Computational Barriers to Estimation from Low-Degree Polynomials

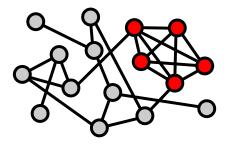
Alex Wein Courant Institute, New York University

Joint work with:

Tselil Schramm Stanford

Part I: Why Low-Degree Polynomials?

Example: planted k-clique in a random graph G(n, 1/2)



Example: planted k-clique in a random graph G(n, 1/2)

Detection/testing: distinguish between a random graph and a graph with a planted clique

Example: planted k-clique in a random graph G(n, 1/2)

- Detection/testing: distinguish between a random graph and a graph with a planted clique
- Recovery/estimation: given a graph with a planted clique, find the clique

Example: planted k-clique in a random graph G(n, 1/2)

- Detection/testing: distinguish between a random graph and a graph with a planted clique
- Recovery/estimation: given a graph with a planted clique, find the clique

Both problems have an information-computation gap

Example: planted k-clique in a random graph G(n, 1/2)

- Detection/testing: distinguish between a random graph and a graph with a planted clique
- Recovery/estimation: given a graph with a planted clique, find the clique

Both problems have an information-computation gap

$$\frac{\text{Impossible}}{2 \log_2 n} \quad \sqrt{n} \quad \overleftarrow{k}$$

Example: planted k-clique in a random graph G(n, 1/2)

- Detection/testing: distinguish between a random graph and a graph with a planted clique
- Recovery/estimation: given a graph with a planted clique, find the clique

Both problems have an information-computation gap

$$\frac{\text{Impossible}}{2 \log_2 n} \frac{\text{Hard}}{\sqrt{n}} \xrightarrow{\text{Easy}} k$$

What makes problems easy vs hard?

A framework for predicting/explaining average-case computational complexity

A framework for predicting/explaining average-case computational complexity

Originated from sum-of-squares literature (for detection)

[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]

[Hopkins, Steurer '17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17]

[Hopkins '18 (PhD thesis)]

A framework for predicting/explaining average-case computational complexity

Originated from sum-of-squares literature (for detection)

[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin '16]

[Hopkins, Steurer '17]

[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17]

[Hopkins '18 (PhD thesis)]

Today: self-contained motivation (without SoS)

Study a restricted class of algorithms: low-degree polynomials

Study a restricted class of algorithms: low-degree polynomials

• Multivariate polynomial $f : \mathbb{R}^N \to \mathbb{R}^M$

Study a restricted class of algorithms: low-degree polynomials

- Multivariate polynomial $f : \mathbb{R}^N \to \mathbb{R}^M$
 - ▶ Input: e.g. graph $Y \in \{0,1\}^{\binom{n}{2}}$

Study a restricted class of algorithms: low-degree polynomials

• Multivariate polynomial $f : \mathbb{R}^N \to \mathbb{R}^M$

• Input: e.g. graph
$$Y \in \{0, 1\}^{\binom{n}{2}}$$

• Output: $b \in \{0, 1\}$ (detection)

Study a restricted class of algorithms: low-degree polynomials

• Multivariate polynomial $f : \mathbb{R}^N \to \mathbb{R}^M$

• Input: e.g. graph
$$Y \in \{0,1\}^{\binom{n}{2}}$$

• Output: $b \in \{0,1\}$ (detection) or $v \in \mathbb{R}^n$ (recovery)

Study a restricted class of algorithms: low-degree polynomials

• Multivariate polynomial $f : \mathbb{R}^N \to \mathbb{R}^M$

- ▶ Input: e.g. graph $Y \in \{0,1\}^{\binom{n}{2}}$
- Output: $b \in \{0,1\}$ (detection) or $v \in \mathbb{R}^n$ (recovery)

"Low" means O(log n) where n is dimension

Study a restricted class of algorithms: low-degree polynomials

• Multivariate polynomial $f : \mathbb{R}^N \to \mathbb{R}^M$

• Input: e.g. graph
$$Y \in \{0,1\}^{\binom{n}{2}}$$

• Output: $b \in \{0,1\}$ (detection) or $v \in \mathbb{R}^n$ (recovery)

• "Low" means $O(\log n)$ where n is dimension

Examples of low-degree algorithms:

Study a restricted class of algorithms: low-degree polynomials

• Multivariate polynomial $f : \mathbb{R}^N \to \mathbb{R}^M$

• Input: e.g. graph
$$Y \in \{0,1\}^{\binom{n}{2}}$$

• Output: $b \in \{0,1\}$ (detection) or $v \in \mathbb{R}^n$ (recovery)

• "Low" means $O(\log n)$ where n is dimension

Study a restricted class of algorithms: low-degree polynomials

• Multivariate polynomial $f : \mathbb{R}^N \to \mathbb{R}^M$

lnput: e.g. graph
$$Y \in \{0,1\}^{\binom{n}{2}}$$

• Output: $b \in \{0,1\}$ (detection) or $v \in \mathbb{R}^n$ (recovery)

"Low" means O(log n) where n is dimension

Examples of low-degree algorithms: input $Y \in \mathbb{R}^{n \times n}$

• Power iteration: $Y^k \mathbf{1}$ or $Tr(Y^k)$ $k = O(\log n)$

Study a restricted class of algorithms: low-degree polynomials

• Multivariate polynomial $f : \mathbb{R}^N \to \mathbb{R}^M$

lnput: e.g. graph
$$Y \in \{0,1\}^{\binom{n}{2}}$$

• Output: $b \in \{0, 1\}$ (detection) or $v \in \mathbb{R}^n$ (recovery)

"Low" means O(log n) where n is dimension

- Power iteration: $Y^k 1$ or $Tr(Y^k)$ $k = O(\log n)$
- ▶ Approximate message passing: $v \leftarrow Yh(v)$ O(1) rounds

Study a restricted class of algorithms: low-degree polynomials

• Multivariate polynomial $f : \mathbb{R}^N \to \mathbb{R}^M$

lnput: e.g. graph
$$Y \in \{0,1\}^{\binom{n}{2}}$$

• Output: $b \in \{0, 1\}$ (detection) or $v \in \mathbb{R}^n$ (recovery)

"Low" means O(log n) where n is dimension

- Power iteration: $Y^k 1$ or $Tr(Y^k)$ $k = O(\log n)$
- Approximate message passing: $v \leftarrow Yh(v)$ O(1) rounds
- Local algorithms on sparse graphs radius O(1)

Study a restricted class of algorithms: low-degree polynomials

• Multivariate polynomial $f : \mathbb{R}^N \to \mathbb{R}^M$

Input: e.g. graph
$$Y \in \{0,1\}^{\binom{n}{2}}$$

• Output: $b \in \{0,1\}$ (detection) or $v \in \mathbb{R}^n$ (recovery)

"Low" means O(log n) where n is dimension

- Power iteration: $Y^k 1$ or $Tr(Y^k)$ $k = O(\log n)$
- Approximate message passing: $v \leftarrow Yh(v)$ O(1) rounds
- Local algorithms on sparse graphs radius O(1)
- Or any of the above applied to $\tilde{Y} = g(Y)$ deg g = O(1)

Low-degree polynomials seem to be optimal for many problems!

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...

planted clique, sparse PCA, community detection, tensor PCA, spiked Wigner/Wishart, planted submatrix, planted dense subgraph, ...

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...

planted clique, sparse PCA, community detection, tensor PCA, spiked Wigner/Wishart, planted submatrix, planted dense subgraph,it is the case that

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...

planted clique, sparse PCA, community detection, tensor PCA, spiked Wigner/Wishart, planted submatrix, planted dense subgraph, ...

... it is the case that

the best known poly-time algorithms are captured by O(log n)-degree polynomials (spectral/AMP)

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...

planted clique, sparse PCA, community detection, tensor PCA, spiked Wigner/Wishart, planted submatrix, planted dense subgraph, ...

... it is the case that

- the best known poly-time algorithms are captured by O(log n)-degree polynomials (spectral/AMP)
- Iow-degree polynomials fail in the "hard" regime

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...

planted clique, sparse PCA, community detection, tensor PCA, spiked Wigner/Wishart, planted submatrix, planted dense subgraph, ...

... it is the case that

- the best known poly-time algorithms are captured by O(log n)-degree polynomials (spectral/AMP)
- Iow-degree polynomials fail in the "hard" regime

"Low-degree conjecture" (informal): for "natural" problems, if low-degree polynomials fail then all poly-time algorithms fail [Hopkins '18]

Low-degree polynomials seem to be optimal for many problems!

For all of these problems...

planted clique, sparse PCA, community detection, tensor PCA, spiked Wigner/Wishart, planted submatrix, planted dense subgraph, ...

... it is the case that

- the best known poly-time algorithms are captured by O(log n)-degree polynomials (spectral/AMP)
- Iow-degree polynomials fail in the "hard" regime

"Low-degree conjecture" (informal): for "natural" problems, if low-degree polynomials fail then all poly-time algorithms fail [Hopkins '18]

Caveat: Gaussian elimination for planted XOR-SAT

This talk: techniques to prove that all low-degree polynomials fail

This talk: techniques to prove that all low-degree polynomials fail

Gives evidence for computational hardness

This talk: techniques to prove that all low-degree polynomials fail

Gives evidence for computational hardness

Settings:

Detection (prior work)

[Hopkins, Steurer '17] [Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17] [Hopkins '18] (PhD thesis) [Kunisky, W., Bandeira '19] (survey)

This talk: techniques to prove that all low-degree polynomials fail

Gives evidence for computational hardness

Settings:

Detection (prior work)

[Hopkins, Steurer '17] [Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17] [Hopkins '18] (PhD thesis) [Kunisky, W., Bandeira '19] (survey)

Recovery (this work)

[Schramm, W. '20]

This talk: techniques to prove that all low-degree polynomials fail

Gives evidence for computational hardness

Settings:

Detection (prior work)

[Hopkins, Steurer '17] [Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17] [Hopkins '18] (PhD thesis) [Kunisky, W., Bandeira '19] (survey)

Recovery (this work)

[Schramm, W. '20]

Optimization

[Gamarnik, Jagannath, W. '20]

Sum-of-squares lower bounds [BHKKMP16,...]

Sum-of-squares lower bounds [BHKKMP16,...]

Actually for certification

- ► Sum-of-squares lower bounds [BHKKMP16,...]
 - Actually for certification
 - Connected to low-degree [HKPRSS17]

- ► Sum-of-squares lower bounds [BHKKMP16,...]
 - Actually for certification
 - Connected to low-degree [HKPRSS17]
- Statistical query lower bounds [FGRVX12,...]

- ► Sum-of-squares lower bounds [BHKKMP16,...]
 - Actually for certification
 - Connected to low-degree [HKPRSS17]
- Statistical query lower bounds [FGRVX12,...]
 - Need i.i.d. samples

- ► Sum-of-squares lower bounds [BHKKMP16,...]
 - Actually for certification
 - Connected to low-degree [HKPRSS17]
- Statistical query lower bounds [FGRVX12,...]
 - Need i.i.d. samples
 - Equivalent to low-degree [BBHLS20]

- ► Sum-of-squares lower bounds [BHKKMP16,...]
 - Actually for certification
 - Connected to low-degree [HKPRSS17]
- Statistical query lower bounds [FGRVX12,...]
 - Need i.i.d. samples
 - Equivalent to low-degree [BBHLS20]
- Approximate message passing (AMP) [DMM09, LKZ15,...]

- Sum-of-squares lower bounds [BHKKMP16,...]
 - Actually for certification
 - Connected to low-degree [HKPRSS17]
- Statistical query lower bounds [FGRVX12,...]
 - Need i.i.d. samples
 - Equivalent to low-degree [BBHLS20]
- Approximate message passing (AMP) [DMM09, LKZ15,...]
 - AMP algorithms are low-degree

- Sum-of-squares lower bounds [BHKKMP16,...]
 - Actually for certification
 - Connected to low-degree [HKPRSS17]
- Statistical query lower bounds [FGRVX12,...]
 - Need i.i.d. samples
 - Equivalent to low-degree [BBHLS20]
- Approximate message passing (AMP) [DMM09, LKZ15,...]
 - AMP algorithms are low-degree
 - AMP can be sub-optimal (e.g. tensor PCA) [MR14]

- ► Sum-of-squares lower bounds [BHKKMP16,...]
 - Actually for certification
 - Connected to low-degree [HKPRSS17]
- Statistical query lower bounds [FGRVX12,...]
 - Need i.i.d. samples
 - Equivalent to low-degree [BBHLS20]
- Approximate message passing (AMP) [DMM09, LKZ15,...]
 - AMP algorithms are low-degree
 - AMP can be sub-optimal (e.g. tensor PCA) [MR14]
- Overlap gap property / MCMC lower bounds [GS13, GZ17,...]

- Sum-of-squares lower bounds [BHKKMP16,...]
 - Actually for certification
 - Connected to low-degree [HKPRSS17]
- Statistical query lower bounds [FGRVX12,...]
 - Need i.i.d. samples
 - Equivalent to low-degree [BBHLS20]
- Approximate message passing (AMP) [DMM09, LKZ15,...]
 - AMP algorithms are low-degree
 - AMP can be sub-optimal (e.g. tensor PCA) [MR14]
- Overlap gap property / MCMC lower bounds [GS13, GZ17,...]
 - MCMC algorithms are not low-degree (?)

- Sum-of-squares lower bounds [BHKKMP16,...]
 - Actually for certification
 - Connected to low-degree [HKPRSS17]
- Statistical query lower bounds [FGRVX12,...]
 - Need i.i.d. samples
 - Equivalent to low-degree [BBHLS20]
- Approximate message passing (AMP) [DMM09, LKZ15,...]
 - AMP algorithms are low-degree
 - AMP can be sub-optimal (e.g. tensor PCA) [MR14]
- Overlap gap property / MCMC lower bounds [GS13, GZ17,...]
 - MCMC algorithms are not low-degree (?)
 - MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

- Sum-of-squares lower bounds [BHKKMP16,...]
 - Actually for certification
 - Connected to low-degree [HKPRSS17]
- Statistical query lower bounds [FGRVX12,...]
 - Need i.i.d. samples
 - Equivalent to low-degree [BBHLS20]
- Approximate message passing (AMP) [DMM09, LKZ15,...]
 - AMP algorithms are low-degree
 - AMP can be sub-optimal (e.g. tensor PCA) [MR14]
- Overlap gap property / MCMC lower bounds [GS13, GZ17,...]
 - MCMC algorithms are not low-degree (?)
 - MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]

Average-case reductions [BR13,...]

- Sum-of-squares lower bounds [BHKKMP16,...]
 - Actually for certification
 - Connected to low-degree [HKPRSS17]
- Statistical query lower bounds [FGRVX12,...]
 - Need i.i.d. samples
 - Equivalent to low-degree [BBHLS20]
- Approximate message passing (AMP) [DMM09, LKZ15,...]
 - AMP algorithms are low-degree
 - AMP can be sub-optimal (e.g. tensor PCA) [MR14]
- Overlap gap property / MCMC lower bounds [GS13, GZ17,...]
 - MCMC algorithms are not low-degree (?)
 - MCMC can be sub-optimal (e.g. tensor PCA) [BGJ18]
- Average-case reductions [BR13,...]
 - Need to argue that starting problem is hard [BB20]

Part II: Detection

Goal: hypothesis test with error probability o(1) between:

- ▶ Null model $Y \sim \mathbb{Q}_n$ e.g. G(n, 1/2)
- ▶ Planted model $Y \sim \mathbb{P}_n$ e.g. $G(n, 1/2) \cup \{\text{random } k\text{-clique}\}$

Goal: hypothesis test with error probability o(1) between:

- ▶ Null model $Y \sim \mathbb{Q}_n$ e.g. G(n, 1/2)
- ▶ Planted model $Y \sim \mathbb{P}_n$ e.g. $G(n, 1/2) \cup \{\text{random } k\text{-clique}\}$

Look for a degree-D polynomial $f:\mathbb{R}^{n\times n}\to\mathbb{R}$ that distinguishes \mathbb{P} from \mathbb{Q}

Goal: hypothesis test with error probability o(1) between:

- ▶ Null model $Y \sim \mathbb{Q}_n$ e.g. G(n, 1/2)
- ▶ Planted model $Y \sim \mathbb{P}_n$ e.g. $G(n, 1/2) \cup \{\text{random } k\text{-clique}\}$

Look for a degree-D polynomial $f:\mathbb{R}^{n\times n}\to\mathbb{R}$ that distinguishes \mathbb{P} from \mathbb{Q}

▶ f(Y) is "big" when $Y \sim \mathbb{P}$ and "small" when $Y \sim \mathbb{Q}$

Goal: hypothesis test with error probability o(1) between:

- ▶ Null model $Y \sim \mathbb{Q}_n$ e.g. G(n, 1/2)
- ▶ Planted model $Y \sim \mathbb{P}_n$ e.g. $G(n, 1/2) \cup \{\text{random } k\text{-clique}\}$

Look for a degree-D polynomial $f:\mathbb{R}^{n\times n}\to\mathbb{R}$ that distinguishes \mathbb{P} from \mathbb{Q}

▶ f(Y) is "big" when $Y \sim \mathbb{P}$ and "small" when $Y \sim \mathbb{Q}$

Compute "advantage":

$$\mathsf{Adv}_{\leq D} := \max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} \qquad \frac{\text{mean in } \mathbb{P}}{\text{fluctuations in } \mathbb{Q}}$$

Goal: hypothesis test with error probability o(1) between:

- ▶ Null model $Y \sim \mathbb{Q}_n$ e.g. G(n, 1/2)
- ▶ Planted model $Y \sim \mathbb{P}_n$ e.g. $G(n, 1/2) \cup \{\text{random } k\text{-clique}\}$

Look for a degree-D polynomial $f:\mathbb{R}^{n\times n}\to\mathbb{R}$ that distinguishes \mathbb{P} from \mathbb{Q}

▶ f(Y) is "big" when $Y \sim \mathbb{P}$ and "small" when $Y \sim \mathbb{Q}$

Compute "advantage":

$$\begin{aligned} \mathsf{Adv}_{\leq D} &:= \max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} & \frac{\text{mean in } \mathbb{P}}{\text{fluctuations in } \mathbb{Q}} \\ &= \begin{cases} \omega(1) & \text{``degree-} D \text{ polynomial succeed''} \\ O(1) & \text{``degree-} D \text{ polynomials fail''} \end{cases} \end{aligned}$$

Prototypical result (planted clique):

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G(n, 1/2),

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G(n, 1/2),

► if $k = \Omega(\sqrt{n})$ then $\operatorname{Adv}_{\leq D} = \omega(1)$ for some $D = O(\log n)$ low-degree polynomials succeed when $k \gtrsim \sqrt{n}$

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G(n, 1/2),

- ► if $k = \Omega(\sqrt{n})$ then $\operatorname{Adv}_{\leq D} = \omega(1)$ for some $D = O(\log n)$ low-degree polynomials succeed when $k \gtrsim \sqrt{n}$
- if $k = O(n^{1/2-\epsilon})$ then $Adv_{\leq D} = O(1)$ for any $D = O(\log n)$ low-degree polynomials fail when $k \ll \sqrt{n}$

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G(n, 1/2),

- ► if $k = \Omega(\sqrt{n})$ then $\operatorname{Adv}_{\leq D} = \omega(1)$ for some $D = O(\log n)$ low-degree polynomials succeed when $k \gtrsim \sqrt{n}$
- ▶ if $k = O(n^{1/2-\epsilon})$ then $Adv_{\leq D} = O(1)$ for any $D = O(\log n)$ low-degree polynomials fail when $k \ll \sqrt{n}$

Sometimes can rule out polynomials of degree $D = n^{\delta}$

Prototypical result (planted clique):

Theorem [BHKKMP16,Hop18]: For a planted k-clique in G(n, 1/2),

- ► if $k = \Omega(\sqrt{n})$ then $\operatorname{Adv}_{\leq D} = \omega(1)$ for some $D = O(\log n)$ low-degree polynomials succeed when $k \gtrsim \sqrt{n}$
- ▶ if $k = O(n^{1/2-\epsilon})$ then $Adv_{\leq D} = O(1)$ for any $D = O(\log n)$ low-degree polynomials fail when $k \ll \sqrt{n}$

Sometimes can rule out polynomials of degree $D = n^{\delta}$

Extended low-degree conjecture [Hopkins '18]:

degree-D polynomials $\Leftrightarrow n^{\tilde{\Theta}(D)}$ -time algorithms $D = n^{\delta} \quad \Leftrightarrow \quad \exp(n^{\delta \pm o(1)}) \quad \text{time}$

$$\mathsf{Goal: \ compute \ } \mathsf{Adv}_{\leq D} := \max_{f \ \mathsf{deg} \ D} \frac{\mathbb{E}_{\mathsf{Y} \sim \mathbb{P}}[f(\mathsf{Y})]}{\sqrt{\mathbb{E}_{\mathsf{Y} \sim \mathbb{Q}}[f(\mathsf{Y})^2]}}$$

$$\begin{split} \text{Goal: compute } \mathsf{Adv}_{\leq D} &:= \max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} \\ \text{Suppose } \mathbb{Q} \text{ is i.i.d. } \mathrm{Unif}(\pm 1) \end{split}$$

Goal: compute $\operatorname{Adv}_{\leq D} := \max_{\substack{f \text{ deg } D}} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}}$ Suppose \mathbb{Q} is i.i.d. $\operatorname{Unif}(\pm 1)$ Write $f(Y) = \sum_{|S| \leq D} \hat{f}_S Y^S$ $Y^S := \prod_{i \in S} Y_i$ $S \subseteq [m]$

Goal: compute $\operatorname{Adv}_{\leq D} := \max_{\substack{f \text{ deg } D}} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}}$ Suppose \mathbb{Q} is i.i.d. $\operatorname{Unif}(\pm 1)$ Write $f(Y) = \sum_{|S| \leq D} \hat{f}_S Y^S$ $Y^S := \prod_{i \in S} Y_i$ $S \subseteq [m]$ $\{Y^S\}_{S \subseteq [m]}$ are orthonormal: $\mathbb{E}_{Y \sim \mathbb{Q}}[Y^S Y^T] = \mathbb{1}_{S = T}$

Goal: compute $\operatorname{Adv}_{\leq D} := \max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}}$ Suppose \mathbb{Q} is i.i.d. Unif(± 1) Write $f(Y) = \sum_{|S| \leq D} \hat{f}_S Y^S$ $Y^S := \prod_{i \in S} Y_i$ $S \subseteq [m]$ $\{Y^S\}_{S \subseteq [m]}$ are orthonormal: $\mathbb{E}_{Y \sim \mathbb{Q}}[Y^S Y^T] = \mathbb{1}_{S = T}$ <u>Numerator</u>: $\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]$

Goal: compute $\operatorname{Adv}_{\leq D} := \max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}}$ Suppose \mathbb{Q} is i.i.d. Unif(± 1) Write $f(Y) = \sum_{|S| \leq D} \hat{f}_S Y^S$ $Y^S := \prod_{i \in S} Y_i$ $S \subseteq [m]$ $\{Y^S\}_{S \subseteq [m]}$ are orthonormal: $\mathbb{E}_{Y \sim \mathbb{Q}}[Y^S Y^T] = \mathbb{1}_{S = T}$ <u>Numerator</u>: $\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)] = \sum_{|S| \leq D} \hat{f}_S \mathbb{E}_{Y \sim \mathbb{P}}[Y^S]$

Goal: compute $\operatorname{Adv}_{\leq D} := \max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}}$ Suppose \mathbb{Q} is i.i.d. Unif(± 1) Write $f(Y) = \sum_{|S| \leq D} \hat{f}_S Y^S$ $Y^S := \prod_{i \in S} Y_i$ $S \subseteq [m]$ $\{Y^S\}_{S \subseteq [m]}$ are orthonormal: $\mathbb{E}_{Y \sim \mathbb{Q}}[Y^S Y^T] = \mathbb{1}_{S = T}$ <u>Numerator</u>: $\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)] = \sum_{|S| \leq D} \hat{f}_S \mathbb{E}_{Y \sim \mathbb{P}}[Y^S] =: \langle \hat{f}, c \rangle$

Goal: compute $\operatorname{Adv}_{\leq D} := \max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)^2]}}$ Suppose \mathbb{Q} is i.i.d. Unif(± 1) Write $f(Y) = \sum_{|S| < D} \hat{f}_S Y^S$ $Y^S := \prod_{i \in S} Y_i$ $S \subseteq [m]$ $\{Y^{S}\}_{S \subset [m]}$ are orthonormal: $\mathbb{E}_{Y \sim \mathbb{O}}[Y^{S}Y^{T}] = \mathbb{1}_{S = T}$ $\underline{\text{Numerator}}: \ \underset{Y \sim \mathbb{P}}{\mathbb{E}}[f(Y)] = \sum_{|S| < D} \hat{f}_{S} \ \underset{Y \sim \mathbb{P}}{\mathbb{E}}[Y^{S}] =: \langle \hat{f}, c \rangle$ <u>Denominator</u>: $\mathbb{E}_{Y_2} [f(Y)^2]$

 $\mathsf{Goal: compute } \mathsf{Adv}_{\leq D} := \max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)^{2}]}}$ Suppose \mathbb{Q} is i.i.d. Unif(± 1) Write $f(Y) = \sum_{|S| < D} \hat{f}_S Y^S$ $Y^S := \prod_{i \in S} Y_i$ $S \subseteq [m]$ $\{Y^{S}\}_{S \subset [m]}$ are orthonormal: $\mathbb{E}_{Y \sim \mathbb{O}}[Y^{S}Y^{T}] = \mathbb{1}_{S = T}$ $\underline{\text{Numerator}}: \underset{Y \sim \mathbb{P}}{\mathbb{E}}[f(Y)] = \sum_{|S| < D} \hat{f}_{S} \underset{Y \sim \mathbb{P}}{\mathbb{E}}[Y^{S}] =: \langle \hat{f}, c \rangle$ <u>Denominator</u>: $\underset{Y \sim \mathbb{Q}}{\mathbb{E}}[f(Y)^2] = \sum_{Y \sim \mathbb{Q}} \hat{f}_S^2$ (orthonormality)

Goal: compute $\operatorname{Adv}_{\leq D} := \max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)^2]}}$ Suppose \mathbb{Q} is i.i.d. Unif(± 1) Write $f(Y) = \sum_{|S| < D} \hat{f}_S Y^S$ $Y^S := \prod_{i \in S} Y_i$ $S \subseteq [m]$ $\{Y^{S}\}_{S \subset [m]}$ are orthonormal: $\mathbb{E}_{Y \sim \mathbb{O}}[Y^{S}Y^{T}] = \mathbb{1}_{S = T}$ $\underline{\text{Numerator}}: \underset{Y \sim \mathbb{P}}{\mathbb{E}}[f(Y)] = \sum_{|S| < D} \hat{f}_{S} \underset{Y \sim \mathbb{P}}{\mathbb{E}}[Y^{S}] =: \langle \hat{f}, c \rangle$ <u>Denominator</u>: $\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2] = \sum_{f \in S} \hat{f}_S^2 = \|\hat{f}\|^2$ (orthonormality) $|\varsigma| < D$

Goal: compute $\operatorname{Adv}_{\leq D} := \max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)^2]}}$ Suppose \mathbb{Q} is i.i.d. Unif(± 1) Write $f(Y) = \sum_{|S| < D} \hat{f}_S Y^S$ $Y^S := \prod_{i \in S} Y_i$ $S \subseteq [m]$ $\{Y^{S}\}_{S \subset [m]}$ are orthonormal: $\mathbb{E}_{Y \sim \mathbb{O}}[Y^{S}Y^{T}] = \mathbb{1}_{S = T}$ $\underline{\text{Numerator}}: \underset{Y \sim \mathbb{P}}{\mathbb{E}}[f(Y)] = \sum_{|S| < D} \hat{f}_{S} \underset{Y \sim \mathbb{P}}{\mathbb{E}}[Y^{S}] =: \langle \hat{f}, c \rangle$ <u>Denominator</u>: $\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2] = \sum_{f \in S} \hat{f}_S^2 = \|\hat{f}\|^2$ (orthonormality) |S| < D

$$\mathsf{Adv}_{\leq D} = \max_{\hat{f}} \frac{\langle \hat{f}, c \rangle}{\|\hat{f}\|}$$

Goal: compute $\operatorname{Adv}_{\leq D} := \max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)^{2}]}}$ Suppose \mathbb{Q} is i.i.d. Unif(± 1) Write $f(Y) = \sum_{|S| < D} \hat{f}_S Y^S$ $Y^S := \prod_{i \in S} Y_i$ $S \subseteq [m]$ $\{Y^{S}\}_{S \subset [m]}$ are orthonormal: $\mathbb{E}_{Y \sim \mathbb{O}}[Y^{S}Y^{T}] = \mathbb{1}_{S = T}$ $\underline{\text{Numerator}}: \underset{Y \sim \mathbb{P}}{\mathbb{E}}[f(Y)] = \sum_{|S| < D} \hat{f}_{S} \underset{Y \sim \mathbb{P}}{\mathbb{E}}[Y^{S}] =: \langle \hat{f}, c \rangle$ <u>Denominator</u>: $\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2] = \sum_{Y \sim \mathbb{Q}} \hat{f}_S^2 = \|\hat{f}\|^2$ (orthonormality) |S| < D

 $\mathsf{Adv}_{\leq D} = \max_{\hat{f}} \frac{\langle \hat{f}, c \rangle}{\|\hat{f}\|}$

Optimizer: $\hat{f}^* = c$

Goal: compute $\operatorname{Adv}_{\leq D} := \max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)^2]}}$ Suppose \mathbb{Q} is i.i.d. Unif(± 1) Write $f(Y) = \sum_{|S| < D} \hat{f}_S Y^S$ $Y^S := \prod_{i \in S} Y_i$ $S \subseteq [m]$ $\{Y^{S}\}_{S \subset [m]}$ are orthonormal: $\mathbb{E}_{Y \sim \mathbb{O}}[Y^{S}Y^{T}] = \mathbb{1}_{S = T}$ $\underline{\text{Numerator}}: \underset{Y \sim \mathbb{P}}{\mathbb{E}}[f(Y)] = \sum_{|S| < D} \hat{f}_{S} \underset{Y \sim \mathbb{P}}{\mathbb{E}}[Y^{S}] =: \langle \hat{f}, c \rangle$ <u>Denominator</u>: $\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2] = \sum_{f \in \mathbb{Q}} \hat{f}_S^2 = \|\hat{f}\|^2$ (orthonormality) $|\varsigma| < D$

$$\mathsf{Adv}_{\leq D} = \max_{\hat{f}} \frac{\langle \hat{f}, c \rangle}{\|\hat{f}\|} = \frac{\langle c, c \rangle}{\|c\|}$$

Optimizer: $\hat{f}^* = c$

Goal: compute $\operatorname{Adv}_{\leq D} := \max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)^2]}}$ Suppose \mathbb{Q} is i.i.d. Unif(± 1) Write $f(Y) = \sum_{|S| \le D} \hat{f}_S Y^S$ $Y^S := \prod_{i \in S} Y_i$ $S \subseteq [m]$ $\{Y^{S}\}_{S \subset [m]}$ are orthonormal: $\mathbb{E}_{Y \sim \mathbb{O}}[Y^{S}Y^{T}] = \mathbb{1}_{S = T}$ $\underline{\text{Numerator}}: \underset{Y \sim \mathbb{P}}{\mathbb{E}}[f(Y)] = \sum_{|S| < D} \hat{f}_{S} \underset{Y \sim \mathbb{P}}{\mathbb{E}}[Y^{S}] =: \langle \hat{f}, c \rangle$ <u>Denominator</u>: $\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2] = \sum_{f \in S} \hat{f}_S^2 = \|\hat{f}\|^2$ (orthonormality) |S| < D

$$\mathsf{Adv}_{\leq D} = \max_{\hat{f}} \frac{\langle f, c \rangle}{\|\hat{f}\|} = \frac{\langle c, c \rangle}{\|c\|} = \|c\|$$

Optimizer: $\hat{f}^* = c$

Goal: compute $\operatorname{Adv}_{\leq D} := \max_{f \text{ deg } D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)^{2}]}}$ Suppose \mathbb{Q} is i.i.d. Unif(± 1) Write $f(Y) = \sum_{|S| \le D} \hat{f}_S Y^S$ $Y^S := \prod_{i \in S} Y_i$ $S \subseteq [m]$ $\{Y^{S}\}_{S \subset [m]}$ are orthonormal: $\mathbb{E}_{Y \sim \mathbb{O}}[Y^{S}Y^{T}] = \mathbb{1}_{S = T}$ $\underline{\text{Numerator}}: \underset{Y \sim \mathbb{P}}{\mathbb{E}}[f(Y)] = \sum_{|S| < D} \hat{f}_{S} \underset{Y \sim \mathbb{P}}{\mathbb{E}}[Y^{S}] =: \langle \hat{f}, c \rangle$ <u>Denominator</u>: $\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2] = \sum_{f \in \mathbb{Q}} \hat{f}_S^2 = \|\hat{f}\|^2$ (orthonormality) |S| < D $\mathsf{Adv}_{\leq D} = \max_{\hat{f}} \frac{\langle \bar{f}, c \rangle}{\|\hat{f}\|} = \frac{\langle c, c \rangle}{\|c\|} = \|c\| = \sqrt{\sum_{|S| \leq D} \left(\sum_{Y \sim \mathbb{P}} [Y^S] \right)^2}$ Optimizer: $\hat{f}^* = c$

Remarks:

Remarks:

Best test is likelihood ratio (Neyman-Pearson lemma)

$$L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y)$$

Remarks:

• Best test is likelihood ratio (Neyman-Pearson lemma) $L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y)$

▶ Best degree-*D* test (maximizer of $Adv_{\leq D}$) is

$$f^* = L^{\leq D} :=$$
 projection of L onto deg- D subspace

Remarks:

• Best test is likelihood ratio (Neyman-Pearson lemma) $L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y)$

▶ Best degree-D test (maximizer of Adv_{≤D}) is

 $f^* = L^{\leq D} :=$ projection of L onto deg-D subspace

orthogonal projection w.r.t. $\langle f,g \rangle := \underset{Y \sim \mathbb{O}}{\mathbb{E}}[f(Y)g(Y)]$

Remarks:

• Best test is likelihood ratio (Neyman-Pearson lemma) $L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y)$

▶ Best degree-D test (maximizer of Adv_{≤D}) is

$$f^* = L^{\leq D} :=$$
 projection of L onto deg- D subspace

orthogonal projection w.r.t. $\langle f, g \rangle := \underset{Y \sim \mathbb{Q}}{\mathbb{E}} [f(Y)g(Y)]$

"low-degree likelihood ratio"

Remarks:

• Best test is likelihood ratio (Neyman-Pearson lemma) $L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y)$

▶ Best degree-D test (maximizer of Adv_{≤D}) is

 $f^* = L^{\leq D} :=$ projection of L onto deg-D subspace

orthogonal projection w.r.t. $\langle f,g\rangle := \underset{Y\sim \mathbb{Q}}{\mathbb{E}}[f(Y)g(Y)]$ "low-degree likelihood ratio"

•
$$\operatorname{Adv}_{\leq D} = \|L^{\leq D}\|$$
 $\|f\| := \sqrt{\langle f, f \rangle} = \mathop{\mathbb{E}}_{Y \sim \mathbb{Q}} [f(Y)^2]$

Remarks:

• Best test is likelihood ratio (Neyman-Pearson lemma) $L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y)$

Best degree-D test (maximizer of Adv_{≤D}) is

 $f^* = L^{\leq D} :=$ projection of L onto deg-D subspace

orthogonal projection w.r.t. $\langle f,g\rangle:=\mathop{\mathbb{E}}_{Y\sim\mathbb{Q}}[f(Y)g(Y)]$ "low-degree likelihood ratio"

► Adv_{≤D} =
$$||L^{\leq D}||$$
 $||f|| := \sqrt{\langle f, f \rangle} = \underset{Y \sim \mathbb{Q}}{\mathbb{E}} [f(Y)^2]$
"norm of low-degree likelihood ratio"

Remarks:

• Best test is likelihood ratio (Neyman-Pearson lemma) $L(Y) = \frac{d\mathbb{P}}{d\mathbb{Q}}(Y)$

Best degree-D test (maximizer of Adv_{≤D}) is

 $f^* = L^{\leq D} :=$ projection of L onto deg-D subspace

orthogonal projection w.r.t. $\langle f,g \rangle := \underset{Y \sim \mathbb{Q}}{\mathbb{E}}[f(Y)g(Y)]$ "low-degree likelihood ratio"

► Adv_{≤D} = $||L^{\leq D}||$ $||f|| := \sqrt{\langle f, f \rangle} = \underset{Y \sim \mathbb{Q}}{\mathbb{E}} [f(Y)^2]$ "norm of low-degree likelihood ratio"

Proof:
$$\hat{L}_{S} = \mathop{\mathbb{E}}_{Y \sim \mathbb{Q}} [L(Y)Y^{S}] = \mathop{\mathbb{E}}_{Y \sim \mathbb{P}} [Y^{S}] \qquad \hat{f}_{S}^{*} = \mathop{\mathbb{E}}_{Y \sim \mathbb{P}} [Y^{S}] \mathbb{1}_{|S| \leq D}$$

Part III: Recovery

Example (planted submatrix): observe $n \times n$ matrix Y = X + Z

- ► Signal: $X = \lambda v v^{\top}$ $\lambda > 0$ $v_i \sim \text{Bernoulli}(\rho)$
- ▶ Noise: *Z* i.i.d. *N*(0,1)

Example (planted submatrix): observe $n \times n$ matrix Y = X + Z

Signal:
$$X = \lambda v v^{\top}$$
 $\lambda > 0$ $v_i \sim \text{Bernoulli}(\rho)$

▶ Noise: *Z* i.i.d. *N*(0,1)

Regime: $1/\sqrt{n} \ll \rho \ll 1$

Example (planted submatrix): observe $n \times n$ matrix Y = X + Z

Signal:
$$X = \lambda v v^{\top}$$
 $\lambda > 0$ $v_i \sim \text{Bernoulli}(\rho)$

▶ Noise: *Z* i.i.d. *N*(0,1)

Regime: $1/\sqrt{n} \ll \rho \ll 1$

Detection: distinguish \mathbb{P} : Y = X + Z vs \mathbb{Q} : Y = Z w.h.p.

Example (planted submatrix): observe $n \times n$ matrix Y = X + Z

- Signal: $X = \lambda v v^{\top}$ $\lambda > 0$ $v_i \sim \text{Bernoulli}(\rho)$
- ▶ Noise: *Z* i.i.d. *N*(0,1)

Regime: $1/\sqrt{n} \ll \rho \ll 1$

Detection: distinguish \mathbb{P} : Y = X + Z vs \mathbb{Q} : Y = Z w.h.p.

• Sum of all entries succeeds when $\lambda \gg (\rho \sqrt{n})^{-2}$

Example (planted submatrix): observe $n \times n$ matrix Y = X + Z

- Signal: $X = \lambda v v^{\top}$ $\lambda > 0$ $v_i \sim \text{Bernoulli}(\rho)$
- ▶ Noise: *Z* i.i.d. *N*(0,1)

Regime: $1/\sqrt{n} \ll \rho \ll 1$

Detection: distinguish \mathbb{P} : Y = X + Z vs \mathbb{Q} : Y = Z w.h.p.

• Sum of all entries succeeds when $\lambda \gg (\rho \sqrt{n})^{-2}$

Recovery: given $Y \sim \mathbb{P}$, recover *v*

Example (planted submatrix): observe $n \times n$ matrix Y = X + Z

- Signal: $X = \lambda v v^{\top}$ $\lambda > 0$ $v_i \sim \text{Bernoulli}(\rho)$
- ▶ Noise: *Z* i.i.d. *N*(0,1)

Regime: $1/\sqrt{n} \ll \rho \ll 1$

Detection: distinguish \mathbb{P} : Y = X + Z vs \mathbb{Q} : Y = Z w.h.p.

• Sum of all entries succeeds when $\lambda \gg (\rho \sqrt{n})^{-2}$

Recovery: given $Y \sim \mathbb{P}$, recover *v*

• Leading eigenvector succeeds when $\lambda \gg (\rho \sqrt{n})^{-1}$

Example (planted submatrix): observe $n \times n$ matrix Y = X + Z

- ► Signal: $X = \lambda v v^{\top}$ $\lambda > 0$ $v_i \sim \text{Bernoulli}(\rho)$
- ▶ Noise: *Z* i.i.d. *N*(0,1)

Regime: $1/\sqrt{n} \ll \rho \ll 1$

Detection: distinguish \mathbb{P} : Y = X + Z vs \mathbb{Q} : Y = Z w.h.p.

• Sum of all entries succeeds when $\lambda \gg (\rho \sqrt{n})^{-2}$

Recovery: given $Y \sim \mathbb{P}$, recover *v*

- Leading eigenvector succeeds when $\lambda \gg (\rho \sqrt{n})^{-1}$
- Exhaustive search succeeds when $\lambda \gg (\rho n)^{-1/2}$

Example (planted submatrix): observe $n \times n$ matrix Y = X + Z

- Signal: $X = \lambda v v^{\top}$ $\lambda > 0$ $v_i \sim \text{Bernoulli}(\rho)$
- ▶ Noise: *Z* i.i.d. *N*(0,1)

Regime: $1/\sqrt{n} \ll \rho \ll 1$

Detection: distinguish \mathbb{P} : Y = X + Z vs \mathbb{Q} : Y = Z w.h.p.

• Sum of all entries succeeds when $\lambda \gg (\rho \sqrt{n})^{-2}$

Recovery: given $Y \sim \mathbb{P}$, recover *v*

- Leading eigenvector succeeds when $\lambda \gg (\rho \sqrt{n})^{-1}$
- Exhaustive search succeeds when $\lambda \gg (\rho n)^{-1/2}$

Detection-recovery gap

If you can recover then you can detect (poly-time reduction)

If you can recover then you can detect (poly-time reduction)

• How: run recovery algorithm to get $\hat{v} \in \{0,1\}^n$; check $\hat{v}^\top Y \hat{v}$

If you can recover then you can detect (poly-time reduction) • How: run recovery algorithm to get $\hat{v} \in \{0, 1\}^n$; check $\hat{v}^\top Y \hat{v}$ So if $Adv_{\leq D} = O(1)$, this suggests recovery is hard

If you can recover then you can detect (poly-time reduction) • How: run recovery algorithm to get $\hat{v} \in \{0, 1\}^n$; check $\hat{v}^\top Y \hat{v}$ So if $Adv_{\leq D} = O(1)$, this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

If you can recover then you can detect (poly-time reduction) • How: run recovery algorithm to get $\hat{v} \in \{0, 1\}^n$; check $\hat{v}^\top Y \hat{v}$ So if $Adv_{\leq D} = O(1)$, this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

Attempt: choose a better null distribution?

If you can recover then you can detect (poly-time reduction) • How: run recovery algorithm to get $\hat{v} \in \{0, 1\}^n$; check $\hat{v}^\top Y \hat{v}$ So if $Adv_{\leq D} = O(1)$, this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

Attempt: choose a better null distribution?

Match mean of planted distribution?

If you can recover then you can detect (poly-time reduction) • How: run recovery algorithm to get $\hat{v} \in \{0, 1\}^n$; check $\hat{v}^\top Y \hat{v}$ So if $Adv_{\leq D} = O(1)$, this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

Attempt: choose a better null distribution?

- Match mean of planted distribution?
- Gaussian matching first 2 moments of planted distribution?

If you can recover then you can detect (poly-time reduction) • How: run recovery algorithm to get $\hat{v} \in \{0, 1\}^n$; check $\hat{v}^\top Y \hat{v}$ So if $Adv_{\leq D} = O(1)$, this suggests recovery is hard

But how to show hardness of recovery when detection is easy?

Attempt: choose a better null distribution?

- Match mean of planted distribution?
- Gaussian matching first 2 moments of planted distribution?

This closes detection-recovery gap partially but not all the way

Example (planted submatrix): observe $n \times n$ matrix Y = X + Z

► Signal: $X = \lambda v v^{\top}$ $\lambda > 0$ $v_i \sim \text{Bernoulli}(\rho)$

▶ Noise: *Z* i.i.d. *N*(0,1)

Example (planted submatrix): observe $n \times n$ matrix Y = X + ZSignal: $X = \lambda v v^{\top}$ $\lambda > 0$ $v_i \sim \text{Bernoulli}(\rho)$ Noise: Z i.i.d. $\mathcal{N}(0, 1)$

Goal: given Y, estimate v_1 via polynomial $f : \mathbb{R}^{n \times n} \to \mathbb{R}$

Example (planted submatrix): observe $n \times n$ matrix Y = X + Z

► Signal: $X = \lambda v v^{\top}$ $\lambda > 0$ $v_i \sim \text{Bernoulli}(\rho)$

► Noise: Z i.i.d. N(0,1)

Goal: given Y, estimate v_1 via polynomial $f : \mathbb{R}^{n \times n} \to \mathbb{R}$ Low-degree minimum mean squared error:

$$\mathsf{MMSE}_{\leq D} = \min_{f \text{ deg } D} \mathbb{E}(f(Y) - v_1)^2$$

Example (planted submatrix): observe $n \times n$ matrix Y = X + Z

► Signal: $X = \lambda v v^{\top}$ $\lambda > 0$ $v_i \sim \text{Bernoulli}(\rho)$

► Noise: Z i.i.d. N(0,1)

Goal: given Y, estimate v_1 via polynomial $f : \mathbb{R}^{n \times n} \to \mathbb{R}$ Low-degree minimum mean squared error:

$$\mathsf{MMSE}_{\leq D} = \min_{f \text{ deg } D} \mathbb{E}(f(Y) - v_1)^2$$

Equivalent to low-degree maximum correlation:

$$\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$$

<u>Fact</u>: $MMSE_{\leq D} = \mathbb{E}[v_1^2] - Corr_{\leq D}^2$

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$

Same proof as detection?

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$

Same proof as detection?

$$f = \sum_{|S| \le D} \hat{f}_S Y^S$$

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$

Same proof as detection?

$$f = \sum_{|S| \le D} \hat{f}_S Y^S$$

<u>Numerator</u>: $\mathbb{E}[f(Y) \cdot v_1]$

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$

Same proof as detection?

$$f = \sum_{|S| \le D} \hat{f}_S Y^S$$

Numerator:
$$\mathbb{E}[f(Y) \cdot v_1] = \sum_{|S| \le D} \hat{f}_S \mathbb{E}[Y^S \cdot v_1]$$

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$

Same proof as detection?

$$f = \sum_{|S| \le D} \hat{f}_S Y^S$$

$$\underline{\text{Numerator}}: \mathbb{E}[f(Y) \cdot v_1] = \sum_{|S| \le D} \hat{f}_S \mathbb{E}[Y^S \cdot v_1] =: \langle \hat{f}, c \rangle$$

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$ Same proof as detection?

$$f = \sum_{|S| \le D} \hat{f}_S Y^S$$

$$\underline{\text{Numerator}}: \mathbb{E}[f(Y) \cdot v_1] = \sum_{|S| \le D} \hat{f}_S \mathbb{E}[Y^S \cdot v_1] =: \langle \hat{f}, c \rangle$$

<u>Denominator</u>: $\mathbb{E}[f(Y)^2]$

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$ Same proof as detection?

$$f = \sum_{|S| \le D} \hat{f}_S Y^S$$

$$\begin{array}{l} \underline{\text{Numerator}} \colon \mathbb{E}[f(Y) \cdot v_1] = \sum_{|S| \leq D} \hat{f}_S \, \mathbb{E}[Y^S \cdot v_1] =: \langle \hat{f}, c \rangle \\ \\ \underline{\text{Denominator}} \colon \mathbb{E}[f(Y)^2] = \sum_{S, \mathcal{T}} \hat{f}_S \hat{f}_{\mathcal{T}} \, \mathbb{E}[Y^S \cdot Y^{\mathcal{T}}] \end{array} \end{array}$$

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$ Same proof as detection?

$$f = \sum_{|S| \le D} \hat{f}_S Y^S$$

Numerator:
$$\mathbb{E}[f(Y) \cdot v_1] = \sum_{|S| \le D} \hat{f}_S \mathbb{E}[Y^S \cdot v_1] =: \langle \hat{f}, c \rangle$$

$$\underline{\text{Denominator}}: \mathbb{E}[f(Y)^2] = \sum_{S,T} \hat{f}_S \hat{f}_T \mathbb{E}[Y^S \cdot Y^T] = \hat{f}^\top M \hat{f}$$

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$ Same proof as detection?

$$f = \sum_{|S| \le D} \hat{f}_S Y^S$$

Numerator:
$$\mathbb{E}[f(Y) \cdot v_1] = \sum_{|S| \le D} \hat{f}_S \mathbb{E}[Y^S \cdot v_1] =: \langle \hat{f}, c \rangle$$

<u>Denominator</u>: $\mathbb{E}[f(Y)^2] = \sum_{S,T} \hat{f}_S \hat{f}_T \mathbb{E}[Y^S \cdot Y^T] = \hat{f}^\top M \hat{f}$

$$\operatorname{Corr}_{\leq D} = \max_{\hat{f}} \frac{\langle \hat{f}, c \rangle}{\sqrt{\hat{f}^{\top} M \hat{f}}}$$

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$ Same proof as detection?

$$f = \sum_{|S| \le D} \hat{f}_S Y^S$$

Numerator:
$$\mathbb{E}[f(Y) \cdot v_1] = \sum_{|S| \le D} \hat{f}_S \mathbb{E}[Y^S \cdot v_1] =: \langle \hat{f}, c \rangle$$

<u>Denominator</u>: $\mathbb{E}[f(Y)^2] = \sum_{S,T} \hat{f}_S \hat{f}_T \mathbb{E}[Y^S \cdot Y^T] = \hat{f}^\top M \hat{f}$

$$\operatorname{Corr}_{\leq D} = \max_{\hat{f}} \frac{\langle \hat{f}, c \rangle}{\sqrt{\hat{f}^{\top} M \hat{f}}} = \sqrt{c^{\top} M^{-1} c}$$

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$

Trick: bound denominator via Jensen's inequality on "signal" X

$$\mathbb{E}[f(Y)^2] = \mathbb{E}_{Z \mid X} \mathbb{E}[f(X+Z)^2] \ge \mathbb{E}_{Z} \left(\mathbb{E}_{X} f(X+Z) \right)^2$$

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$

Trick: bound denominator via Jensen's inequality on "signal" X

$$\mathbb{E}[f(Y)^2] = \mathbb{E}_{Z X} \mathbb{E}[f(X+Z)^2] \ge \mathbb{E}_{Z} \left(\mathbb{E}_{X} f(X+Z) \right)^2$$

Why is this tight?

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$

Trick: bound denominator via Jensen's inequality on "signal" X

$$\mathbb{E}[f(Y)^2] = \mathbb{E}_{Z X} \mathbb{E}[f(X+Z)^2] \ge \mathbb{E}_{Z} \left(\mathbb{E}_{X} f(X+Z) \right)^2$$

Why is this tight? In hard regime, f depends mostly on Z

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$

Trick: bound denominator via Jensen's inequality on "signal" X

$$\mathbb{E}[f(Y)^2] = \mathbb{E}_{Z X} \mathbb{E}[f(X+Z)^2] \ge \mathbb{E}_{Z} \left(\mathbb{E}_{X} f(X+Z) \right)^2$$

Why is this tight? In hard regime, f depends mostly on ZThis simplifies expression enough to find a closed form:

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$

Trick: bound denominator via Jensen's inequality on "signal" X

$$\mathbb{E}[f(Y)^2] = \mathbb{E}_{Z \mid X} \mathbb{E}[f(X+Z)^2] \ge \mathbb{E}_{Z} \left(\mathbb{E}_{X} f(X+Z) \right)^2$$

Why is this tight? In hard regime, f depends mostly on ZThis simplifies expression enough to find a closed form:

$$\mathsf{Corr}_{\leq D} \leq \max_{\hat{f}} rac{\langle \hat{f}, c
angle}{\|M\hat{f}\|}$$

where M is upper triangular

For hardness, want upper bound on $\operatorname{Corr}_{\leq D} = \max_{f \text{ deg } D} \frac{\mathbb{E}[f(Y) \cdot v_1]}{\sqrt{\mathbb{E}[f(Y)^2]}}$

Trick: bound denominator via Jensen's inequality on "signal" X

$$\mathbb{E}[f(Y)^2] = \mathbb{E}_{Z \mid X} \mathbb{E}[f(X+Z)^2] \ge \mathbb{E}_{Z} \left(\mathbb{E}_{X} f(X+Z) \right)^2$$

Why is this tight? In hard regime, f depends mostly on ZThis simplifies expression enough to find a closed form:

$$\operatorname{Corr}_{\leq D} \leq \max_{\hat{f}} rac{\langle \hat{f}, c
angle}{\|M\hat{f}\|} = \|c^{\top}M^{-1}\|$$

where M is upper triangular (can invert)

Theorem [Schramm, W. '20] Additive Gaussian model Y = X + ZScalar value to recover: x

Theorem [Schramm, W. '20] Additive Gaussian model Y = X + ZScalar value to recover: x

$$\mathsf{Corr}_{\leq D}^2 \leq \sum_{|S| \leq D} \kappa_S^2$$

where κ_S is the joint cumulant of $\{x\} \cup \{Y_i : i \in S\}$

Theorem [Schramm, W. '20] Additive Gaussian model Y = X + ZScalar value to recover: x

$$\mathsf{Corr}_{\leq D}^2 \leq \sum_{|S| \leq D} \kappa_S^2$$

where κ_S is the joint cumulant of $\{x\} \cup \{Y_i : i \in S\}$

Corollary (tight bounds for planted submatrix recovery)

Theorem [Schramm, W. '20] Additive Gaussian model Y = X + ZScalar value to recover: x

$$\mathsf{Corr}_{\leq D}^2 \leq \sum_{|\mathcal{S}| \leq D} \kappa_{\mathcal{S}}^2$$

where κ_S is the joint cumulant of $\{x\} \cup \{Y_i : i \in S\}$

 Corollary (tight bounds for planted submatrix recovery)
 if λ ≪ min{1, 1/ρ√n} then MMSE_{≤nΩ(1)} ≈ ρ(1 − ρ) low-degree polynomials have trivial MSE in the "hard" regime

Theorem [Schramm, W. '20] Additive Gaussian model Y = X + ZScalar value to recover: x

$$\mathsf{Corr}_{\leq D}^2 \leq \sum_{|\mathcal{S}| \leq D} \kappa_{\mathcal{S}}^2$$

where κ_S is the joint cumulant of $\{x\} \cup \{Y_i : i \in S\}$

Corollary (tight bounds for planted submatrix recovery)

- if $\lambda \ll \min\{1, \frac{1}{\rho\sqrt{n}}\}$ then $\mathsf{MMSE}_{\leq n^{\Omega(1)}} \approx \rho(1-\rho)$ low-degree polynomials have trivial MSE in the "hard" regime
- If λ ≫ min{1, 1/ρ√n} then MMSE_{≤O(log n)} = o(ρ) low-degree polynomials succeed in the "easy" regime

 \blacktriangleright (Detection) bound $\mathsf{Adv}_{\leq D}$ when $\mathbb Q$ is not a product measure

E.g. random regular graphs

▶ (Detection) bound Adv_{≤D} when Q is not a product measure
 ▶ E.g. random regular graphs

(Recovery) bound MMSE_{SD} when not "signal + noise"
 E.g. sparse regression, phase retrieval

▶ (Detection) bound Adv_{≤D} when Q is not a product measure
 ▶ E.g. random regular graphs

(Recovery) bound MMSE_{SD} when not "signal + noise"
 E.g. sparse regression, phase retrieval

(Recovery) sharp threshold for planted submatrix
 AMP succeeds when λ > (ρ√en)⁻¹ [Hajek, Wu, Xu '15]

▶ (Detection) bound Adv_{≤D} when Q is not a product measure
 ▶ E.g. random regular graphs

(Recovery) bound MMSE_{SD} when not "signal + noise"
 E.g. sparse regression, phase retrieval

(Recovery) sharp threshold for planted submatrix
 AMP succeeds when λ > (ρ√en)⁻¹ [Hajek, Wu, Xu '15]

Implications for other algorithms?
 E.g. convex programming, MCMC

References

Detection (survey article)

Notes on Computational Hardness of Hypothesis Testing: Predictions using the Low-Degree Likelihood Ratio Kunisky, W., Bandeira *arXiv:1907.11636*

Recovery

Computational Barriers to Estimation from Low-Degree Polynomials

Schramm, W.

arXiv:2008.02269

Optimization

Low-Degree Hardness of Random Optimization Problems Gamarnik, Jagannath, W. *arXiv:2004.12063* (extra scratch paper)