity
n = Θ(σ6)

I But for a measure-zero set of “bad” signals, need much higher
degree (as high as p)

[1] Bandeira, Rigollet, Weed, Optimal rates of estimation for multi-reference alignment, 2017
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Another viewpoint: mixtures of Gaussians

MRA sample: y = g · x + ε with g ∼ G , ε ∼ N (0, σ2I)

The distribution of y is a (uniform) mixture of |G | Gaussians
centered at {g · x : g ∈ G}
I For infinite groups, a mixture of infinitely-many Gaussians

Method of moments: Estimate moments E[y ],E[yy>], . . ., E[y⊗d ]

De-bias to get moments of signal term: E[y⊗k ] Eg [(g · x)⊗k ]

Fact: Moments are equivalent to invariants

I Eg [(g · x)⊗k ] contains the same information as the degree-k
invariant polynomials
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Our contributions

Joint work with Ben Blum-Smith, Afonso Bandeira, Amelia Perry,
Jonathan Weed [1]

I We generalize from MRA to any compact group

I Again, the method of invariants/moments is optimal

I Independently by [2]

I We give an (inefficient) algorithm that achieves optimal
sample complexity: solve polynomial system

I To determine what degree of invariants are required, we use
invariant theory and algebraic geometry

[1] Bandeira, Blum-Smith, Perry, Weed, W., Estimation under group actions: recovering orbits from
invariants, 2017

[2] Abbe, Pereira, Singer, Estimation in the group action channel, 2018
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Invariant theory

Variables x1, . . . , xp (corresponding to the coordinates of x)

The invariant ring R[x]G is the subring of R[x] := R[x1, . . . , xp]
consisting of polynomials f such that f (g · x) = f (x) ∀g ∈ G .

I Aside: A main result of invariant theory is that R[x]G is
finitely-generated

R[x]G≤d – invariants of degree ≤ d

(Simple) algorithm:

I Pick d∗ (to be chosen later)

I Using Θ(σ2d∗
) samples, estimate invariants up to degree d∗:

learn value f (x) for all f ∈ R[x]G≤d
I Solve for an x̂ that is consistent with those values:

f (x̂) = f (x) ∀f ∈ R[x]G≤d (polynomial system of equations)
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Example: norm recovery

G = SO(3) acting on R3 (by rotation)

Samples: noisy, randomly-rotated copies of x ∈ R3

To learn orbit, need to learn ‖x‖

Invariant ring is generated by ‖x‖2 =
∑

i x
2
i

I d∗ = 2

Sample complexity Θ(σ2d∗
) = Θ(σ4)
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Example: learning a “bag of numbers”

G = Sp acting on Rp (by permuting coordinates)

Samples: noisy copes of x ∈ Rp with entries permuted randomly

To learn orbit, need to learn the multiset {xi}i∈[p]

Invariants are the symmetric polynomials

I Generated by elementary symmetric polynomials:

e1 =
∑
i

xi , e2 =
∑
i<j

xixj , e3 =
∑

i<j<k

xixjxk , . . .

Can’t learn ep =
∏p

i=1 xi until degree p

I d∗ = p so sample complexity Θ(σ2p)
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All invariants determine orbit

Theorem [1]: If G is compact, for every x ∈ V , the full invariant
ring R[x]G determines x up to orbit.

I In the sense that if x , x ′ do not lie in the same orbit, there
exists f ∈ R[x]G that separates them: f (x) 6= f (x ′)

Corollary: Suppose that for some d , R[x]G≤d generates R[x]G (as

an R-algebra). Then R[x]G≤d determines x up to orbit and so

sample complexity is O(σ2d).

Problem: This is for worst-case x ∈ V . For MRA (cyclic shifts)
this requires d = p whereas generic x only requires d = 3 [2].

Actually care about whether R[x]G≤d generically determines R[x]G

I “Generic” means that x lies outside a particular measure-zero
“bad” set.

[1] Kač, Invariant theory lecture notes, 1994

[2] Bandeira, Rigollet, Weed, Optimal rates of estimation for multi-reference alignment, 2017
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Do polynomials generically determine other polynomials?

Say we have A ⊆ B ⊆ R[x]

I (Technically need to assume B is finitely generated)

Question: Do the values {a(x) : a ∈ A} generically determine the
values {b(x) : b ∈ B}?
I Formally: does there exist a full-measure set S ⊆ V such that

if x ∈ S (“generic”) then any x ′ ∈ V satisfying
a(x) = a(x ′) ∀a ∈ A also satisfies b(x) = b(x ′) ∀b ∈ B

Definition: Polynomials f1, . . . , fm are algebraically independent if
there is no P ∈ R[y1, . . . , ym] with P(f1, . . . , fm) ≡ 0.

Definition: For U ⊆ R[x], the transcendence degree trdeg(U) is
the number of algebraically independent polynomials in U.

19 / 28



Do polynomials generically determine other polynomials?

Definition: For U ⊆ R[x], the transcendence degree trdeg(U) is
the number of algebraically independent polynomials in U.

Answer: Suppose trdeg(A) = trdeg(B). If x is generic then the
values {a(x) : a ∈ A} determine a finite number of possibilities
for the entire collection {b(x) : b ∈ B}.
I Formally: for generic x there is a finite list x (1), . . . , x (s) such

that for any x ′ satisfying a(x) = a(x ′) ∀a ∈ A there exists i
such that b(x (i)) = b(x ′) ∀b ∈ B

A determines B (up to finite ambiguity) if A has as many
algebraically independent polynomials as B

I Intuition: algebraically independent polynomials are
“degrees-of-freedom”
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Testing algebraic independence

Given polynomials f1, . . . , fm ∈ R[x1, . . . , xp], can you efficiently
test whether they are algebraically independent?

Answer: yes!

Theorem (Jacobian criterion):
Polynomials f1, . . . , fm ∈ R[x1, . . . , xp] are algebraically
independent if and only if the m × p Jacobian matrix Jij = ∂fi

∂xj
has

full row rank. (Still true if you evaluate J at a generic point x .)

I Why: Tests whether map (x1, . . . , xp) 7→ (f1(x), . . . , fm(x)) is
locally surjective
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Generic list recovery

Our main result is an efficient procedure that takes the problem
setup as input (group G and action on V ) and outputs the degree
d∗ of invariants required for generic list recovery.

I List recovery: output a finite list x̂ (1), x̂ (2), . . ., one of which
(approximately) lies in the orbit of the true x

I List recovery may be good enough in practice?

Procedure:

I Need to test whether R[x]G≤d determines R[x]G (generically)

I So need to check if trdeg(R[x]G≤d) = trdeg(R[x]G )

I trdeg(R[x]G ) = dim(x)− dim(orbit) (d.o.f. needed)

I trdeg(R[x]G≤d) via Jacobian criterion (d.o.f. have)
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Generic list recovery

Our main result is an efficient procedure that takes the problem
setup as input (group G and action on V ) and outputs the degree
d∗ of invariants required for generic list recovery.

I List recovery: output a finite list x̂ (1), x̂ (2), . . ., one of which
(approximately) lies in the orbit of the true x

I List recovery may be good enough in practice?

Comments:

I For e.g. MRA (cyclic shifts), need to test each p separately on
a computer

I Not an efficient algorithm to solve any particular instance

I There is also an algorithm to bound the size of the list (or test
for unique recovery), but it is not efficient (Gröbner bases)
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Generalized orbit recovery problem

Extensions:

I Post-projection (e.g. cryo-EM):
I Observe yi = Π(gi · x) + εi
I Π : V →W linear
I εi ∼ N (0, σ2I)

I Heterogeneity (mixture of signals):
I K signals x (1), . . . , x (K)

I Mixing weights (w1, . . . ,wK ) ∈ ∆K

I Observe yi = Π(gi · x (ki )) + εi
I ki ∼ {1, . . . ,K} according to w

Same methods apply!

I Order-d moments now only give access to a particular
subspace of R[x]G

I For heterogeneity, work over a bigger group GK acting on
(x (1), . . . , x (K)) ∈ V⊕K

24 / 28



Results: cryo-EM

Our methods show that for cryo-EM, generic list recovery is
possible at degree 3

So information-theoretic sample complexity is Θ(σ6)

Open: polynomial time algorithm for cryo-EM
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Efficient recovery: tensor decomposition

Restrict to finite group

Recall: with O(σ6) samples, can estimate the third moment:

T3(x) =
∑
g∈G

(g · x)⊗3

This is an instance of tensor decomposition: Given
∑m

i=1 a
⊗3
i for

some a1, . . . , am ∈ Rp, recover {ai}

For MRA: since m ≤ p (“undercomplete”) can apply Jennrich’s
algorithm to decompose tensor efficiently [1]

I Note: unique (not list) recovery

[1] Perry, Weed, Bandeira, Rigollet, Singer, The sample complexity of multi-reference alignment, 2017
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Example: heterogeneous MRA

MRA with multiple signals x (1), . . . , x (K)

Td(x) =
K∑

k=1

∑
g∈G

(g · x (k))⊗d

Jennrich’s algorithm works if given 5th moment  n = O(σ10) [1]

Information-theoretically, 3rd moment suffices if K ≤ p/6

I Can even show unique recovery (upcoming with Joe Kileel)

If signals x (k) are random (i.i.d. Gaussian), conjectured that
efficient recovery is possible from 3rd moment iff K ≤ √p [2]

Theorem (with A. Moitra): if K ≤ √p/polylog(p) then for
random signals, efficient recovery is possible from 3rd moment
I Based on random overcomplete 3-tensor decomposition [3]

[1] Perry, Weed, Bandeira, Rigollet, Singer ’17

[2] Boumal, Bendory, Lederman, Singer ’17

[3] Ma, Shi, Steurer ’16
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Open problems

I Analytic results for all problem sizes

I Efficiently test if unique recovery is possible

I Determine the computational limits

I Polynomial-time recovery for all groups

Thanks!
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