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» Detection: distinguish between a random graph and a graph
with a planted clique

> Recovery: given a graph with a planted clique, find the clique

» Optimization: given a random graph (with no planted
clique), find as large a clique as possible

Common to have information-computation gaps
E.g. planted k-clique (either detection or recovery)

Impossible,  Hard , Easy
T L) >
2 log,n vn k

What makes problems easy vs hard?
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The Low-Degree Polynomial Method
A framework for understanding computational complexity

Originated from sum-of-squares literature (for detection)
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]
[Hopkins, Steurer '17]
[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17]

[Hopkins '18 (PhD thesis)]
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Originated from sum-of-squares literature (for detection)

Study a restricted class of algorithms: low-degree polynomials
» Multivariate polynomial f : RV — RM

» “Low” means O(log n) where n is dimension

Some low-degree algorithms:
» Spectral methods (power iteration)

» Approximate message passing (AMP) [DMM09)]

Low-degree algorithms are as powerful as the best known

polynomial-time algorithms for many problems: planted clique,
sparse PCA, community detection, tensor PCA, constraint satisfaction,
spiked matrix [BHKKMP16,HS17,HKPRSS17,Hop18,BKW19,KWB19, DKWB19]
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Overview

This talk: techniques to prove that all low-degree polynomials fail
Constitutes evidence for computational hardness
Settings:

» Detection (prior work)

» Recovery
Schramm, W. “Computational Barriers to Estimation from
Low-Degree Polynomials”, arXiv, 2020.

» Optimization

Gamarnik, Jagannath, W. “Low-Degree Hardness of Random
Optimization Problems”, FOCS 2020.
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Detection (e.g. [Hopkins, Steurer '17])
Goal: hypothesis test with error probability o(1) between:

» Null model Y ~ Q, e.g. G(n,1/2)
> Planted model Y ~ P, e.g. G(n,1/2) U {random k-clique}
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when Y ~ Q

C ; Eyp[f(Y)] mean in P
ompute max
P f deg D Eyw@[f(Y)2] fluctuations in Q

_J w(1) degree-D polynomial succeed
~ | O(1) degree-D polynomials fail
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f deg D EYNQ[f( y)2]
_ max B Likelihood ratio:
fdeg D ||f]] L(Y):%(y)
= [|L=P])

Maximizer: f = L=P := projection of L onto degree-D subspace

Norm of low-degree likelihood ratio

To project: expand L in orthogonal polynomials w.r.t. Q
» Works if Q has independent entries
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Recovery [Schramm, W. '20]

Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X = Awv where A\ > 0 and v; ~ Bernoulli(p)
> Noise: Z i.i.d. N'(0,1)
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Example (planted submatrix): observe n x n matrix Y = X + Z
» Signal: X = Awv where A\ > 0 and v; ~ Bernoulli(p)
> Noise: Z i.i.d. N'(0,1)

Goal: given Y, estimate vy via polynomial f : R™" — R

Low-degree minimum mean squared error:

MMSE<p = min E(f(Y) - »)?
SE<p frcpe'gnD(() v1)

Equivalent to low-degree maximum correlation:

E[f(Y) - wv]

oD = R, RIF (V)]

Fact: MMSE<p = E[v?] — Corrng
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For hardness, want upper bound on Corr<p = max
=7 raee 0 JE[F(V)

Same proof as detection?
Issue: would need orthogonal polynomials for planted distribution

Trick: bound denominator via Jensen's inequality

E[f(Y)?] = EzEx[f(X + Z)?] > Ez (Exf(X + Z))?

» This simplifies expression enough to find closed form

> Yields tight bounds for planted submatrix problem

E[f(Y) - w]
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Example (spherical spin glass): for Y € R™"<" jid. N(0,1), find

unit vector v maximizing H(v) = %(Y, v®3)

Optimum value: OPT = ||rn”ax1 H(v) =©(1)

Our result: no constant-degree polynomial can achieve value
OPT —¢

Theorem (GJW'20)

For some € > 0, no degree-O(1) polynomial f : R"™"*" — R"
achieves both of the following with probability 1 — o(1):

» Objective: H(f(Y)) > OPT —¢
» Normalization: ||[f(Y)| ~ 1
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Optimization [Gamarnik, Jagannath, W. '20]
Example (spherical spin glass): for Y € R™"<" jid. N(0,1), find
unit vector v maximizing H(v) = %(Y, v®3)

Optimum value: OPT = ||rn”ax1 H(v) =©(1)

Our result: no constant-degree polynomial can achieve value
OPT —¢

P Best known algorithms are constant-degree [Sub18,Mon18,EMS20]
» Proof:
» Low-degree polynomials are stable
» Overlap gap property [GS13,CGPR17,GJ19]
» Open: show that no low-degree polynomial can achieve the
precise objective value achieved by [Sub1g]
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