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I Recovery: given a graph with a planted clique, find the clique

I Optimization: given a random graph (with no planted
clique), find as large a clique as possible

Common to have information-computation gaps

E.g. planted k-clique (either detection or recovery)

What makes problems easy vs hard?
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Study a restricted class of algorithms: low-degree polynomials

I Multivariate polynomial f : RN → RM

I “Low” means O(log n) where n is dimension

Some low-degree algorithms:

I Spectral methods (power iteration)

I Approximate message passing (AMP) [DMM09]

Low-degree algorithms are as powerful as the best known
polynomial-time algorithms for many problems: planted clique,

sparse PCA, community detection, tensor PCA, constraint satisfaction,

spiked matrix [BHKKMP16,HS17,HKPRSS17,Hop18,BKW19,KWB19,DKWB19]
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Overview

This talk: techniques to prove that all low-degree polynomials fail

Constitutes evidence for computational hardness

Settings:

I Detection (prior work)

I Recovery
Schramm, W. “Computational Barriers to Estimation from
Low-Degree Polynomials”, arXiv, 2020.

I Optimization
Gamarnik, Jagannath, W. “Low-Degree Hardness of Random
Optimization Problems”, FOCS 2020.
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Detection (e.g. [Hopkins, Steurer ’17])

Goal: hypothesis test with error probability o(1) between:

I Null model Y ∼ Qn e.g. G (n, 1/2)

I Planted model Y ∼ Pn e.g. G (n, 1/2) ∪ {random k-clique}

Look for a degree-D (multivariate) polynomial f : Rn×n → R that
distinguishes P from Q
I In the sense that f (Y ) is “big” when Y ∼ P and “small”

when Y ∼ Q

Compute max
f deg D

EY∼P[f (Y )]√
EY∼Q[f (Y )2]

mean in P
fluctuations in Q

=

{
ω(1) degree-D polynomial succeed
O(1) degree-D polynomials fail
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Detection (e.g. [Hopkins, Steurer ’17])

max
f deg D

EY∼P[f (Y )]√
EY∼Q[f (Y )2]

= max
f deg D

EY∼Q[L(Y )f (Y )]√
EY∼Q[f (Y )2]

= ‖L≤D‖

Maximizer: f = L≤D := projection of L onto degree-D subspace

Norm of low-degree likelihood ratio

To project: expand L in orthogonal polynomials w.r.t. Q
I Works if Q has independent entries
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Recovery [Schramm, W. ’20]

Example (planted submatrix): observe n × n matrix Y = X + Z

I Signal: X = λvv> where λ > 0 and vi ∼ Bernoulli(ρ)

I Noise: Z i.i.d. N (0, 1)

Goal: given Y , estimate v1 via polynomial f : Rn×n → R

Low-degree minimum mean squared error:

MMSE≤D = min
f deg D

E(f (Y )− v1)2

Equivalent to low-degree maximum correlation:

Corr≤D = max
f deg D

E[f (Y ) · v1]√
E[f (Y )2]

Fact: MMSE≤D = E[v21 ]− Corr2≤D
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Recovery [Schramm, W. ’20]

For hardness, want upper bound on Corr≤D = max
f deg D

E[f (Y ) · v1]√
E[f (Y )2]

Same proof as detection?

Issue: would need orthogonal polynomials for planted distribution

Trick: bound denominator via Jensen’s inequality

E[f (Y )2] = EZEX [f (X + Z )2] ≥ EZ (EX f (X + Z ))2

I This simplifies expression enough to find closed form

I Yields tight bounds for planted submatrix problem
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Optimization [Gamarnik, Jagannath, W. ’20]

Example (spherical spin glass): for Y ∈ Rn×n×n i.i.d. N (0, 1), find
unit vector v maximizing H(v) = 1√

n
〈Y , v⊗3〉
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unit vector v maximizing H(v) = 1√

n
〈Y , v⊗3〉

Optimum value: OPT = max
‖v‖=1

H(v) = Θ(1)

Our result: no constant-degree polynomial can achieve value
OPT− ε

Theorem (GJW’20)

For some ε > 0, no degree-O(1) polynomial f : Rn×n×n → Rn

achieves both of the following with probability 1− o(1):

I Objective: H(f (Y )) ≥ OPT− ε
I Normalization: ‖f (Y )‖ ≈ 1
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Example (spherical spin glass): for Y ∈ Rn×n×n i.i.d. N (0, 1), find
unit vector v maximizing H(v) = 1√

n
〈Y , v⊗3〉

Optimum value: OPT = max
‖v‖=1

H(v) = Θ(1)

Our result: no constant-degree polynomial can achieve value
OPT− ε

I Best known algorithms are constant-degree [Sub18,Mon18,EMS20]

I Proof:
I Low-degree polynomials are stable
I Overlap gap property [GS13,CGPR17,GJ19]

I Open: show that no low-degree polynomial can achieve the
precise objective value achieved by [Sub18]

9 / 10



References

I Detection (survey article)
Kunisky, W., Bandeira. “Notes on Computational Hardness of
Hypothesis Testing: Predictions using the Low-Degree
Likelihood Ratio”, arXiv:1907.11636

I Recovery
Schramm, W. “Computational Barriers to Estimation from
Low-Degree Polynomials”, arXiv:2008.02269

I Optimization
Gamarnik, Jagannath, W. “Low-Degree Hardness of Random
Optimization Problems”, arXiv:2004.12063

10 / 10


