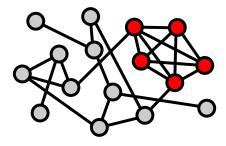
The Power of Low-Degree Polynomials for Solving Statistical Problems

Alex Wein Courant Institute, New York University

Based on joint work with: David Gamarnik (MIT) Aukosh Jagannath (Waterloo) Tselil Schramm (Stanford)

Example: finding a large clique in a random graph



Example: finding a large clique in a random graph

Detection: distinguish between a random graph and a graph with a planted clique

Example: finding a large clique in a random graph

- Detection: distinguish between a random graph and a graph with a planted clique
- **Recovery**: given a graph with a planted clique, find the clique

Example: finding a large clique in a random graph

- Detection: distinguish between a random graph and a graph with a planted clique
- **Recovery**: given a graph with a planted clique, find the clique
- Optimization: given a random graph (with no planted clique), find as large a clique as possible

Example: finding a large clique in a random graph

- Detection: distinguish between a random graph and a graph with a planted clique
- **Recovery**: given a graph with a planted clique, find the clique
- Optimization: given a random graph (with no planted clique), find as large a clique as possible

Common to have information-computation gaps

Example: finding a large clique in a random graph

- Detection: distinguish between a random graph and a graph with a planted clique
- **Recovery**: given a graph with a planted clique, find the clique
- Optimization: given a random graph (with no planted clique), find as large a clique as possible

Common to have information-computation gaps

E.g. planted k-clique (either detection or recovery)

Example: finding a large clique in a random graph

- Detection: distinguish between a random graph and a graph with a planted clique
- **Recovery**: given a graph with a planted clique, find the clique
- Optimization: given a random graph (with no planted clique), find as large a clique as possible

Common to have information-computation gaps

E.g. planted k-clique (either detection or recovery)

$$\frac{\text{Impossible}}{2 \log_2 n} \quad \sqrt{n} \quad \overleftarrow{k}$$

What makes problems easy vs hard?

A framework for understanding computational complexity

A framework for understanding computational complexity

Originated from sum-of-squares literature (for detection)

[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]

[Hopkins, Steurer '17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17]

[Hopkins '18 (PhD thesis)]

A framework for understanding computational complexity

Originated from sum-of-squares literature (for detection)

Study a restricted class of algorithms: low-degree polynomials

A framework for understanding computational complexity

Originated from sum-of-squares literature (for detection)

Study a restricted class of algorithms: low-degree polynomials

• Multivariate polynomial $f : \mathbb{R}^N \to \mathbb{R}^M$

A framework for understanding computational complexity

Originated from sum-of-squares literature (for detection)

Study a restricted class of algorithms: low-degree polynomials

• Multivariate polynomial $f : \mathbb{R}^N \to \mathbb{R}^M$

"Low" means O(log n) where n is dimension

A framework for understanding computational complexity

Originated from sum-of-squares literature (for detection)

Study a restricted class of algorithms: low-degree polynomials

- Multivariate polynomial $f : \mathbb{R}^N \to \mathbb{R}^M$
- "Low" means $O(\log n)$ where n is dimension

Some low-degree algorithms:

A framework for understanding computational complexity

Originated from sum-of-squares literature (for detection)

Study a restricted class of algorithms: low-degree polynomials

- Multivariate polynomial $f : \mathbb{R}^N \to \mathbb{R}^M$
- "Low" means $O(\log n)$ where n is dimension

Some low-degree algorithms:

Spectral methods (power iteration)

A framework for understanding computational complexity

Originated from sum-of-squares literature (for detection)

Study a restricted class of algorithms: low-degree polynomials

- Multivariate polynomial $f : \mathbb{R}^N \to \mathbb{R}^M$
- "Low" means O(log n) where n is dimension

Some low-degree algorithms:

- Spectral methods (power iteration)
- Approximate message passing (AMP) [DMM09]

A framework for understanding computational complexity

Originated from sum-of-squares literature (for detection)

Study a restricted class of algorithms: low-degree polynomials

- Multivariate polynomial $f : \mathbb{R}^N \to \mathbb{R}^M$
- "Low" means $O(\log n)$ where n is dimension

Some low-degree algorithms:

- Spectral methods (power iteration)
- Approximate message passing (AMP) [DMM09]

Low-degree algorithms are as powerful as the best known polynomial-time algorithms for many problems: planted clique, sparse PCA, community detection, tensor PCA, constraint satisfaction, spiked matrix [BHKKMP16,HS17,HKPRSS17,Hop18,BKW19,KWB19,DKWB19]

Overview

This talk: techniques to prove that all low-degree polynomials fail

Overview

This talk: techniques to prove that all low-degree polynomials fail

Constitutes evidence for computational hardness

Overview

This talk: techniques to prove that **all** low-degree polynomials fail Constitutes evidence for computational hardness

Settings:

Detection (prior work)

Recovery

Schramm, W. "Computational Barriers to Estimation from Low-Degree Polynomials", arXiv, 2020.

Optimization

Gamarnik, Jagannath, W. "Low-Degree Hardness of Random Optimization Problems", FOCS 2020.

Goal: hypothesis test with error probability o(1) between:

- ▶ Null model $Y \sim \mathbb{Q}_n$ e.g. G(n, 1/2)
- ▶ Planted model $Y \sim \mathbb{P}_n$ e.g. $G(n, 1/2) \cup \{\text{random } k\text{-clique}\}$

Goal: hypothesis test with error probability o(1) between:

- ▶ Null model $Y \sim \mathbb{Q}_n$ e.g. G(n, 1/2)
- ▶ Planted model $Y \sim \mathbb{P}_n$ e.g. $G(n, 1/2) \cup \{\text{random } k\text{-clique}\}$

Look for a degree-D (multivariate) polynomial $f : \mathbb{R}^{n \times n} \to \mathbb{R}$ that distinguishes \mathbb{P} from \mathbb{Q}

Goal: hypothesis test with error probability o(1) between:

- ▶ Null model $Y \sim \mathbb{Q}_n$ e.g. G(n, 1/2)
- ▶ Planted model $Y \sim \mathbb{P}_n$ e.g. $G(n, 1/2) \cup \{\text{random } k\text{-clique}\}$

Look for a degree-D (multivariate) polynomial $f : \mathbb{R}^{n \times n} \to \mathbb{R}$ that distinguishes \mathbb{P} from \mathbb{Q}

▶ In the sense that f(Y) is "big" when $Y \sim \mathbb{P}$ and "small" when $Y \sim \mathbb{Q}$

Goal: hypothesis test with error probability o(1) between:

- ▶ Null model $Y \sim \mathbb{Q}_n$ e.g. G(n, 1/2)
- ▶ Planted model $Y \sim \mathbb{P}_n$ e.g. $G(n, 1/2) \cup \{\text{random } k\text{-clique}\}$

Look for a degree-D (multivariate) polynomial $f : \mathbb{R}^{n \times n} \to \mathbb{R}$ that distinguishes \mathbb{P} from \mathbb{Q}

In the sense that f(Y) is "big" when Y ~ P and "small" when Y ~ Q

Compute
$$\max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}}$$
 $\frac{\text{mean in } \mathbb{P}}{\text{fluctuations in } \mathbb{Q}}$

Goal: hypothesis test with error probability o(1) between:

- ▶ Null model $Y \sim \mathbb{Q}_n$ e.g. G(n, 1/2)
- ▶ Planted model $Y \sim \mathbb{P}_n$ e.g. $G(n, 1/2) \cup \{\text{random } k\text{-clique}\}$

Look for a degree-D (multivariate) polynomial $f : \mathbb{R}^{n \times n} \to \mathbb{R}$ that distinguishes \mathbb{P} from \mathbb{Q}

In the sense that f(Y) is "big" when Y ~ P and "small" when Y ~ Q

Compute $\max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} \qquad \frac{\text{mean in } \mathbb{P}}{\text{fluctuations in } \mathbb{Q}}$ $= \begin{cases} \omega(1) \quad \text{degree-}D \text{ polynomial succeed} \\ O(1) \quad \text{degree-}D \text{ polynomials fail} \end{cases}$

$$\max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}}$$

$$\max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}}$$

 $\langle f, g \rangle = \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)g(Y)]$ $\|f\| = \sqrt{\langle f, f \rangle}$

$$\max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} = \max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{Q}}[L(Y)f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}}$$

$$\langle f, g \rangle = \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)g(Y)]$$

 $\|f\| = \sqrt{\langle f, f \rangle}$

Likelihood ratio: $L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y)$

$$\max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} = \max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{Q}}[L(Y)f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} = \max_{f \text{ deg } D} \frac{\langle L, f \rangle}{\|f\|}$$

$$\langle f, g \rangle = \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)g(Y)]$$

 $\|f\| = \sqrt{\langle f, f \rangle}$

Likelihood ratio: $L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y)$

$$\max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} = \max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{Q}}[L(Y)f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} = \max_{f \text{ deg } D} \frac{\langle L, f \rangle}{\|f\|}$$

$$egin{aligned} &\langle f,g
angle = \mathbb{E}_{Y\sim\mathbb{Q}}[f(Y)g(Y)] \ &\|f\| = \sqrt{\langle f,f
angle} \end{aligned}$$

Likelihood ratio: $L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y)$

Maximizer: $f = L^{\leq D}$:= projection of L onto degree-D subspace

$$\max_{\substack{f \text{ deg } D}} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} \qquad \langle f, g \rangle = \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)g(Y)]$$
$$= \max_{\substack{f \text{ deg } D}} \frac{\mathbb{E}_{Y \sim \mathbb{Q}}[L(Y)f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} \qquad \|f\| = \sqrt{\langle f, f \rangle}$$
$$= \max_{\substack{f \text{ deg } D}} \frac{\langle L, f \rangle}{\|f\|} \qquad \text{Likelihood ratio:}$$
$$L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y)$$
$$= \|L^{\leq D}\|$$

Maximizer: $f = L^{\leq D}$:= projection of L onto degree-D subspace

ihood ratio:

Norm of low-degree likelihood ratio

$$\max_{\substack{f \text{ deg } D}} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} \qquad \langle f, g \rangle = \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)g(Y)]$$
$$= \max_{\substack{f \text{ deg } D}} \frac{\mathbb{E}_{Y \sim \mathbb{Q}}[L(Y)f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} \qquad \|f\| = \sqrt{\langle f, f \rangle}$$
$$= \max_{\substack{f \text{ deg } D}} \frac{\langle L, f \rangle}{\|f\|} \qquad \text{Likelihood ratio:}$$
$$L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y)$$
$$= \|L^{\leq D}\|$$

Maximizer: $f = L^{\leq D}$:= projection of L onto degree-D subspace

 $\sqrt{\langle f, f \rangle}$

Norm of low-degree likelihood ratio

To project: expand L in orthogonal polynomials w.r.t. \mathbb{Q}

$$\max_{\substack{f \text{ deg } D}} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} \qquad \langle f, g \rangle = \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)g(Y)]$$
$$= \max_{\substack{f \text{ deg } D}} \frac{\mathbb{E}_{Y \sim \mathbb{Q}}[L(Y)f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} \qquad \|f\| = \sqrt{\langle f, f \rangle}$$
$$= \max_{\substack{f \text{ deg } D}} \frac{\langle L, f \rangle}{\|f\|} \qquad \text{Likelihood ratio:}$$
$$L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y)$$
$$= \|L^{\leq D}\|$$

Maximizer: $f = L^{\leq D}$:= projection of L onto degree-D subspace

 $=\frac{d\mathbb{P}}{d\mathbb{O}}(Y)$

Norm of low-degree likelihood ratio

To project: expand L in orthogonal polynomials w.r.t. \mathbb{Q}

Works if Q has independent entries

Recovery [Schramm, W. '20]

Example (planted submatrix): observe $n \times n$ matrix Y = X + Z

- ▶ Signal: $X = \lambda v v^{\top}$ where $\lambda > 0$ and $v_i \sim \text{Bernoulli}(\rho)$
- ▶ Noise: Z i.i.d. $\mathcal{N}(0,1)$

Recovery [Schramm, W. '20]

Example (planted submatrix): observe $n \times n$ matrix Y = X + Z

- ▶ Signal: $X = \lambda v v^{\top}$ where $\lambda > 0$ and $v_i \sim \text{Bernoulli}(\rho)$
- ▶ Noise: *Z* i.i.d. *N*(0, 1)

Goal: given Y, estimate v_1 via polynomial $f : \mathbb{R}^{n \times n} \to \mathbb{R}$

Recovery [Schramm, W. '20]

Example (planted submatrix): observe $n \times n$ matrix Y = X + Z

- ▶ Signal: $X = \lambda v v^{\top}$ where $\lambda > 0$ and $v_i \sim \text{Bernoulli}(\rho)$
- Noise: Z i.i.d. N(0,1)

Goal: given Y, estimate v_1 via polynomial $f : \mathbb{R}^{n \times n} \to \mathbb{R}$ Low-degree minimum mean squared error:

$$\mathsf{MMSE}_{\leq D} = \min_{f \text{ deg } D} \mathbb{E}(f(Y) - v_1)^2$$

Example (planted submatrix): observe $n \times n$ matrix Y = X + Z

▶ Signal:
$$X = \lambda v v^{\top}$$
 where $\lambda > 0$ and $v_i \sim \text{Bernoulli}(\rho)$

► Noise: Z i.i.d. N(0,1)

Goal: given Y, estimate v_1 via polynomial $f : \mathbb{R}^{n \times n} \to \mathbb{R}$ Low-degree minimum mean squared error:

$$\mathsf{MMSE}_{\leq D} = \min_{f \text{ deg } D} \mathbb{E}(f(Y) - v_1)^2$$

Equivalent to low-degree maximum correlation:

$$\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$$

Fact: $MMSE_{\leq D} = \mathbb{E}[v_1^2] - Corr_{\leq D}^2$

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$

Same proof as detection?

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$

Same proof as detection?

Issue: would need orthogonal polynomials for planted distribution

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$

Same proof as detection?

Issue: would need orthogonal polynomials for planted distribution

Trick: bound denominator via Jensen's inequality

$$\mathbb{E}[f(Y)^2] = \mathbb{E}_Z \mathbb{E}_X[f(X+Z)^2] \geq \mathbb{E}_Z \left(\mathbb{E}_X f(X+Z)\right)^2$$

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$

Same proof as detection?

Issue: would need orthogonal polynomials for planted distribution

Trick: bound denominator via Jensen's inequality

$$\mathbb{E}[f(Y)^2] = \mathbb{E}_Z \mathbb{E}_X[f(X+Z)^2] \ge \mathbb{E}_Z \left(\mathbb{E}_X f(X+Z)\right)^2$$

This simplifies expression enough to find closed form

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$

Same proof as detection?

Issue: would need orthogonal polynomials for planted distribution

Trick: bound denominator via Jensen's inequality

$$\mathbb{E}[f(Y)^2] = \mathbb{E}_Z \mathbb{E}_X[f(X+Z)^2] \ge \mathbb{E}_Z \left(\mathbb{E}_X f(X+Z)\right)^2$$

This simplifies expression enough to find closed formYields tight bounds for planted submatrix problem

Example (spherical spin glass): for $Y \in \mathbb{R}^{n \times n \times n}$ i.i.d. $\mathcal{N}(0, 1)$, find unit vector v maximizing $H(v) = \frac{1}{\sqrt{n}} \langle Y, v^{\otimes 3} \rangle$

Example (spherical spin glass): for $Y \in \mathbb{R}^{n \times n \times n}$ i.i.d. $\mathcal{N}(0, 1)$, find unit vector v maximizing $H(v) = \frac{1}{\sqrt{n}} \langle Y, v^{\otimes 3} \rangle$

Optimum value: $\mathsf{OPT} = \max_{\|v\|=1} H(v) = \Theta(1)$

Example (spherical spin glass): for $Y \in \mathbb{R}^{n \times n \times n}$ i.i.d. $\mathcal{N}(0, 1)$, find unit vector v maximizing $H(v) = \frac{1}{\sqrt{n}} \langle Y, v^{\otimes 3} \rangle$

Optimum value: $\mathsf{OPT} = \max_{\|v\|=1} H(v) = \Theta(1)$

Our result: no constant-degree polynomial can achieve value $\mathsf{OPT}-\epsilon$

Example (spherical spin glass): for $Y \in \mathbb{R}^{n \times n \times n}$ i.i.d. $\mathcal{N}(0, 1)$, find unit vector v maximizing $H(v) = \frac{1}{\sqrt{n}} \langle Y, v^{\otimes 3} \rangle$

Optimum value: $OPT = \max_{\|v\|=1} H(v) = \Theta(1)$

Our result: no constant-degree polynomial can achieve value $\mathsf{OPT}-\epsilon$

Theorem (GJW'20)

For some $\epsilon > 0$, no degree-O(1) polynomial $f : \mathbb{R}^{n \times n \times n} \to \mathbb{R}^n$ achieves both of the following with probability 1 - o(1):

- Objective: $H(f(Y)) \ge OPT \epsilon$
- Normalization: $||f(Y)|| \approx 1$

Example (spherical spin glass): for $Y \in \mathbb{R}^{n \times n \times n}$ i.i.d. $\mathcal{N}(0, 1)$, find unit vector v maximizing $H(v) = \frac{1}{\sqrt{n}} \langle Y, v^{\otimes 3} \rangle$

Optimum value: $\mathsf{OPT} = \max_{\|v\|=1} H(v) = \Theta(1)$

Our result: no constant-degree polynomial can achieve value $\mathsf{OPT}-\epsilon$

Best known algorithms are constant-degree [Sub18,Mon18,EMS20]

Example (spherical spin glass): for $Y \in \mathbb{R}^{n \times n \times n}$ i.i.d. $\mathcal{N}(0, 1)$, find unit vector v maximizing $H(v) = \frac{1}{\sqrt{n}} \langle Y, v^{\otimes 3} \rangle$

Optimum value: $\mathsf{OPT} = \max_{\|v\|=1} H(v) = \Theta(1)$

Our result: no constant-degree polynomial can achieve value $\mathsf{OPT}-\epsilon$

- Best known algorithms are constant-degree [Sub18,Mon18,EMS20]
 Proof:
 - Low-degree polynomials are stable
 - Overlap gap property [GS13,CGPR17,GJ19]

Example (spherical spin glass): for $Y \in \mathbb{R}^{n \times n \times n}$ i.i.d. $\mathcal{N}(0, 1)$, find unit vector v maximizing $H(v) = \frac{1}{\sqrt{n}} \langle Y, v^{\otimes 3} \rangle$

Optimum value: $\mathsf{OPT} = \max_{\|v\|=1} H(v) = \Theta(1)$

Our result: no constant-degree polynomial can achieve value $\mathsf{OPT}-\epsilon$

- Best known algorithms are constant-degree [Sub18,Mon18,EMS20]
- Proof:
 - Low-degree polynomials are stable
 - Overlap gap property [GS13,CGPR17,GJ19]
- Open: show that no low-degree polynomial can achieve the precise objective value achieved by [Sub18]

References

Detection (survey article)

Kunisky, W., Bandeira. "Notes on Computational Hardness of Hypothesis Testing: Predictions using the Low-Degree Likelihood Ratio", arXiv:1907.11636

Recovery

Schramm, W. "Computational Barriers to Estimation from Low-Degree Polynomials", arXiv:2008.02269

Optimization

Gamarnik, Jagannath, W. "Low-Degree Hardness of Random Optimization Problems", arXiv:2004.12063