
Fine-Grained Extensions of the Low-Degree Testing Framework

Alex Wein
UC Davis

Based on joint works with: {Jay Mardia, Kabir Aladin Verchand}, {Ankur Moitra}

• Find a planted k-clique in an n-vertex random graph
• G(n,1/2) + {random k-clique}

• Believed to have a statistical-computational gap

Any estimator fails

[Arias-Castro, Verzelen ’14]

Polynomial-time algorithm
succeeds (w.h.p.)

[Alon, Krivelevich, Sudakov ‘98]Statistically possible but no poly-time
algorithm known!

k = 5

kΩ(𝑛)2 log2 𝑛

include each edge with prob 1/2

Statistical
threshold

Computational
threshold

Planted Clique Problem

“Hard” Regime

• How to show computational hardness?

• Average-case complexity is difficult…

• Instead:
• Average-case reductions

• Failure of restricted classes of algorithms
• Statistical query (SQ) algorithms

• Sum-of-squares (SoS) hierarchy

• “Local” algorithms

• Approximate message passing

• …

• This talk: low-degree polynomial algorithms for hypothesis testing
• As opposed to recovery/estimation, optimization, refutation, …

k

• Degree-D test: multivariate polynomial of degree 𝐷 = 𝐷𝑛

• E.g. count edges, triangles, subgraphs, …
• 𝑓(𝐴) = σ𝑖<𝑗<𝑘 𝐴𝑖𝑗𝐴𝑖𝑘𝐴𝑗𝑘 (triangle count)

• “Success”: 𝑓 = 𝑓𝑛 strongly separates ℙ and ℚ if

ℚ ℙ

𝑓 𝑓
separated

Input: graph Output: number

𝑓: {0,1}
𝑛
2 → ℝ

max{Varℙ 𝑓 , Varℚ 𝑓 } = 𝑜(|Eℙ 𝑓 − Eℚ[𝑓]|)

Low-Degree Testing
[Hopkins, Steurer ’17; Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17; Hopkins ‘18, …]

as 𝑛 → ∞

Consideration #1: Runtime

• Heuristic:

• deg 𝐷 ≈ time 𝑛
෩Θ(𝐷)

• deg 𝑂(1) < poly time < deg 𝑂(log 𝑛)

• deg 𝑛𝑐 ≈ time exp ෩Θ(𝑛𝑐)

• “Low-degree conjecture” [Hopkins ‘18]

• If low-degree polynomials fail, so do algorithms of the corresponding runtime

• Not true for all distributions ℙ, ℚ…

• Can’t hope to prove it…

• Or think of low-degree lower bounds as ruling out restricted algorithms

• Question: can we differentiate fine-grained time complexities such as
𝑂(𝑛) versus 𝑂(𝑛2)?

• Strong separation ⇒ strong detection

• max{Varℙ 𝑓 , Varℚ 𝑓 } = 𝑜 Eℙ 𝑓 − Eℚ 𝑓 ⇒ type I + type II = 𝑜(1)

• Weak separation ⇒ weak detection

• max{Varℙ 𝑓 , Varℚ 𝑓 } = 𝑂 Eℙ 𝑓 − Eℚ 𝑓 ⇒ type I + type II ≤ 1 − 𝜖

• Heuristic: if low-degree polynomials fail at strong (or weak) separation
then efficient algorithms fail at strong (or weak) detection

• Question: can we identify the optimal tradeoff between type I and
type II errors in a regime where weak (but not strong) detection is
tractable?

Consideration #2: Testing Error

Part 1: Fine-Grained Runtime

Based on joint work with Jay Mardia and Kabir Aladin Verchand
arXiv, “Low-degree phase transitions for detecting a planted clique in sublinear time,” 2024

Planted Clique in Sub-Linear Time

• Distinguish ℚ: G(n,1/2) versus ℙ: G(n,1/2) + {random k-clique}

• What runtime is required in the “easy” regime 𝑘 = Θ(𝑛1/2+𝛿)?

• Naïve methods (max degree / total edges) have “linear” runtime Θ(𝑛2)

• “Subsampled” max degree has runtime Θ(𝑛3(1/2−𝛿)) [MAC’20]

• Is this optimal?

• How to approach this?
• Polynomial degree doesn’t capture fine-grained runtime: even naïve method

(count total edges) is a degree-1 polynomial

• The bottleneck seems to be reading the input…

ℚ ℙ

Non-Adaptive Edge Query Model

• Restricted class of algorithms

• First choose a subset of edges (“mask”) 𝑀 ⊆ [𝑛]
2

to observe (hard-coded)

• Then perform a computation to decide ℙ𝑀 vs ℚ𝑀

• Runtime may be bounded or unbounded

• Or require a low-degree test, as a proxy for bounded runtime

• Main result: low-degree tests require a mask of size 𝑀 ≈ 𝑛3 1/2−𝛿

• Theorem: Let 𝑘 = Θ(𝑛1/2+𝛿) for a constant 𝛿 ∈ 0,1
• (Easy) If 𝛾 > 3 1/2 − 𝛿 there exists 𝑀 = 𝑂(𝑛𝛾) and a degree-𝑂(log 𝑛)

polynomial that strongly separates ℙ𝑀 and ℚ𝑀

• (Hard) If 𝛾 < 3 1/2 − 𝛿 then for every 𝑀 = 𝑂 𝑛𝛾 , every degree-𝑜(log2 𝑛)
polynomial fails to weakly separate ℙ𝑀 and ℚ𝑀

ℚ ℙ

[Feige, Gamarnik, Neeman, Rácz, Tetali ‘20; Rácz, Schiffer ‘20]

Non-Adaptive Edge Query Model: Phase Diagram

• IT threshold: query a complete subgraph, brute-force search for clique;
adaptivity doesn’t help [Rácz, Schiffer ‘20]

• Our result: non-adaptive low-degree algorithms cannot improve the
best known sub-linear runtime O(𝑛3(1/2−𝛿))
• Open: does adaptivity help?

𝑘 = 𝑛1/2+𝛿

𝑀 = 𝑛𝛾

[Rácz, Schiffer ‘20]

(our result)

[Mardia, Asi, Chandrasekher ‘20]

Proof Overview

• Standard tool: low-degree likelihood ratio

𝐿𝑀
≤𝐷 ≔ sup

𝑓 deg 𝐷

E𝑌∼ℙ𝑀
[𝑓(𝑌)]

E𝑌∼ℚ𝑀
[𝑓 𝑌 2]

• Goal: show 𝐿𝑀
≤𝐷 = 1 + 𝑜(1), implying that no deg-D polynomial

weakly separates ℙ𝑀 and ℚ𝑀

• Convenient upper bound

𝐿𝑀
≤𝐷 2

≤ 1 + ෍
𝑑=1

𝐷 1

𝑑!
E𝑋,𝑋′ 𝑋, 𝑋′ 𝑑

where 𝑋 ∈ {0,1}𝑀 is the indicator for mask edges with both endpoints
in the clique, and 𝑋’ is an independent copy (for a different clique)

• Difficulty: need to bound this for every possible 𝑀 of a given size

Conditioning

• Issue: 𝐿𝑀
≤𝐷 = 𝜔 1 for some choices of 𝑀, e.g. the “star”

𝑀 = { 1,2 , 1,3 , 1,4 , … , 1, 𝑛 }
• In this case, 𝐿𝑀

≤𝐷 is dominated by the unlikely event (under ℙ𝑀) that vertex 1
is in the clique

• Need to condition on high-probability “good” event: no vertex of
“high” 𝑀-degree is in the clique
• Why high prob: due to bound on |𝑀|, few vertices have “high” 𝑀-degree

• Formally: conditional low-degree calculation with modified ෩ℙ𝑀

• Effectively lets us assume 𝑀 has no “high” degree vertices

Key Idea

• Recall goal: bound LDUB 𝑀 = 1 + σ𝑑=1
𝐷 1

𝑑!
E𝑋,𝑋′ 𝑋, 𝑋′ 𝑑 for all 𝑀

• Assuming 𝑀 has no “high” degree vertices

• “Donation” operation simplifies M and only increases LDUB(𝑀)

• By repeated application, can reduce the total number of vertices in the
mask; now straightforward to bound LDUB 𝑀

⇒

• Main result: non-adaptive 𝑂(log 𝑛)-degree tests require ≈ 𝑛3(1/2−𝛿)

edge queries to detect a clique of size 𝑘 = Θ(𝑛1/2+𝛿)

• 2 ways to motivate this model:
• Barrier to improving the best known sub-linear runtime 𝑂(𝑛3 1/2−𝛿) for

planted clique in the “easy” regime

• Non-adaptive queries model a scenario where we must decide in advance what
data to collect

• Open: can non-adaptive algorithms achieve a better runtime?
• How to formulate this as a low-degree question?

Summary (Part 1: Fine-Grained Runtime)

Part 2: Fine-Grained Error Probability

Based on joint work with Ankur Moitra
arXiv, “Precise Error Rates for Computationally Efficient Testing,” 2023

Spiked Wigner Model

• Testing problem over 𝑛 × 𝑛 symmetric matrices
• ℚ: 𝑌 = 𝑊 𝑊𝑖𝑗 = 𝑊𝑗𝑖 ∼ 𝑁 0,1/𝑛 , 𝑊𝑖𝑖 ∼ 𝑁(0,2/𝑛)

• ℙ: 𝑌 =
𝜆

𝑛
𝑥𝑥⊤ + 𝑊 𝑥 ∈ ℝ𝑛 i.i.d. from 𝜋, mean 0, variance 1

• 𝑛 → ∞ with 𝜋 and 𝜆 > 0 fixed

• Weak detection (beat random guess) is always easy: Tr(𝑌)

• Phase diagram for strong detection (type I + type II → 0)
[Baik, Ben Arous, Péché ‘05; El Alaoui, Krzakala, Jordan ’20; Kunisky, W, Bandeira ‘19]

• Goal: optimal poly-time weak detection in “hard” regime?

𝜆

easyhardimpossible

0 𝜆∗(𝜋) 1
“BBP” eigenvalue transition

• Best known poly-time algorithm for weak detection when 𝜆 < 1

• Threshold σ𝑖 𝑓𝜆(𝜇𝑖) where 𝜇𝑖 are the eigenvalues of 𝑌, for some 𝑓𝜆

• Achieves a particular ROC (receiver operating characteristic) curve 𝜙𝜆
[Chung, Lee ‘22]

• IT optimal when 𝜆 < 𝜆∗ 𝜋
[El Alaoui, Krzakala, Jordan ‘20]

• Poly-time optimal when 𝜆∗ 𝜋 < 𝜆 < 1??

Linear Spectral Statistics (LSS)

𝜙0.9

𝛼 = type I error
= false positive rate

𝛽 = power
= true positive rate

perfect

trivial

𝜙𝜆 𝛼 = 1 − Φ[Φ−1 1 − 𝛼 − −log(1 − 𝜆2)/2]

Φ = standard normal CDF
𝜙0.7

concave

• For any 𝜆 < 1, any* 𝜋, and any 𝐷 = 𝐷𝑛 = 𝑜 𝑛/ log 𝑛 ,

𝐿≤𝐷 ≔ sup
𝑓 deg 𝐷

E𝑌∼ℙ 𝑓 𝑌

E𝑌∼ℚ 𝑓 𝑌 2
→ 1 − 𝜆2 −1/4 as 𝑛 → ∞

• This is 𝑂 1 , implying no strong separation by degree-D polynomials

• “Standard” LD conjecture: strong detection requires exponential
runtime exp(𝑛1−𝑜 1)

• Conjecture (strong LD conjecture): for spiked Wigner, any 𝑓 = 𝑓𝑛 with

limsup
𝑛→∞

E𝑌∼ℙ 𝑓 𝑌

E𝑌∼ℚ 𝑓 𝑌 2
> 1 − 𝜆2 −1/4

requires runtime exp(𝑛1−𝑜 1)

Strengthening of Low-Degree Conjecture

• Assuming strong LD conjecture, LSS has optimal ROC curve among
efficient algorithms

• Theorem:
• Fix 𝜆 ∈ (0,1)

• Fix any* spike prior 𝜋

• Assume the strong LD conjecture

• Suppose 𝛽 > 𝜙𝜆 𝛼 , i.e., (𝛼, 𝛽) lies above the ROC curve of LSS

• Then any test with type I, power → (𝛼, 𝛽) requires runtime exp(𝑛1−𝑜 1)

Main Result

• Given achievable (concave) ROC curve 𝜙, can construct 𝑓 with
ratio 𝑓 = val(𝜙)

• ratio 𝑓 ≔
E𝑌∼ℙ 𝑓 𝑌

E𝑌∼ℚ 𝑓 𝑌 2

• val 𝜙 ≔ 0׬

1
𝜙′ 𝛼

2
𝑑𝛼

• Better curve has better val 𝜙

Proof Idea

𝜙′

𝛼 = type I error
= false positive rate

𝛽 = power
= true positive rate

𝜙

val 𝜙′ > val(𝜙)

• Recall: ratio 𝑓 ≤ 1 − 𝜆2 −1/4

• For low-degree 𝑓, and conjecturally for all efficiently-computable 𝑓

• Given this, what ROC curves are possible?
• Must have val 𝜙 ≤ 1 − 𝜆2 −1/4

• Many possibilities…

Proof Idea

but not

𝛼 𝛼

𝛽 𝛽
𝜙𝜆

ratio 𝑓 ≔
E𝑌∼ℙ 𝑓 𝑌

E𝑌∼ℚ 𝑓 𝑌 2

val 𝜙 ≔ 0׬

1
𝜙′ 𝛼

2
𝑑𝛼

• We know 𝜙𝜆 is achievable in poly time [Chung, Lee ‘22], yielding ratio
val 𝜙𝜆 = 1 − 𝜆2 −1/4

• Assume for contradiction: some (𝛼∗, 𝛽∗) above 𝜙𝜆 is achievable

• Can then achieve an even better ROC curve 𝜓

• Thus achieving ratio
val 𝜓 > val 𝜙𝜆 = 1 − 𝜆2 −1/4

• Contradicts strong LD conjecture

• Conclude: (𝛼∗, 𝛽∗) not achievable
(in sub-exponential time)

Proof

𝛼

𝛽
𝜙𝜆

𝜓

(𝛼∗, 𝛽∗)

ratio 𝑓 ≔
E𝑌∼ℙ 𝑓 𝑌

E𝑌∼ℚ 𝑓 𝑌 2

val 𝜙 ≔ 0׬

1
𝜙′ 𝛼

2
𝑑𝛼

• Spiked Wigner model with 𝜆∗ 𝜋 < 𝜆 < 1: strong detection possible-but-hard

• Weak detection is always easy, but what is the optimal ROC curve?

• Assuming “strong low-degree conjecture,” linear spectral statistics (LSS) has
the best ROC curve among all poly-time (even sub-exponential time)
algorithms

• Consequence (“computational universality”): while IT threshold 𝜆∗ 𝜋
depends on prior 𝜋, the best computationally-efficient test only uses the
spectrum and is thus oblivious to the prior

• Akin to optimal low-degree estimation error when 𝜆 > 1 [Montanari, W ‘22]

• Open: more “direct” analysis of low-degree tests?

Thanks!

Summary (Part 2: Fine-Grained Error Probability)

	Slide 1: Fine-Grained Extensions of the Low-Degree Testing Framework
	Slide 2
	Slide 3
	Slide 4: Low-Degree Testing
	Slide 5
	Slide 6
	Slide 7: Part 1: Fine-Grained Runtime
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Part 2: Fine-Grained Error Probability
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

