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Planted Clique Problem

include each edge with prob 1/2

\\ k=5

* Find a planted k-clique in an n-vertex random graph
e G(n,1/2) + {random k-clique}

* Believed to have a statistical-computational gap

Impossible Hard . Easy

>

Any estimator fails Polynomial-time algorithm
succeeds (w.h.p.)

Statistically possible but no poly-time
algorithm known!



”Hard” Regime Impossible ~ Hard . Easy

* How to show computational hardness?
* Average-case complexity is difficult...

* |nstead:
* Average-case reductions

 Failure of restricted classes of algorithms
e Statistical query (SQ) algorithms
e Sum-of-squares (SoS) hierarchy
* “Local” algorithms
e Approximate message passing

* This talk: low-degree polynomial algorithms for hypothesis testing
* As opposed to recovery/estimation, optimization, refutation, ...



Low-Degree Testing

* Degree-D test: multivariate polynomial of degree D = D,,

f: {0,1}(121) — R
/ \

Input: graph Output: number
Q P
» E.g. count edges, triangles, subgraphs, ... w %
* f(A) = Dicj<r AijAiAji (triangle count)
* “Success”: f = f,, strongly separates IP and Q if l f l f

[maxVarp(f), Varg (1) = o(|Eplf] - Eq[f])

asn — o



Consideration #1: Runtime

* Heuristic:
. deg D ~ time n®®
* degO(1) < polytime < degO(logn)

* degn® = time exp(@(nc))

* “Low-degree conjecture”
* |f low-degree polynomials fail, so do algorithms of the corresponding runtime
* Not true for all distributions IP, Q...
e Can’t hope to prove it...
* Or think of low-degree lower bounds as ruling out restricted algorithms

* Question: can we differentiate fine-grained time complexities such as
0 (n) versus 0(n%)?



Consideration #2: Testing Error

e Strong separation = strong detection
. \/max{VarP(f),Var@ (H}= 0(‘Ep[f] _EQ[f]D = typel + typell = 0(1)

* Weak separation = weak detection
. \/max{Var[p(f),Var@ (H}=0 (‘Ep[f] — EQ[f]D = typel + typell<1—¢€

e Heuristic: if low-degree polynomials fail at strong (or weak) separation
then efficient algorithms fail at strong (or weak) detection

* Question: can we identify the optimal tradeoff between type | and
type Il errors in a regime where weak (but not strong) detection is
tractable?



Part 1: Fine-Grained Runtime

Based on joint work with Jay Mardia and Kabir Aladin Verchand

arXiv, “Low-degree phase transitions for detecting a planted clique in sublinear time,” 2024




Q P
Planted Clique in Sub-Linear Time w %

* Distinguish Q: G(n,1/2) versus P: G(n,1/2) + {random k-clique}
* What runtime is required in the “easy” regime k = @(n1/2+5)?
* Naive methods (max degree / total edges) have “linear” runtime ®(n?)

* “Subsampled” max degree has runtime 0(n3(1/2-9))
* |s this optimal?

* How to approach this?

* Polynomial degree doesn’t capture fine-grained runtime: even naive method
(count total edges) is a degree-1 polynomial

* The bottleneck seems to be reading the input...



Non-Adaptive Edge Query Model % % g : m

* Restricted class of algorithms

* First choose a subset of edges (“mask”) M < ([g]) to observe (hard-coded)

* Then perform a computation to decide P, vs Q,
* Runtime may be bounded or unbounded
* Orrequire a low-degree test, as a proxy for bounded runtime

* Main result: low-degree tests require a mask of size |[M| = n3(1/2-96)

* Theorem: Let k = O(n'/?*9) for a constant § € (0,1)
 (Easy) If y > 3(1/2 — 6) there exists |M| = O(nY) and a degree-0(logn)
polynomial that strongly separates IPy; and Qy,
e (Hard) If y < 3(1/2 — &) then for every |[M| = O(nY), every degree-o(log® n)
polynomial fails to weakly separate Py, and Q,,



Non-Adaptive Edge Query Model: Phase Diagram

5:

1
2
k = nl/2+6 [ Easy

[] Low-degree hard

[] Impossible

¥y=0 ff:zl 'TZ% y=2 |M| =nY
* IT threshold: query a complete subgraph, brute-force search for clique;
adaptivity doesn’t help

e Our result: non-adaptive low-degree aléorithms cannot improve the
best known sub-linear runtime O(n?’(1 ‘5))

* Open: does adaptivity help?



Proof Overview

e Standard tool: low-degree likelihood ratio
Ey. Y
HLﬁ/IDH = sup Y [PM[f( )]

f deg D \/EYNQM [F(1)?]
<D

* Goal: show HLT\/[ H = 14 o(1), implying that no deg-D polynomial
weakly separates Py, and Qy,

e Convenient upper bound 5
I <14 ) SEl(X X

where X € {0,1}" is the indicator for mask edges with both endpoints
in the cligue, and X’ is an independent copy (for a different clique)

* Difficulty: need to bound this for every possible M of a given size




Conditioning

* Issue: ||L3P|| = @ (1) for some choices of M, e.g. the “star”
M = {(1,2),(1,3),(1,4), .., (1,n)}

* |n this case, ||L,SWD|| is dominated by the unlikely event (under Py,) that vertex 1
is in the clique

* Need to condition on high-probability “good” event: no vertex of
“high” M-degree is in the clique
* Why high prob: due to bound on |M|, few vertices have “high” M-degree

* Formally: conditional low-degree calculation with modified PM
» Effectively lets us assume M has no “high” degree vertices



Key Idea

 Recall goal: bound LDUB(M) =1 + ZQ=1%EX,XI[(X,X’)‘1] forall M
* Assuming M has no “high” degree vertices

* “Donation” operation simplifies M and only increases LDUB(M)

N(u) N N(v) N(u)\N(v)

* By repeated application, can reduce the total number of vertices in the
mask; now straightforward to bound LDUB(M)



Summary (Part 1: Fine-Grained Runtime)

* Main result: non-adaptive O (log n)-degree tests require ~ n3(1/279)
edge gueries to detect a clique of size k = @(n1/2+5)

e 2 ways to motivate this model:

* Barrier to improving the best known sub-linear runtime O(n3(1/2_5)) for
planted clique in the “easy” regime

* Non-adaptive queries model a scenario where we must decide in advance what
data to collect
* Open: can non-adaptive algorithms achieve a better runtime?
 How to formulate this as a low-degree question?



Part 2: Fine-Grained Error Probability

Based on joint work with Ankur Moitra

arXiv, “Precise Error Rates for Computationally Efficient Testing,” 2023




Spiked Wignher Model

* Testing problem over n X n symmetric matrices
cQ:Y=W W;;j = Wj; ~ N(0,1/n), Wy; ~ N(0,2/n)
e P: Y = %xxT + W x € R"i.i.d. from 1, mean 0, variance 1
e n - oo withmand A > 0 fixed

* Weak detection (beat random guess) is always easy: Tr(Y)

* Phase diagram for strong detection (type | + type Il = 0)

impossible hard easy

0 A .(n) | i

A

1 .
“BBP” eigenvalue transition

* Goal: optimal poly-time weak detection in “hard” regime?



Linear Spectral Statistics (LSS)

* Best known poly-time algorithm for weak detection when 1 < 1
* Threshold }}; f3(i;) where p; are the eigenvalues of Y, for some f;
* Achieves a particular ROC (receiver operating characteristic) curve ¢,

1

0.8]
0.6
0.4}

* IT optimal when A < A*(m)

0.2

* Poly-time optimal when A* () < A < 1?? o

a



Strengthening of Low-Degree Conjecture

*ForanyA < 1,any*m,andany D = D,, = o(n/logn),

IL=P]|| :== sup By PP, (1 — 22)~1/4 as n — oo
fdegD [By-qlr(1)?]

* Thisis O(1), implying no strong separation by degree-D polynomials

e “Standard” LD conjecture: strong detection requires exponential
runtime exp(n!~°W)

* Conjecture (strong LD conjecture): for spiked Wigner, any f = f,, with

limsup Ey-plf(Y)] > (1 — /12)—1/4
n—-o  |Ey.qlf(¥)?]

requires runtime exp(nl‘o(l))




Main Result

e Assuming strong LD conjecture, LSS has optimal ROC curve among
efficient algorithms

* Theorem:
* FixA € (0,1)
* Fix any™* spike prior
* Assume the strong LD conjecture
* Suppose B > ¢;(a),
* Then any test with (type I, power) — (a, f) requires runtime exp(nl—o(l))



Proof Idea

* Given achievable (concave) ROC curve ¢, can construct f with

ratio(f) = val(¢)

o ratio(f) .— EY~[P[f(Y)]
JEY~@[f<Y>2]

. Val(¢) — \/f01(¢'(a))2da 0.8

0.6
0.4}

0.2

* Better curve has better val(¢)

0L

|
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Proof Idea

* Recall: ratio(f) < (1 — A2)~1/4

* For low-degree f, and conjecturally for all efficiently-computable f
* Given this, what ROC curves are possible?

* Must have val(¢) < (1 — 1?)~1/4

* Many possibilities...

1
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0.6 0.6 -

but not

0.4
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Proof

* We know ¢ is achievable in poly time

val(g) = (1 — A2)~V/*
* Assume for contradiction: some (a”, ™) above ¢, is achievable

* Can then achieve an even better ROC curve

* Thus achieving ratio
val(y) > val(¢,) = (1 — 1?)~1/4
e Contradicts strong LD conjecture

* Conclude: (a*, ) not achievable
(in sub-exponential time)

1

0.8

0.6

0.4

0.2

, yielding ratio

(8",




Summary (Part 2: Fine-Grained Error Probability)

* Spiked Wigner model with A*() < A < 1: strong detection possible-but-hard
* Weak detection is always easy, but what is the optimal ROC curve?

e Assuming “strong low-degree conjecture,” linear spectral statistics (LSS) has
the best ROC curve among all poly-time (even sub-exponential time)
algorithms

* Consequence (“computational universality”): while IT threshold A* ()
depends on prior T, the best computationally-efficient test only uses the
spectrum and is thus oblivious to the prior

* Akin to optimal low-degree estimation error when 4 > 1

* Open: more “direct” analysis of low-degree tests?

Thanks!



	Slide 1: Fine-Grained Extensions of the Low-Degree Testing Framework
	Slide 2
	Slide 3
	Slide 4: Low-Degree Testing
	Slide 5
	Slide 6
	Slide 7: Part 1: Fine-Grained Runtime
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Part 2: Fine-Grained Error Probability
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

