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How Much Can We Learn From Data?

• Hidden “signal” in a large dataset

• Criteria:
• Statistical efficiency

• Computational efficiency

• Fundamental limits?

• Which tradeoffs are achievable? ?

Buy more data?

More compute 
time?

Better algorithm?



• Find a planted k-clique in an n-vertex random graph
• G(n,1/2) + {random k-clique}

• Believed to have a statistical-computational gap

                  

Example: Planted Clique

Any estimator fails

[Arias-Castro, Verzelen ’14]

Polynomial-time algorithm 
succeeds (w.h.p.)

[Alon, Krivelevich, Sudakov ‘98]Statistically possible but no poly-time 
algorithm known!

k = 5

kΩ( 𝑛)2 log2 𝑛

include each edge with prob 1/2

Statistical 
threshold

Computational 
threshold



                  

Not Just Planted Clique…

Statistical-computational gaps are ubiquitous!

Sparse PCA

Community detection (SBM)

Tensor PCA

Random CSPs

Spiked Wigner model

Spiked Wishart model

Planted submatrix

Planted dense subgraph

Planted vector in a subspace

Dictionary learning

Non-gaussian component 
analysis

Independent component 
analysis

Tensor decomposition

Sparse linear regression

Phase retrieval

Group testing

Generalized linear models

Synchronization

Orbit recovery

Gaussian clustering

Sparse clustering

Matrix completion

Tensor completion

Graph matching

Planted matching

Mixed membership SBM

Hypergraphic planted clique

Secret leakage planted clique

Continuous learning with errors

Robust sparse mean estimation

Certifying RIP

Spiked transport model

Hidden hubs

Planted coloring

Number partitioning

Nonnegative PCA

Cone-constrained PCA

Sparse tensor PCA

Robust sparse PCA

Learning neural networks

Sherrington-Kirkpatrick model

Spin glass optimization

…

Impossible

Easy

Hard

SNR
(signal-to-noise ratio)

Sparsity

# samples

???



The Dream

New statistical problem Systematic method 
of analysis

Phase diagram

“Impossible” phase: classical statistics (Assouad, Fano, Le Cam, …)

“Easy” phase: algorithm design (spectral methods, message passing, …)

“Hard” phase: need evidence for computational hardness
                                  “computational complexity of statistical inference”NP-hardness



A Restricted Class of Algorithms

Low-degree polynomial algorithms

        Good “proxy” for poly-time algorithms,
        for statistical problems

        Tractable to analyze

        Widely-applicable

        Sheds light on fundamental statistical
        questions

Other restricted classes: SoS, SQ, AMP, …

All algorithms

Poly-time
algorithms

Low-degree
algorithms



Low-Degree Polynomial Algorithms

• Hypothesis testing: “is there a planted signal?”
• Distinguish ℋ0 (random graph) vs ℋ1 (planted clique)

• Goal: vanishing error probability

• Low-degree polynomial algorithm: multivariate polynomial of degree

ℋ0 ℋ1

𝑓 𝑓
separated

Input: graph Output: number

𝑓: {0,1}
𝑛
2 → ℝ

“Success”: 𝑓’s output is “small” under ℋ0, “large” under ℋ1
(Eℋ1

𝑓 − Eℋ0
[𝑓])2≫ max{Varℋ0

(𝑓), Varℋ1
(𝑓)}

[Hopkins, Steurer ‘17; Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17; Hopkins ’18; Kunisky, W, Bandeira ‘19]

O(log n)



• Find a planted k-clique in an n-vertex random graph
• G(n,1/2) + {random k-clique}

                  

Back to Planted Clique
k = 5

kΩ( 𝑛)2 log2 𝑛

include each edge with prob 1/2

When 𝑘 ≫ 𝑛, some low-degree algorithm succeeds
(degree-1 polynomial: count total edges) 

When 𝑘 ≪ 𝑛, all low-degree algorithms fail
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16; Hopkins ‘18]

Detect



                  

Low-Degree Algorithms Are Optimal??

Stellar track record for capturing the computational threshold

No known poly-time alg
All low-deg algs provably fail

Some poly-time alg provably succeeds
Some low-deg alg provably succeeds

Planted clique [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16;  
Hopkins ‘18]

Community detection [Hopkins, Steurer ’17; Hopkins ’18; Bandeira, Banks, 
Kunisky, Moore, W ‘21]

Mixed membership SBM [Hopkins, Steurer ’17]

Tensor PCA [Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17; 
Kunisky, W, Bandeira ‘19]

Spiked Wishart [Bandeira, Kunisky, W ’20]

Spiked Wigner [Kunisky, W, Bandeira ’19]

Sparse PCA [Ding, Kunisky, W, Bandeira ‘19]

Heavy tailed statistics [Cherapanamjeri, Hopkins, Kathuria, Raghavendra, 
Tripuraneni ’20]

Max independent set [Gamarnik, Jagannath, W ’20; W ‘20]

Secret leakage planted clique [Brennan, Bresler ‘20]

Hypergraphic planted clique [Luo, Zhang ’20]

Sparse clustering [Löffler, W, Bandeira ‘20]

Certifying RIP [Ding, Kunisky, W, Bandeira ‘21]

Planted submatrix [Schramm, W ‘20]

Planted dense subgraph [Schramm, W ‘20]

Multi-spiked Wigner/Wishart [Bandeira, Banks, Kunisky, Moore, W ‘21]

Planted affine planes [Ghosh, Jeronimo, Jones, Potechin, Rajendran ‘20]

Gaussian mixture models [Brennan, Bresler, Hopkins, Li, Schramm ‘21]

Gaussian graphical models [Brennan, Bresler, Hopkins, Li, Schramm ‘21]

Morris class of exponential families [Kunisky ‘20]

Robust sparse PCA [d’Orsi, Kothari, Novikov, Steurer ‘20]

Non-negative PCA [Bandeira, Kunisky, W ‘21]

Planted vector in a subspace [Mao, W ‘21]

Random k-SAT [Bresler, Huang ‘21]

Sparse tensor PCA [Choo, d’Orsi ‘21]

Sparse linear regression [Arpino ‘21]

Gaussian clustering [Mao, W ‘21, Davis, Diaz, Wang ‘21]

Graph matching [Mao, Wu, Xu, Yu ‘21]

“Low-Degree Conjecture” [Hopkins ‘18]:
low-degree algorithms are optimal among 
all polynomial-time algorithms for natural 
high-dimensional statistical problems*.



Outline

• I. Hypothesis testing
• Planted sparse vector in a subspace

Mao, W, “Optimal Spectral Recovery of a Planted Vector in a Subspace”
Submitted

• II. Estimation
• Planted submatrix

Schramm, W, “Computational Barriers to Estimation from Low-Degree Polynomials”
Annals of Statistics (to appear)

• III. Optimization
• Max independent set in random graphs

Gamarnik, Jagannath, W, “Low-Degree Hardness of Random Optimization Problems”
FOCS 2020

    W, “Optimal Low-Degree Hardness of Maximum Independent Set”
    Mathematical Statistics and Learning, 2022



I. Hypothesis Testing



Planted Sparse Vector in a Subspace

Input: d-dimensional subspace of ℝ𝑛,  𝑑 ≪ 𝑛

• ℋ0: random subspace

• ℋ1: subspace containing a k-sparse vector (and otherwise random)

Prior work:
[DH13, BKS14, QSW14, HSSS16]

(joint work with Cheng Mao)

Easy

?

Sparsity k

Dimension d

𝑛0 𝑛1/2 𝑛1
𝑛0

𝑛1/2

𝑛1



Applying the Low-Degree Framework
Compute low-degree chi-squared divergence

𝜒≤𝐷
2 (ℋ1ฮℋ0)

[BHKKMP16, HS17, HKPRSS17, Hop18]

Prediction:

• “Easy” when 𝑘𝑑 ≪ 𝑛3/2

• “Hard” when 𝑘𝑑 ≫ 𝑛3/2

Poly-time algorithm succeeds

when 𝑘𝑑 ≪ 𝑛3/2

[Mao, W ‘21]

All low-degree algorithms fail

when 𝑘𝑑 ≫ 𝑛3/2 
[Mao, W ‘21]

Easy

?

k

d

Before

Easy

Hard

k

d

After



Spectral Methods

• The algorithm: threshold leading eigenvalue 𝜆max of 𝑑 × 𝑑 matrix 𝑀

• This is a low-degree algorithm:
𝑓 𝑌 ≔ Tr 𝑀2𝑝 = ∑𝜆𝑖

2𝑝
≈ 𝜆max

2𝑝

Input:  𝑌 =

𝑀𝑖𝑗 = ෍

𝑟=1

𝑛

෍

𝑠=1

𝑑

𝑌𝑟𝑠
2 −

𝑑

𝑛
𝑌𝑟𝑖𝑌𝑟𝑗

Degree-4 polynomial in 𝑌

need 𝑝 = Θ(log 𝑛)
deg 𝑓 = 4 ⋅ 2𝑝 = Θ(log 𝑛)

[Hopkins, Schramm, Shi, Steurer ‘16]

||||  n

d



Applying the Low-Degree Framework
Compute low-degree chi-squared divergence

𝜒≤𝐷
2 (ℋ1ฮℋ0)

[BHKKMP16, HS17, HKPRSS17, Hop18]

Prediction:

• “Easy” when 𝑘𝑑 ≪ 𝑛3/2

• “Hard” when 𝑘𝑑 ≫ 𝑛3/2

Poly-time algorithm succeeds

when 𝑘𝑑 ≪ 𝑛3/2

[Mao, W ‘21]

All low-degree algorithms fail

when 𝑘𝑑 ≫ 𝑛3/2 
[Mao, W ‘21]

Easy

?

k

d

Before

Easy

Hard

k

d

After

Spectral method Includes all spectral methods



II. Estimation



Two Fundamental Questions in Statistics

• Are these tasks equally difficult?

• Not always!

Hypothesis Testing         vs         Estimation
 “is there a planted signal?”                       “find the planted signal”

(joint work with Tselil Schramm)



Planted Submatrix

• 𝑛 × 𝑛 matrix with planted 𝑘 × 𝑘 submatrix

• Testing: distinguish vs ℋ0: all entries N (0,1)

• Estimation: find the “planted” indices S

• Regime: 𝑘 = 𝑛𝛼, 𝜆 = 𝑛−𝛽 where 𝛼, 𝛽 ∈ [0,1]

Phase diagram:

(assuming hardness of planted clique)

[KBRS11, BI13, BIS15, MW15, CLR17, BBH18]

Impossible

Impossible

Hard

Easy

Hard
Easy

Open

Testing EstimationSum Test

𝛼 𝛼

𝛽 𝛽

S

S

N (0,1)

N (𝜆,1)

𝑆 = 𝑘



Low-Degree Estimation

Degree-D mean squared error: MMSE≤𝐷 ∶= min
𝑓

E 𝑓 𝑌 − 𝟏𝑆 2
2

Impossible

Hard
Easy

Open

Estimation

𝛼

𝛽

Theorem (Schramm, W ’20)
• For 𝛼, 𝛽 in the green region, MMSE≤𝑂(1) is “small” (perfect estimation)

• For 𝛼, 𝛽 in the blue, red, gray regions, MMSE≤polylog(𝑛) is “large” (trivial)

The “open” region is “hard” for low-degree polynomials

degree-D multivariate polynomial 𝑓: ℝ𝑛2
→ ℝ𝑛 

Y =
S

S

N (0,1)

N (𝜆,1)

𝑆 = 𝑘

Hard

Resolves open question of [Hopkins, Steurer ‘17]
• Hypothesis testing has “closed form” solution, but estimation does not…



III. Optimization



Problems Without a Planted Signal

• Imagine an airline wants to find the optimal schedule…

• Many good solutions exist

• Hope: low-degree framework for random optimization problems?

(joint work with David Gamarnik & Aukosh Jagannath)



Maximum Independent Set in G(n,d/n)

• Sparse Erdős–Rényi graph G(n,d/n)        n vertices; average degree d
• Double limit 𝑛 → ∞, then 𝑑 → ∞ “d is a large constant”

• Goal: find a large independent set          𝑆 ⊆ [𝑛] with no internal edges
• With high probability 1 – o(1)

• OPT = 2(log d/d)n  [Frieze ‘90]

• ALG = (log d/d)n    [Karp ‘76]    greedy algorithm

• Is there a better poly-time algorithm?
• Local algorithms achieve ALG and no better
    [Gamarnik, Sudan 14; Rahman, Virág ‘14]

• Low-degree algorithms achieve ALG and no better
    [Gamarnik, Jagannath, W ‘20; W ‘20]

Image: [Frey, Hledik ‘18]

Richard Karp
(Turing Award 1985)



Main Result

• Max independent set in G(n,d/n):  OPT = 2(log d/d)n,  ALG = (log d/d)n 

• Degree-D algorithm: degree-D polynomial 𝑓: 0,1
𝑛
2 → ℝ𝑛

• “Success”: for 𝑌 ∼ G(n,d/n), output 𝑓(𝑌) is an approximate indicator vector for 
an indep. set

Theorem (Gamarnik, Jagannath, W ’20; W ‘20)
• Some degree-O(1) algorithm can find an indep. set of size (1-ɛ)ALG

with probability 1 − exp −𝑛1/3

• No degree-polylog(n) algorithm can find an indep. set of size (1+ɛ)ALG
with probability 1 − exp(−𝑛Ω(1))

ALG is the algorithmic threshold for low-degree polynomial algorithms



Proof Overview (Hardness)

• Suppose (for contradiction) that low-degree f finds large independent sets

• At step i, resample edge i

• Since f is low degree, output is “stable”

• But a long chain of large independent
sets does not exist → contradiction

• Guaranteed to add an 𝑆𝑖 after 𝑚 = 𝑛
2

 steps

1 + 𝜀 ALG

𝑌(0) → 𝑌(1) → 𝑌(2) → ⋯ → 𝑌(𝑇)

f f f

…



Stability of Low-Degree Polynomials

𝑌(0) ∈ 0,1 𝑚, i.i.d. Bernoulli(p)            𝑚 =
𝑛
2

 p = d/n

resample 
entry 1
(edge 1)

resample 
entry 2

resample 
entry m

resample 
entry 1

Theorem (Gamarnik, Jagannath, W ’20)
Fix a degree-D polynomial 𝑓: 0,1 𝑚 → ℝ𝑛, and c > 0.

With probability at least 𝑝4𝐷𝐾/𝑐, every step t satisfies

𝑓 𝑌 𝑡 − 𝑓 𝑌 𝑡−1
2

2
≤ 𝑐 E 𝑓(𝑌(0))

2

2
.

With non-trivial probability, f’s output is “smooth” along entire path

𝑌(0) → 𝑌(1) → 𝑌(2) → ⋯ → 𝑌 𝑚 → 𝑌(𝑚+1) → ⋯ → 𝑌(𝐾𝑚)



Forbidden Structure
Theorem (W ’20)
Fix ε > 0 and K ≥ 5/𝜀2.

With probability 1-exp(-Ω(n)) over 𝑌(0) → ⋯ → 𝑌 𝐾𝑚 ∼ G(𝑛, 𝑑/𝑛), there 
does not exist a sequence of sets 𝑆0, 𝑆1, … , 𝑆𝐾 ⊆ [𝑛] with the following 
properties:

• each 𝑆𝑖  is an independent set in some 𝑌(𝑡𝑖),
• each 𝑆𝑖  is “large”: 𝑆𝑖 ≥ 1 + 𝜀 ALG,
• number of new vertices added at each step is “just right”:

𝑆𝑖 ∖ ∪𝑗<𝑖 𝑆𝑗 ∈
𝜀

4
ALG,

𝜀

2
ALG .

Never occurs:

𝑆0

Inspired by the overlap gap property
[Gamarnik, Sudan 14; Rahman, Virág ’14; CGPR17; GJ19; …]

Proof: first moment method
𝑆1 …



Proof Overview (Hardness)

• Suppose (for contradiction) that low-degree f finds large independent sets

• At step i, resample edge i

• Since f is low degree, output is “stable”

• But a long chain of large independent
sets does not exist → contradiction

• Guaranteed to add an 𝑆𝑖 after 𝑚 = 𝑛
2

 steps

1 + 𝜀 ALG

𝑌(0) → 𝑌(1) → 𝑌(2) → ⋯ → 𝑌(𝑇)

f f f

…
Forbidden structure 𝑆0, 𝑆1, … , 𝑆𝐾

with non-trivial probability

𝑆𝑖 ∖ ∪𝑗<𝑖 𝑆𝑗 ∈
𝜀

4
ALG,

𝜀

2
ALG

𝑇 = 𝑚𝐾



Comments

• Concrete evidence for hardness of Karp’s problem
• Low-degree algorithms fail to surpass threshold ALG

• New techniques for proving failure of low-degree algorithms
• Unifies “planted” and “non-planted” problems

• Not just for independent set
• Random k-SAT [Bresler, Huang ’21]

• Can rule out any “stable” algorithm
• Circuit lower bounds [Gamarnik, Jagannath, W ‘21]



Conclusion



Achieving the Dream?

New statistical problem Systematic method 
of analysis

Phase diagram



Achieving the Dream?

Low-Degree Hardness

• Hypothesis testing [KWB19, BKW20, 
DKWB19, LWB20, DKWB21, MW21]

• Estimation [SW20]

• Random optimization problems
[GJW20, W20]

• Certification (via “quiet planting”) 
[BKW20, DKWB21, BBKMW21, BKW21]

Statistical Impossibility

• [MPW16, PWBM18, PWB20]

Algorithm Design

New frameworks

• Kikuchi hierarchy [WAM19]

• Tensor networks [MW19]

Existing frameworks

• Spectral [PWBM18, MW19, WAM19, MW21]

• Approx. message passing [PWBM18]

• SDP [PW17, MPW16, PPWBAS19]

• LLL lattice basis reduction [ZSWB21]

Impossible

Easy

Hard



Application Domains

• Sparse PCA [DKWB19]

• Tensor PCA [WAM19]

• Robust community detection 
[PW17, MPW16]

• Sparse clustering [LWB20]

• Planted vector in a subspace 
[MW21]

Group actions

• Synchronization [PWBM18]

• Orbit recovery
[BBKPWW17, W18, MW19]

Bartesaghi et al., Science 348 (6239): 1147-1151

Cryo-electron microscopy



Rigorous Connections Between Frameworks

Low-degree polynomials

Statistical query model

Sum-of-squares

Spectral methods

Overlap gap property

Approximate message passing Markov chain Monte Carlo

Local algorithms

[KWB19]

[HKPRSS17]

[GJW20]

[BBHLS21]

[W20]

[GS14, GZ17]

[GJ19]
[GZ19, GJS19, BWZ20]

Convex programming

[BM12]



Some References

• Notes on Computational Hardness of Hypothesis Testing: Predictions using the Low-Degree Likelihood Ratio
Kunisky, W, Bandeira
arXiv 2019 (survey article on low-degree algorithms)

• Optimal Spectral Recovery of a Planted Vector in a Subspace
Mao, W
Submitted

• Computational Barriers to Estimation from Low-Degree Polynomials
Schramm, W
Annals of Statistics (to appear)

• Low-Degree Hardness of Random Optimization Problems
Gamarnik, Jagannath, W
FOCS 2020

• Optimal Low-Degree Hardness of Maximum Independent Set
W
Mathematical Statistics and Learning, 2022

• Spectral Planting and the Hardness of Refuting Cuts, Colorability, and Communities in Random Graphs
Bandeira, Banks, Kunisky, Moore, W
COLT 2021

• The Kikuchi Hierarchy and Tensor PCA
W, El Alaoui, Moore
FOCS 2019

Thanks!


	Slide 1: Understanding Statistical-vs-Computational Tradeoffs via Low-Degree Polynomials
	Slide 2: How Much Can We Learn From Data?
	Slide 3: Example: Planted Clique
	Slide 4: Not Just Planted Clique…
	Slide 5: The Dream
	Slide 6: A Restricted Class of Algorithms
	Slide 7: Low-Degree Polynomial Algorithms
	Slide 8: Back to Planted Clique
	Slide 9: Low-Degree Algorithms Are Optimal??
	Slide 10: Outline
	Slide 11: I. Hypothesis Testing
	Slide 12: Planted Sparse Vector in a Subspace
	Slide 13: Applying the Low-Degree Framework
	Slide 14: Spectral Methods
	Slide 15: Applying the Low-Degree Framework
	Slide 16: II. Estimation
	Slide 17: Two Fundamental Questions in Statistics
	Slide 18: Planted Submatrix
	Slide 19: Low-Degree Estimation
	Slide 20: III. Optimization
	Slide 21: Problems Without a Planted Signal
	Slide 22: Maximum Independent Set in G(n,d/n)
	Slide 23: Main Result
	Slide 24: Proof Overview (Hardness)
	Slide 25: Stability of Low-Degree Polynomials
	Slide 26: Forbidden Structure
	Slide 27: Proof Overview (Hardness)
	Slide 28: Comments
	Slide 29: Conclusion
	Slide 30: Achieving the Dream?
	Slide 31: Achieving the Dream?
	Slide 32: Application Domains
	Slide 33: Rigorous Connections Between Frameworks
	Slide 34: Some References

