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Abstract

Imagine we want to recover an unknown vector given many noisy copies of it, except each
copy is cyclically shifted by an unknown offset (this is “multi-reference alignment”). Or
imagine we want to reconstruct an unknown 3D structure (e.g. a molecule) given many
noisy pictures of it taken from different unknown angles (this is “cryo-EM”). These problems
(and many others) involve the action of unknown group elements drawn randomly from a
compact group such as Z/𝑝 or SO(3).

In this thesis we study two statistical models for estimation in the presence of group
actions. The first is the synchronization model in which we attempt to learn an unknown
collection of group elements based on noisy pairwise comparisons. The second is the orbit
recovery model in which we observe noisy copies of a hidden signal, each of which is acted
upon by a random group element. For both of these models, we explore the fundamen-
tal statistical limits as well as the fundamental computational limits (i.e. how well can a
polynomial-time algorithm perform?). We use methods from a wide variety of areas, in-
cluding statistical physics, approximate message passing, representation theory, contiguity
and the associated second moment method, invariant theory, algebraic geometry, and the
sum-of-squares hierarchy.

Thesis Supervisor: Ankur Moitra
Title: Associate Professor of Mathematics
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Chapter 1

Introduction

1.1 Motivation

Many computational problems throughout the sciences exhibit rich symmetry and geometry,

especially in fields such as signal and image processing, computer vision, and microscopy.

One example is multi-reference alignment (MRA) [17, 13, 118], a problem from signal pro-

cessing [155, 123] with further relevance to structural biology [60, 144]. In this problem,

there is an unknown signal 𝜃 ∈ R𝑝 and we observe many noisy copies of it, each with its co-

ordinates cyclically shifted by a random unknown offset. More formally, we observe samples

of the form 𝑦𝑖 = 𝑅ℓ𝑖𝜃 + 𝜉𝑖 where 𝜉𝑖 is noise, ℓ𝑖 ∈ {0, 1, . . . , 𝑝− 1} is a random offset, and 𝑅ℓ

is the cyclic shift operator (𝑅ℓ𝜃)𝑖 = 𝜃𝑖−ℓ where the subscript 𝑖− ℓ is taken modulo 𝑝. Thus

we have a statistical estimation problem involving a group action: namely, the cyclic group

Z/𝑝 acts on R𝑝 via cyclic shift.

Another problem involving a group action is the reconstruction problem in cryo-electron

microscopy (cryo-EM) [5, 142, 115], an imaging technique in structural biology that was

recently awarded the 2017 Nobel Prize in Chemistry. This is a technique for determining the

3-dimensional structure of a large molecule, such as a protein. The idea is to freeze many

copies of the molecule and take a 2-dimensional image (tomographic projection) of each one.

In each image, the molecule is rotated 3-dimensionally to a random unknown orientation.

13



To make matters worse, each image is extremely noisy. The core computational challenge

in cryo-EM is to take this data and build a denoised 3-dimensional model of the molecule.

To mathematically abstract this problem, we take our unknown signal to be the density 𝜃

of the molecule, considered as a function R3 → R. We have access to observations of the

following form: our microscopy sample contains many rotated copies 𝑅𝑖𝜃 of the molecule,

where 𝑅𝑖 ∈ SO(3) are random unknown 3D rotations, and we observe the noisy projections

Π(𝑅𝑖𝜃) + 𝜉𝑖, where Π denotes tomographic projection (in a fixed direction) and 𝜉𝑖 is noise.

Thus we have a statistical estimation problem involving a group action by the 3-dimensional

rotation group SO(3).

Computational problems involving group actions arise in many other settings, including

community detection [56], time synchronization in networks [71], sensor network localiza-

tion [51], simultaneous localization and mapping in robotics [130], surface reconstruction in

computer vision [6], phase alignment in signal processing [17], and many other areas (see

e.g. [14]). These problems exhibit a range of group structure, including rotation groups,

Euclidean groups, and cyclic groups.

While various methods have been proposed to solve these types of problems in practice,

they often lack provable guarantees or strong theoretical justifications. The aim of this thesis

is to build a theoretical foundation for statistical estimation in the presence of group actions.

In particular, this includes (i) defining statistical models that capture the core difficulties of

such problems, (ii) determining the fundamental statistical limits of these models, and (iii)

finding efficient (polynomial-time) algorithms that achieve these limits. In some cases we

will see that (iii) is likely impossible due to inherent statistical-to-computational tradeoffs ; in

such cases we aim to understand the fundamental limits of efficient algorithms. Our results

are in high generality as we often work over an arbitrary compact group and allow a wide

variety of observation models.
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1.2 Models

In this thesis, we define and study two different statistical models: the Gaussian synchro-

nization model and the orbit recovery model.

1.2.1 Synchronization

In the context of group actions, the synchronization approach is to estimate the unknown

group elements, e.g. the rotation of the molecule in each image. In a synchronization problem

(see e.g. [14]), there is an unknown vector of group elements (𝑔1, . . . , 𝑔𝑛) and for each pair

𝑖 < 𝑗, we are given a noisy measurement of the relative group element 𝑔𝑖𝑔
−1
𝑗 . The goal is

to use this weak pairwise information to recover all the group elements 𝑔𝑖 (up to a global

right-multiplication by some group element, since we can only hope to recover the relative

group elements).

For example, in cryo-EM we have an unknown rotation 𝑔𝑖 ∈ SO(3) for each image.

One can compare two images to obtain weak information about their relative angle 𝑔𝑖𝑔
−1
𝑗

[147, 149, 142]. (A more precise explanation is as follows. By the Fourier projection–slice

theorem, the Fourier transforms of the tomographic projections are 2D slices of the Fourier

transform of the molecule density. Given a hypothesis as to the angles of two projections

(slices), we can predict a 1D line of intersection along which those slices should agree. By

measuring correlation along that common line, we obtain some weak information by which

to confirm or refute our hypothesized angles. Indeed, this test only depends on the relative

angle of the slices, thus providing weak information about the value of 𝑔𝑖𝑔−1
𝑗 .) We can then

use a synchronization algorithm to recover the 𝑔𝑖 using this information. Once the 𝑔𝑖 are

known, it is straightforward to reconstruct the molecule.

Synchronization problems have been studied previously and various methods for solving

them have been proposed, including spectral methods [141, 142] and semidefinite program-

ming [141, 142, 17, 18, 14, 29]. We define the first statistical observation model for a large

class of synchronization problems, allowing us to investigate the fundamental statistical lim-

its of these problems.
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For intuition, consider the following extremely simple Gaussian model for synchronization

over the group Z/2 = {±1}, which was introduced by [56] as a simplification of community

detection. One observes the 𝑛× 𝑛 matrix

𝑌 =
𝜆

𝑛
𝑔𝑔⊤ +

1√
𝑛
𝑊, (1.1)

where 𝑔 ∈ {±1}𝑛 is the signal to be recovered, 𝑊 is a GOE matrix1, and 𝜆 > 0 is a signal-

to-noise parameter. Each entry 𝑌𝑖𝑗 represents a noisy measurement of the pairwise relative

alignment 𝑔𝑖𝑔𝑗. (Note that in Z/2, 𝑔𝑗 = 𝑔−1
𝑗 .)

In Chapters 2 and 3 we present and analyze our statistical model for synchronization,

which generalizes the above model to all compact groups. For each pair of group elements,

we observe 𝑔𝑖𝑔
−1
𝑗 plus Gaussian noise. Note that in general, it is not obvious how to add

Gaussian noise to a group element; our solution, which we believe is the most natural one,

uses representation theory to represent group elements as matrices. Our model captures

a wide variety of observation models, allowing for different signal strengths on different

frequency channels (which correspond to irreducible representations of the group).

1.2.2 Orbit recovery

For some applications, such as cryo-EM and MRA, the synchronization model has some

shortcomings. For instance, in cryo-EM there is independent noise on each image (group el-

ement), whereas our Gaussian synchronization model has independent noise on each pairwise

comparison of group elements. An even more problematic flaw is that when the noise level is

large, no consistent estimation of the group elements 𝑔𝑖 is possible [7]. This is because even

if we knew the true molecule structure, each individual image is too noisy for us to be able

to reliably determine the associated rotation. It is the high-noise regime that is practically

relevant for many applications, including cryo-EM, where the presence of large noise is a

primary obstruction to current techniques [140]. Thus, we should not aim to estimate the

1Gaussian orthogonal ensemble: a random symmetric matrix with off-diagonal entries 𝒩 (0, 1), diagonal
entries 𝒩 (0, 2), and all entries independent (up to symmetry).
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group elements but instead to directly estimate the signal of interest (the molecule). This

idea originates from [13] in the context of MRA.

The considerations above motivate studying the following orbit recovery model which

more directly captures problems like cryo-EM. Fix a compact group 𝐺 acting (by orthogonal

transformations) on a finite-dimensional vector space 𝑉 = R𝑝. Let 𝜃 ∈ 𝑉 be the unknown

signal. We receive noisy measurements of its orbit as follows: for 𝑖 = 1, . . . , 𝑛 we observe a

sample of the form

𝑦𝑖 = 𝑔𝑖 · 𝜃 + 𝜉𝑖

where 𝑔𝑖 is drawn randomly from 𝐺 (according to Haar measure, the “uniform distribution”

on the group) and 𝜉𝑖 ∼ 𝒩 (0, 𝜎2𝐼) is noise. Since e.g. we cannot hope to distinguish between

different rotations of the same molecule, the goal is to recover the orbit {𝑔 · 𝜃 : 𝑔 ∈ 𝐺} of

𝜃, i.e. to output a vector in (or close to) the orbit.

This model is a straightforward generalization of a popular model for MRA (which, recall,

is the special case where 𝐺 is the cyclic group Z/𝑝 acting via cyclic shifts) [17, 13, 118, 35].

The above model, already a rich object of study, neglects the tomographic projection in

cryo-EM; we will also study a generalization of the problem which allows such a projection.

We will also consider the additional extension of heterogeneity [83, 93, 94, 35], where mixtures

of signals are allowed: we have 𝐾 signals 𝜃1, . . . , 𝜃𝐾 , and each sample 𝑦𝑖 = 𝑔𝑖 · 𝜃𝑘𝑖 + 𝜉𝑖

comes from a random choice 1 ≤ 𝑘𝑖 ≤ 𝐾 of which signal is observed. This extension is of

paramount importance for cryo-EM in practice, since the laboratory samples often contain

one protein in multiple conformations, and understanding the range of conformations is key

to understanding the function of the protein.

1.3 Summary of contributions

In this section we summarize the main results in each chapter of this thesis.

17



1.3.1 Synchronization: analysis via statistical physics

In Chapter 2 we define our Gaussian synchronization model and analyze its statistical and

computational limits using methods from statistical physics, including the approximate mes-

sage passing framework.

It is well known that there are deep connections between Bayesian inference and statisti-

cal physics (see e.g. [154]). The core connection is that in inference problems, the posterior

distribution (of the unknown signal given the observed data) often follows a Gibbs (or Boltz-

mann) distribution and thus behaves similarly to a disordered physical system (such as a

magnet or a spin glass). Various tools from statistical physics, such as the replica and cavity

methods, can be applied to Bayesian inference problems. These often come in the form

of non-rigorous heuristics that give extremely precise predictions about the behavior of the

system. Similar to physical systems, Bayesian inference problems often exhibit phase tran-

sitions, i.e. sharp boundaries in parameter space that separate regions in which the problem

is computationally easy, computationally hard, or statistically impossible.

Ideas from statistical physics have inspired a powerful framework for algorithm design,

known as approximate message passing (AMP). The first AMP algorithm was proposed by

[63] and later rigorously analyzed by [23, 81]. Since then, AMP algorithms have been derived

in numerous settings and have often been shown to achieve optimal statistical performance.

In particular, for the simple Gaussian model for Z/2 synchronization (1.1), AMP is known

to achieve statistically optimal mean squared error (in the limit 𝑛 → ∞) for every value of

the signal-to-noise parameter 𝜆 [56].

Recall that our Gaussian synchronization model is a generalization of (1.1). It is therefore

natural for us to attempt to extend the AMP algorithm of [56] to our more general setting.

We do this in Chapter 2, leading to a sharp analysis of both the statistical and computational

limits of the model. We expect that our AMP algorithm achieves optimal performance among

all polynomial-time algorithms. However, unlike the Z/2 case, we predict that under certain

conditions there are statistical-to-computational gaps, i.e. an inefficient estimator outperforms

AMP. Most of the results in this chapter are non-rigorous, but are based on well-established
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ideas from statistical physics, many of which have been rigorously verified in related settings.

1.3.2 Synchronization: contiguity and rigorous bounds

In Chapter 3 we complement the above non-rigorous results with some rigorous (albeit

less sharp) statistical lower and upper bounds. A central concept to this chapter is the

notion of contiguity [92] which captures whether two (sequences of) distributions cannot be

consistently distinguished. Associated with contiguity is a particular second moment method

that we use to show that the Gaussian synchronization model is statistically impossible in

certain regimes. We also give statistical upper bounds by analyzing an inefficient exhaustive

search algorithm.

1.3.3 Orbit recovery: statistical limits

In Chapter 4 we determine the statistical sample complexity of the orbit recovery problem

in the high-noise regime, i.e. we determine how the number of samples 𝑛 needs to scale with

the noise variance 𝜎2 in the limit 𝜎2 → ∞. Here we generalize prior work on the special

case of MRA (cyclic shifts) which shows that the method of invariants achieves optimal

sample complexity [13]. The idea behind the method of invariants is to use the samples

to estimate invariant features of the signal which are unaffected by the group action. This

leaves us with an algebraic question of determining how many invariants are needed in order

to uniquely determine the signal (up to orbit). Our main contribution is a method to answer

this question using tools from invariant theory and algebraic geometry. One result of this

is that similarly to MRA, cryo-EM requires invariants up to degree 3 and thus has sample

complexity 𝑛 = Θ(𝜎6).

There are some caveats to this result. For instance, instead of unique recovery of the

signal, we only show list recovery wherein we output a finite list of candidate solutions, one

of which is close to the true orbit. Furthermore, our recovery procedure is inefficient, leaving

open the question of finding a polynomial-time algorithm for cryo-EM.
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1.3.4 Orbit recovery: computational limits

In Chapter 5 we discuss issues of computational efficiency for solving the orbit recovery

problem. We first survey existing results on provable efficient recovery, which have been

restricted to the case of MRA. We then give a general conjecture about what we expect

are the fundamental computational limits of orbit recovery. Finally we prove a result on

heterogeneous MRA, showing that if the signals are random then polynomial-time recovery

is possible up to the conjectured threshold.

1.4 Preliminaries on groups and representations

In this section we review some basic concepts from group theory and representation theory

that will be essential in the coming chapters. Further preliminaries will be covered as needed

in the individual chapters.

For a standard reference on this material, we refer the reader to e.g. [40]. We assume the

reader is familiar with the algebraic notion of a group. We will restrict our study to compact

groups, which are algebraically well-behaved in many ways.

Definition 1.4.1. A topological group is a group 𝐺 along with a topology on 𝐺 for which

the group’s binary operator and inverse function are continuous. A compact group is a

topological group that is compact with respect to its topology.

Examples of compact groups include all finite groups (such as the cyclic group Z/𝑝 for

any positive integer 𝑝), and compact Lie groups such as SO(2) (2 × 2 rotation matrices),

SO(3) (3× 3 rotation matrices), and U(1) (the unit circle in C; note that U(1) is isomorphic

to SO(2)).

One crucial property of compact groups is that they admit a Haar measure. This can

be thought of as the ‘uniform distribution’ on the group. (For finite groups, Haar measure

coincides with the uniform distribution.)

Definition 1.4.2. For a compact group 𝐺, Haar measure is the unique positive measure

𝜇 on 𝐺 that is invariant under left and right translation by any group element, normalized
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so that 𝜇(𝐺) = 1. Formally, for every 𝑔 ∈ 𝐺 and every Borel subset 𝑆 ⊆ 𝐺, we have

𝜇(𝑔𝑆) = 𝜇(𝑆) = 𝜇(𝑆𝑔).

We will use some basic notions from representation theory.

Definition 1.4.3. A (linear) representation of a group 𝐺 over a field 𝑘 (e.g. R or C) is

a homomorphism 𝜌 : 𝐺 → 𝐺𝐿(𝑉 ) where 𝑉 is a vector space over 𝑘. A representation is

denoted by (𝑉, 𝜌), or simply by 𝜌.

We will be exclusively concerned with finite-dimensional representations in which 𝑉 is a

finite-dimensional vector space 𝑘𝑝 for some positive integer 𝑝 (called the dimension of the

representation). In this case 𝐺𝐿(𝑉 ) is the set of invertible 𝑝× 𝑝 matrices with entries in 𝑘.

Thus we should think of a representation as a way to assign a matrix to each group element

(in a way that respects group multiplication and inverse).

Definition 1.4.4. A representation (𝑉, 𝜌) gives rise to a linear group action. For 𝑔 ∈ 𝐺 and

𝑥 ∈ 𝑉 , the action of 𝑔 on 𝑥 is given by 𝑔 · 𝑥 , 𝜌(𝑔)𝑥.

Definition 1.4.5. A subrepresentation of a representation (𝑉, 𝜌) is given by a subspace 𝑊

of 𝑉 for which 𝑔 · 𝑥 ∈ 𝑊 for all 𝑔 ∈ 𝐺 and all 𝑥 ∈ 𝑊 . This is a representation (𝑊,𝜙) where

𝜙(𝑔) ∈ 𝐺𝐿(𝑊 ) is the restriction of 𝜌(𝑔) to 𝑊 .

Definition 1.4.6. A representation is irreducible if it has only two subrepresentations,

namely {0} and itself. Otherwise it is reducible.

Definition 1.4.7. The trivial representation is the 1-dimensional representation in which

every group element acts as the constant 1.

We will often restrict ourselves to working with representations that are unitary (or

orthogonal), which is justified by the following.

Fact 1.4.8. Let 𝐺 be a compact group. For any finite-dimensional representation (𝑉, 𝜌) of

𝐺 over C, there is a basis for 𝑉 such that the representation is unitary, i.e. 𝜌(𝑔) is a unitary

matrix for every 𝑔 ∈ 𝐺. Similarly, if the representation is over R, there is a basis in which

it is orthogonal (𝜌(𝑔) is an orthogonal matrix).
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Chapter 2

Synchronization: analysis via statistical

physics

This chapter is adapted (with minor modifications) from joint work with Amelia Perry,

Afonso Bandeira, and Ankur Moitra [121].

2.1 Introduction

Among the most common data problems in the sciences and machine learning is that of

recovering low-rank signal present in a noisy matrix. The standard tool for such problems

is principal component analysis (PCA), which estimates the signal by the top eigenvectors.

One example out of many is in macroeconomics, where large, noisy correlation matrices

reveal useful volatility and yield predictions in their top eigenvectors [99, 65]. However,

many particular applications involve extra structure such as sparsity in the signal, and this

structure is ignored by conventional PCA, leading to sub-optimal estimates. Thus, a major

topic of recent interest in machine learning is to devise efficient algorithms for sparse PCA

[10, 28], non-negative PCA [110], general Bayesian PCA with a prior [30], and other variants.

These problems pose a major computational challenge. While significant advances have

appeared, it is also expected that there are fundamental gaps between what is statistically
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possible and what can be done efficiently [27, 96, 97, 101], and thus carried out in practice

on very large datasets that are now prevalent.

A number of low-rank recovery problems involve symmetry and group structure in an

integral way, and have been studied together under the general heading of synchronization

problems. Broadly, the goal of such problems is to recover a list of group elements 𝑔𝑢

from noisy pairwise measurements of the relative alignments 𝑔𝑢𝑔
−1
𝑣 . Such problems arise in

community detection [56], cryo-electron microscopy [142], time synchronization in networks

[71], sensor network localization [51], simultaneous localization and mapping in robotics

[130], surface reconstruction in computer vision [6], phase alignment in signal processing

[17], and many other settings [14]. These problems exhibit a range of group structure,

including rotation groups, Euclidean groups, and cyclic groups. Among the most common

approaches to such problems is to linearize the observations into a matrix and then take

top eigenvectors (“spectral methods”); thus, synchronization is often studied as a low rank

recovery problem, with a great richness of extra structure to be exploited. We now examine

a few of these problems in detail, along with the algorithmic challenges that they pose.

Community detection as Z/2 synchronization. The problem of partitioning a graph

into two well-connected subcommunities can be viewed as synchronization over the group

{±1} ∼= Z/2: each vertex has a latent group element 𝑔𝑢 ∈ {±1}, its community identity, and

each edge is a noisy measurement of the relative status 𝑔𝑢𝑔
−1
𝑣 [14]. Spectral methods have

a long history of use in such community detection and minimum cut problems (e.g. [104]);

here one hopes to recover the community structure as the second eigenvector of an adjacency

or Laplacian matrix. However, this approach breaks down in sparse graphs: localized noise

eigenvectors associated to high-degree vertices dominate the spectrum. This is essentially a

failure of PCA to adequately exploit the problem structure, as these localized eigenvectors

lie far from the constraint that the truth is entrywise {±1}. A number of more structured

approaches have been shown to improve over PCA, including modified spectral methods

[103, 112, 132, 91, 90] and semidefinite programming [2, 75, 74, 1, 111]. A major algorithmic

challenge in this problem is to obtain an efficient algorithm that optimally exploits this
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structure, to obtain the minimum possible estimation error. It is widely believed that belief

propagation achieves this limit, with significant progress in this direction [53, 113, 56].

Gaussian Z/2 synchronization. The following Gaussian model of Z/2 synchronization

was introduced by [56] as a simplification of community detection. One observes

𝑌 =
𝜆

𝑛
𝑥𝑥⊤ +

1√
𝑛
𝑊,

where 𝑥 ∈ {±1}𝑛 is the signal to be recovered, 𝑊 is a GOE matrix1, and 𝜆 > 0 is a signal-

to-noise parameter. Each entry of 𝑌 represents a noisy measurement of the pairwise relative

alignment 𝑥𝑢𝑥𝑣.

This estimation problem may be approached through ordinary PCA (top eigenvector),

which one might perform by initializing with a small random guess 𝑣 and repeatedly assigning

𝑣 ← 𝑌 𝑣; this is the method of power iteration. Random matrix theory implies that in the

limit 𝑛→∞, this method achieves a nontrivial result as soon as 𝜆 > 1 [69, 25]; it is known

that this threshold is tight in the sense that nontrivial estimation is information-theoretically

impossible when 𝜆 ≤ 0 [56, 120]. However, PCA does not achieve the minimum possible

estimation error when 𝜆 > 1.

Aiming to better exploit group structure, Boumal [34] proposes2 to iterate 𝑣 ← sgn(𝑌 𝑣),

where sgn rounds each entry to ±1, thus projecting to the group. This method is highly

efficient, and is moreover observed to produce a better estimate than PCA once the signal-to-

noise parameter 𝜆 is sufficiently large. However, this method does not appear to produce a

meaningful estimate until 𝜆 is somewhat larger3 than 1. This behavior poses two challenges:

can we devise an efficient iterative method combining the best features of PCA and the

projected power method, which outperforms both statistically? As studied by [56], iterative

methods based on approximate message passing are very effective in this setting, achieving

1Gaussian orthogonal ensemble: a random symmetric matrix with off-diagonal entries 𝒩 (0, 1), diagonal
entries 𝒩 (0, 2), and all entries independent (up to symmetry).

2Boumal’s paper targets the close variant of 𝑈(1) synchronization. Projected power methods have ap-
peared earlier, e.g. [110]. Their application to synchronization problems also appears in [41].

3A heuristic analysis similar to Section 2.6.3 suggests that 𝜆 >
√︀

𝜋/2 ≈ 1.253 is required.
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an optimal estimation error that beats both methods discussed above (Figure 2-1). Moving

forward, can we find analogous iterative methods for groups other than Z/2, and for more

complicated observation models?

Figure 2-1: Comparison of iterative algorithms for Gaussian Z/2 synchro-
nization; log-error ln(1 − |⟨𝑥, ̂︀𝑥⟩/𝑛|) versus SNR 𝜆. The three curves are
projected power iteration (green), PCA (blue), and the AMP algorithm
of the present thesis (black). (The special case of our AMP algorithm for
Z/2 appears in [56].) Each data point is an average of 200 trials with
𝑛 = 2000 vertices.

Angular synchronization and Gaussian 𝑈(1) synchronization. Singer [141] intro-

duced a PCA approach for angular synchronization, a 2D analogue of the problem above

with symmetry over 𝑈(1) (unit-norm complex numbers: 𝑧 ∈ C with |𝑧| = 1), in which one

estimates the orientations of noisy, randomly rotated copies of an unknown image. Again, a

Gaussian simplification has been studied in [34]: one observes a matrix

𝑌 =
𝜆

𝑛
𝑥𝑥* +

1√
𝑛
𝑊,

where 𝑥 ∈ 𝑈(1)𝑛 is the signal to be recovered, a vector of unit complex numbers, and 𝑊 is a

GUE matrix. Boumal’s algorithm now iterates 𝑣 ← 𝑓(𝑌 𝑣), where 𝑓 divides each entry by its
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norm, thus projecting to the unit circle. Again this method beats PCA only in a sufficiently

high SNR regime, leaving open the question: can we achieve optimal estimation through an

almost-linear-time, iterative algorithm? Results are known for slower convex programs [16].

The Gaussian model above is a rather drastic simplification of the problem of synchroniz-

ing entire images, however. A more elaborate Gaussian model (which the author and others

first introduced in [120]) is the following: instead of observing only the matrix 𝑌 as above,

suppose we are given matrices corresponding to different Fourier modes:

𝑌1 =
𝜆1

𝑛
𝑥𝑥* +

1√
𝑛
𝑊1,

𝑌2 =
𝜆2

𝑛
𝑥2(𝑥2)* +

1√
𝑛
𝑊2,

...

𝑌𝐾 =
𝜆𝐾

𝑛
𝑥𝐾(𝑥𝐾)* +

1√
𝑛
𝑊𝐾 ,

where 𝑥𝑘 denotes entrywise power, and 𝑊𝑘 are independent GUE matrices. Due to Fourier

theory, a very large class of measurement models for 𝑈(1) synchronization decomposes into

matrix-based observations on different frequencies, in a manner resembling the model above.

With a PCA-based approach, it is not clear how to effectively couple the information

from these matrices to give a substantially better estimate than could be derived from only

one. Indeed, many spectral approaches to this synchronization problem and others apply

PCA to only the first Fourier mode, discarding a great deal of useful data on other modes.

Bandeira et al. [18] introduced a very general semidefinite relaxation for synchronization

problems such as above, but its performance remains unclear even empirically: while this

convex program can be solved in polynomial time, it is large enough to make experiments or

application difficult. Can we hope for some efficient iterative algorithm to strongly leverage

data from multiple ‘frequencies’ or ‘channels’ such as this?

Cryo-electron microscopy. Perhaps the biggest concrete goal in the study of synchro-

nization is the orientation problem in cryo-electron microscopy (cryo-EM), a modern alter-
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native to x-ray crystallography for imaging large biomolecules. One is given many noisy

2D projections (microscopy images) of an unknown molecule, each taken from a different

unknown 3D orientation. The goal is to estimate the orientations, in order to assemble the

images into an estimate of the molecule structure [142]. Thus, one is tasked with learning

elements 𝑔𝑢 of 𝑆𝑂(3), one for each image 𝑢, based on some loss function derived from the

observed images. This loss function depends only on the relative alignments 𝑔𝑢𝑔−1
𝑣 , as there

is no a priori reference frame. One previous approach to this problem, due to [43, 142],

produces a matrix of pairwise image comparisons, and then attempts to extract the rota-

tions 𝑔𝑢 from the top eigenvectors of this matrix. However, it is reasonable to imagine that

this approach could be significantly sub-optimal, for the reasons seen above: PCA does not

exploit the significant group structure of the signal, and by linearizing into a single matrix,

PCA only exploits the first “Fourier mode” of the observations, as in the previous problem.

Another method used in practice for cryo-EM and related problems is alternating mini-

mization, which alternates between estimating the rotations by aligning the images with a

previous guess of the molecule structure, and then estimating the molecule structure from

the images using these rotations. This method only appears to succeed given a strong initial

guess of the molecule structure, and then it is unclear whether the final estimate mainly

reflects the observations or simply the initial guess, leading to a problem of model bias; see

e.g. [42]. In this thesis we are interested in de novo estimation without a substantial initial

guess, steering clear of this pitfall.

The complexity of the observation model and the group present a host of challenges, but

centrally: can an improved iterative algorithm for the previous synchronization problems

generalize to the noncommutative setting of groups such as 𝑆𝑂(3)?

In this chapter we present an iterative algorithm to meet all of the challenges above.

Our algorithm aims to solve a general formulation of the synchronization problem: it can

apply to multiple-frequency problems for a large class of observation models, with symmetry

over any compact group. Our approach is statistically powerful, empirically providing a

better estimate than both PCA and the projected power method on 𝑈(1) synchronization,
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and leveraging multiple frequencies to give several orders of magnitude improvement in

estimation error in experiments (see Figures 2-4 and 2-5). Indeed, we conjecture based on

ideas from statistical physics that in many regimes our algorithm is statistically optimal,

providing a minimum mean square error (MMSE) estimator asymptotically as the matrix

dimensions become infinite (see Section 2.8). Finally, our approach is highly efficient, with

each iteration taking time linear in the (matrix) input, and with roughly 15 iterations sufficing

for convergence in experiments.

Our algorithm follows the framework of approximate message passing (AMP), based on

belief propagation on graphical models [117] and the related cavity method in statistical

physics [106]. Following a general blueprint, AMP algorithms have previously been derived

and analyzed for compressed sensing [63, 64, 23, 81], sparse PCA [57], non-negative PCA

[110], cone-constrained PCA [59], planted clique [58] and general structured PCA [125]. In

fact, AMP has already been derived for Z/2 synchronization under a Gaussian observation

model [56], and our algorithm will generalize this one to all compact groups. A striking

feature of AMP is that its asymptotic performance can be captured exactly by a particular

fixed-point equation called state evolution, which has enabled the rigorous understanding of

its performance on some problems [23, 81]. AMP is provably statistically optimal in many

cases, including Gaussian Z/2 synchronization (modulo a technicality whereby the proof

supposes a small warm-start) [56].

AMP algorithms frequently take a form similar to the projected power method of Boumal

described above, alternating between a matrix–vector product with the observations and an

entrywise nonlinear transformation, together with an extra ‘Onsager’ correction term. In

the case of Z/2 or 𝑈(1) synchronization, we will see that the AMP derivation reproduces

Boumal’s algorithm, except with the projection onto the unit circle replaced by a soft,

sigmoid-shaped projection function to the unit disk (see Figure 2-2), with the magnitude

maintaining a quantitative measure of confidence. A “low-temperature limit” of AMP then

recovers exactly Boumal’s algorithm, while the “high-temperature limit” is ordinary PCA; we

will see that belief propagation suggests an optimal intermediate temperature based on the
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signal-to-noise ratio. Integrating the usual AMP blueprint with the representation theory

of compact groups, we obtain a broad generalization of this method, to synchronization

problems with multiple frequencies and noncommutative groups such as 𝑆𝑂(3). In full

generality, the nonlinear transformation has a simple interpretation through representation

theory and the exponential function.

The rest of this chapter is organized as follows. We begin in Section 2.2 with an outline

of our methods in the simplified cases of synchronization over Z/2 and 𝑈(1), motivating our

approach from a detailed discussion of prior work and its shortfalls. In Section 2.3 we provide

our general algorithm and the general model for which it is designed. Several experiments

on this Gaussian model and other models are presented in Section 2.4, demonstrating strong

empirical performance. We then offer two separate derivations of our AMP algorithm: in

Section 2.5, we derive our algorithm as a simplification of belief propagation, and then in

Section 2.6 we give an alternative self-contained derivation of the nonlinear update step and

use this to provide a non-rigorous analysis of AMP (based on standard assumptions from

statistical physics). In particular, we derive the state evolution equations that govern the

behavior of AMP, and use these to identify the threshold above which AMP achieves non-

trivial reconstruction. Namely, we see that AMP has the same threshold as PCA (requiring

the SNR 𝜆 to exceed 1 on at least one frequency), but AMP achieves considerably better

recovery error above the threshold. In Section 2.7 we argue for the correctness of the above

non-rigorous analysis, providing both numerical and mathematical evidence. It is known

that inefficient estimators can beat the 𝜆 = 1 threshold (see Chapter 3) but we conjecture

that no efficient algorithm is able to break this barrier, thus concluding in Section 2.8 with an

exploration of statistical-to-computational gaps that we expect to exist in synchronization

problems, driven by ideas from statistical physics.
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2.2 Intuition: iterative methods for Z/2 and 𝑈(1) syn-

chronization

We begin with a discussion of synchronization methods over the cyclic group Z/2 = {±1}

and the group of unit-norm complex numbers (or 2D rotations) 𝑈(1). These examples will

suffice to establish intuition and describe much of the novelty of our approach, while avoiding

the conceptual and notational complication of representation theory present in the general

case. Sections 2.2.1, 2.2.2, and some of 2.2.3 discuss prior work on these problems in more

depth, while Sections 2.2.3 and 2.2.4 develop a special case of our algorithm.

2.2.1 Z/2 synchronization

The problem of Gaussian Z/2 synchronization is to estimate a uniformly drawn signal 𝑥 ∈

{±1}𝑛 given the matrix

𝑌 =
𝜆

𝑛
𝑥𝑥⊤ +

1√
𝑛
𝑊,

where 𝑊 is a symmetric matrix whose off-diagonal4 entries are distributed independently

(up to symmetry) as 𝒩 (0, 1), and 𝜆 > 0 is a signal-to-noise parameter. With this scaling,

the signal and noise are of comparable size in spectral norm; we can not hope to recover 𝑥

exactly, but we can hope to produce an estimate ̂︀𝑥 ∈ {±1} that is correlated nontrivially

with 𝑥, i.e. there exists 𝜀 > 0 (not depending on 𝑛) such that 1
𝑛2 ⟨𝑥, ̂︀𝑥⟩2 > 𝜀 with probability

1− 𝑜(1) as 𝑛→∞. As 𝑥𝑥⊤ = (−𝑥)(−𝑥)⊤, we can only hope to estimate 𝑥 up to sign; thus

we aim to achieve a large value of ⟨𝑥, ̂︀𝑥⟩2. We now review three algorithmic methods for this

problem.

Spectral methods. With the scaling above, the spectral norm of the signal 𝜆
𝑛
𝑥𝑥⊤ is 𝜆,

while that of the noise 1√
𝑛
𝑊 is 2. By taking the top eigenvector of 𝑌 , 𝑥 may be estimated

4The diagonal entries are irrelevant because the diagonal entries of 𝑌 contain no information about 𝑥.
Various conventions for the diagonal entries can be taken, such as 𝑌𝑖𝑖 = 0 or 𝑊𝑖𝑖 ∼ 𝒩 (0, 2). Any such
reasonable choice of diagonal entries will have negligible effect on the algorithms discussed here, e.g. the
diagonal component of 𝑌 is 𝑜(1) in spectral norm.
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with significant correlation provided that 𝜆 is a large enough constant.

Specifically, the generative model for 𝑌 above is a special case of the spiked Wigner model,

and the eigenvalues and eigenvectors of such spiked models are among the main objects of

study in random matrix theory. When 𝜆 > 1, the (unit norm) top eigenvector 𝑣max(𝑌 )

correlates nontrivially with 𝑥; more specifically, as 𝑛 → ∞, we have 1
𝑛
⟨𝑥, 𝑣max(𝑌 )⟩2 →

1 − 1/𝜆2 in probability [69, 25]. When 𝜆 ≤ 1, this squared correlation tends to zero; in

fact, this is known to be true of all estimators [56, 120], reflecting a sharp statistical phase

transition.

Note that a top eigenvector may be computed through power iteration as follows: an

initial guess 𝑣(0) is drawn randomly, and then we iteratively compute 𝑣(𝑡) = 𝑌 𝑣(𝑡−1), rescaling

the result as appropriate. Thus each entry is computed as 𝑣
(𝑡)
𝑢 =

∑︀
𝑤 𝑌𝑢𝑤𝑣

(𝑡−1)
𝑤 ; we can

imagine that each entry 𝑤 sends a ‘message’ 𝑌𝑢𝑤𝑣
(𝑡−1)
𝑤 to each entry 𝑢 – the ‘vote’ of entry 𝑤

as to the identity of entry 𝑢 – and then each entry sums the incoming votes to determine its

new value. The result has both a sign, reflecting the weighted majority opinion as to whether

that entry should ultimately be +1 or −1, and also a magnitude, reflecting a confidence and

serving as the weight in the next iteration. Thus we can envision the spectral method as a

basic “message-passing algorithm.”

While this approach is effective as quantified above, it would seem to suffer from two

drawbacks:

∙ the spectral method is rotation-invariant, and thus cannot exploit the entrywise ±1

structure of the signal;

∙ the vertex weights can grow without bound, potentially causing a few vertices to exert

undue influence.

Indeed, these drawbacks cause major issues in the stochastic block model, a variant of the

model above with the Gaussian observations replaced by low-probability Bernoulli observa-

tions, usually envisioned as the adjacency matrix of a random graph. Here a few sporadically

high-degree vertices can dominate the spectral method, causing asymptotically significant

losses in the statistical power of this approach.
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Projected power iteration. Our next stepping-stone toward AMP is the projected power

method studied by [34, 41], a variant of power iteration that exploits entrywise structure.

Here each iteration takes the form 𝑣(𝑡) = sgn(𝑌 𝑣(𝑡−1)), where the sign function sgn : R →

{±1} applies entrywise. Thus each iteration is a majority vote that is weighted only by the

magnitudes of the entries of 𝑌 ; the weights do not become more unbalanced with further

iterations. Further, this algorithm is basis-dependent in a way that plausibly exploits the

±1 structure of the entries.

Empirically, this algorithm obtains better correlation with the truth, on average, when

𝜆 > 2.4 approximately; see Figure 2-3. However, for very noisy models with 1 < 𝜆 < 2.4,

this method appears weaker than the spectral method. The natural explanation for this

weakness is that this projected power method forgets the distinction between a 51% vote

and a 99% vote, and thus is over-influenced by weak entries. This is particularly problematic

for low signal-to-noise ratios 𝜆, for which 51% votes are common. In fact, a heuristic analysis

similar to Section 2.6.3 suggests that this method does not achieve the correct threshold for

𝜆, failing to produce nontrivial correlation with the truth whenever 𝜆 ≤
√︀

𝜋/2 ≈ 1.253.

Soft-threshold power iteration. A natural next step is to consider iterative algorithms

of the form 𝑣(𝑡) = 𝑓(𝑌 𝑣(𝑡−1)), where 𝑓 applies some function R→ [−1, 1] entrywise (by abuse

of notation, we will also denote the entrywise function by 𝑓). Instead of the identity function,

as in the spectral method, or the sign function, as in the projected power method, we might

imagine that some continuous, sigmoid-shaped function performs best, retaining some sense

of the confidence of the vote without allowing the resulting weights to grow without bound.

It is natural to ask what the optimal function for this purpose is, and whether the resulting

weights have any precise meaning.

Given the restriction to the interval [−1, 1], one can imagine treating each entry as a

sign with confidence in a more precise way, as the expectation of a distribution over {±1}.

At each iteration, each entry 𝑢 might then obtain the messages 𝑌𝑢𝑤𝑣
(𝑡−1)
𝑤 from all others,

and compute the posterior distribution, summarized as an expectation 𝑣
(𝑡)
𝑢 . As one can

compute, this corresponds to the choice of transformation 𝑓(𝑡) = tanh(𝜆𝑡) where 𝜆 is the
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signal-to-noise parameter from above (see Figure 2-2). The resulting algorithm is similar to

[56].
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Figure 2-2: Soft threshold functions used by AMP. The solid line is
𝑓(𝑡) = tanh(𝑡), used for Z/2 synchronization. The dashed line is
𝑓(𝑡) = 𝐼1(2𝑡)/𝐼0(2𝑡), used for 𝑈(1) synchronization with one frequency.
(𝐼𝑘 denotes modified Bessel functions of the first kind.)

2.2.2 Belief propagation and approximate message passing

The soft-projection algorithm above may remind the reader of belief propagation, due to [117]

in the context of inference, and to [106] as the cavity method in the context of statistical

physics. We may envision the problem of estimating 𝑥 as probabilistic inference over a

graphical model. The vertices of the model represent the unknown entries of 𝑥, and every

pair of vertices 𝑢,𝑤 participates in an edge interaction based on the matrix entry 𝑌𝑢𝑤 = 𝑌𝑤𝑢.

Specifically, it may be computed that the posterior distribution for 𝑥 ∈ {±1}𝑛 after observing

𝑌 is given by

Pr(𝑥) ∝
∏︁
𝑢<𝑤

exp(𝜆𝑌𝑢𝑤𝑥𝑢𝑥𝑤),

which is precisely the factorization property that a graphical model captures.

Given such a model, belief propagation proceeds in a fashion reminiscent of the previ-

ous algorithm: each vertex 𝑤 sends a message to each neighbor 𝑢 encoding the posterior

distribution of 𝑥𝑢 based on the previous distribution of 𝑥𝑤 and the direct interaction 𝜆𝑌𝑢𝑤.
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Each vertex 𝑢 then consolidates all incoming messages into a new ‘posterior’ distribution on

𝑥𝑢 given these messages, computed as if the messages were independent. However, belief

propagation introduces a correction to this approach: rather than letting information passed

from 𝑤 to 𝑢 propagate back to 𝑤 on the next iteration, belief propagation is designed to

pass information along only those paths that do not immediately backtrack. Specifically, at

each iteration, the message from 𝑤 to 𝑢 is based on only the synthesis of messages (to 𝑤)

from all vertices except 𝑢 from the previous iteration.

This algorithm differs from the iterative methods presented above, both in this non-

backtracking behavior, and in the fact that the transformation from the distribution at 𝑤 to

the message 𝑤 → 𝑢 is not necessarily linear (as in the multiplication 𝑌𝑢𝑤𝑣𝑤 above). Both of

these differences can be reduced by passing to the framework of approximate message passing

[63], which simplifies belief propagation in dense models with weak interactions, through the

following two observations (inspired by [145] in the theory of spin glasses):

∙ As the interaction 𝜆𝑌𝑢𝑤 is small, scaling as 𝑂(1/
√
𝑛) as 𝑛 → ∞, we may pass to

an expansion in small 𝑌𝑢𝑤 when computing the message 𝑤 → 𝑢 from the mean 𝑤.

In this example, we find that the message 𝑤 → 𝑢 should be Rademacher with mean

𝜆𝑌𝑢𝑤𝑣
(𝑡−1)
𝑤 +𝑂(𝑌 2

𝑢𝑤), where 𝑣
(𝑡−1)
𝑤 is the mean of the distribution for 𝑥𝑤 in the previous

iteration. This linear expansion ensures that the main message-passing step can be

expressed as a matrix–vector product.

∙ Rather than explicitly computing non-backtracking messages, which is computationally

more involved, we may propagate the more naïve backtracking messages and then

subtract the bias due to this simplification, which concentrates well. This correction

term is called an Onsager correction. If vertex 𝑤 passes messages to all neighbors based

on its belief at iteration 𝑡 − 2, and then all of these neighbors send return messages

based on their new beliefs at time 𝑡 − 1, then when updating the belief for vertex 𝑤

at time 𝑡, one can explicitly subtract off the ‘reflected’ influence of the previous belief

at time 𝑡 − 2. It turns out that this is the only correction necessary: all other error

contributions (e.g. 3-cycles) are 𝑜(1).
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Following these simplifications, one can arrive at an approximate message passing (AMP)

algorithm for Z/2 synchronization:

Algorithm 2.2.1 (AMP for Z/2 synchronization [56]).

∙ Initialize 𝑣(0) to small (close to zero) random values in [−1, 1]. Initialize 𝑣(−1) = 0.

∙ Iterate for 1 ≤ 𝑡 ≤ 𝑇 :

– Set 𝑐(𝑡) = 𝜆𝑌 𝑣(𝑡−1) − 𝜆2(1 − ⟨(𝑣(𝑡−1))2⟩)𝑣(𝑡−2), the Onsager-corrected sum of in-

coming messages.

– Set 𝑣
(𝑡)
𝑢 = tanh(𝑐

(𝑡)
𝑢 ) for each vertex 𝑢, the new estimated posterior mean.

∙ Return ̂︀𝑥 = 𝑣(𝑇 ) (or the approximate MAP estimate ̂︀𝑥 = sgn(𝑣(𝑇 )) if a proper estimate

in {±1}𝑛 is desired).

Here ⟨(𝑣(𝑡−1))2⟩ denotes the average of the squared entries of 𝑣(𝑡−1). Detailed derivations of

this algorithm appear in Sections 2.5 and 2.6 in much higher generality.

In the setting of Z/2 synchronization, an algorithm equivalent to the above approach

appears in [56], where a statistical optimality property is proven: if AMP is warm-started

with a state 𝑣(0) with nontrivial correlation with the truth, then it converges to an estimate of

𝑥 that achieves minimum mean-squared error (MMSE) asymptotically as 𝑛→∞. The warm-

start requirement is technical and likely removable: if AMP is initialized to small randomness,

with trivial correlation 𝑂(1/
√
𝑛) with the truth, then its early iterations resemble PCA and

should produce nontrivial correlation in 𝑂(log 𝑛) iterations. The statistical strength of AMP

is confirmed empirically, as it appears to produce a better estimate than either PCA or the

projected power method, for every 𝜆 > 1; see Figure 2-3.

2.2.3 AMP for Gaussian 𝑈(1) synchronization with one frequency

As a first step toward higher generality, consider the following Gaussian synchronization

model over the unit complex numbers 𝑈(1). The goal is to estimate a uniformly drawn
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signal 𝑥 ∈ 𝑈(1)𝑛 given the matrix

𝑌 =
𝜆

𝑛
𝑥𝑥* +

1√
𝑛
𝑊,

where 𝑊 is a Hermitian matrix whose entries are distributed independently (up to Hermitian

symmetry) as C𝒩 (0, 1), the complex normal distribution given by 𝒩 (0, 1/2) +𝒩 (0, 1/2)𝑖,

and where 𝜆 > 0 is a signal-to-noise parameter. As 𝑥𝑥* is invariant under a global phase

shift of 𝑥, we can only hope to estimate up to the same ambiguity, and so we would like an

estimator ̂︀𝑥 that maximizes |⟨𝑥, ̂︀𝑥⟩|2, where the inner product is conjugated in the second

variable. Many of the previously discussed iterative techniques adapt to this new case.

Spectral methods. The same analysis of the spectral method holds in this case; thus

when 𝜆 > 1, the top eigenvector achieves nontrivial correlation with 𝑥, while for 𝜆 < 1, the

spectral method fails and nontrivial estimation is provably impossible [120].

Projected power method. After each matrix–vector product, we can project 𝑣(𝑡) entry-

wise onto the unit circle, preserving the phase of each entry while setting the magnitude to

1. This algorithm is analyzed in [34] in a lower-noise regime, where it is shown to converge to

the maximum likelihood estimator. A heuristic analysis similar to Section 2.6.3 suggests that

this method does not achieve nontrivial correlation with the truth unless 𝜆 > 2/
√
𝜋 ≈ 1.128.

Soft-threshold power method. One might imagine applying some entrywise function

after each matrix–vector product, which preserves the phase of each entry while mapping

the magnitude to [0, 1]. Thus the vector entries 𝑣𝑢 live in the unit disk, the convex hull of

the unit circle; these might be envisioned as estimates of the posterior expectation of 𝑥𝑢.

Belief propagation & AMP. Belief propagation is somewhat problematic in this setting:

all messages should express a distribution over 𝑈(1), and it is not a priori clear how this

should be expressed in finite space. However, under the simplifications of approximate

message passing, the linearity of the message-passing stage enables a small summary of this
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distribution to suffice: we need only store the expectation of each distribution, a single value

in the unit disk. Approximate message passing takes the following form:

Algorithm 2.2.2 (AMP for 𝑈(1) synchronization with one frequency).

∙ Initialize 𝑣(0) to small random values in the unit disk conv(𝑈(1)). Initialize 𝑣(−1) = 0.

∙ Iterate for 1 ≤ 𝑡 ≤ 𝑇 :

– Set 𝑐(𝑡) = 𝜆𝑌 𝑣(𝑡−1)−𝜆2(1−⟨|𝑣(𝑡−1)|2⟩)𝑣(𝑡−2), the Onsager-corrected sum of incom-

ing messages.

– Set 𝑣
(𝑡)
𝑢 = 𝑓(𝑐

(𝑡)
𝑢 ) for each vertex 𝑢, the new estimated posterior mean. Here

𝑓 applies the function 𝑓(𝑡) = 𝐼1(2𝑡)/𝐼0(2𝑡) to the magnitude, leaving the phase

unchanged.

∙ Return ̂︀𝑥 = 𝑣(𝑇 ) (or the approximate MAP estimate ̂︀𝑥 = phase(𝑣(𝑇 )) if a proper

estimate in 𝑈(1)𝑛 is desired).

Here 𝐼𝑘 denotes the modified Bessel functions of the first kind. The function 𝑓 is depicted

in Figure 2-2. Detailed derivations of this algorithm appear in Sections 2.5 and 2.6 in much

higher generality.

2.2.4 AMP for Gaussian 𝑈(1) synchronization with multiple fre-

quencies

Consider now the following more elaborate synchronization problem. The goal is to estimate

a spike 𝑥 ∈ 𝑈(1)𝑛 from the observations

𝑌1 =
𝜆1

𝑛
𝑥𝑥* +

1√
𝑛
𝑊1,

𝑌2 =
𝜆2

𝑛
𝑥2(𝑥2)* +

1√
𝑛
𝑊2,

...
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𝑌𝐾 =
𝜆𝐾

𝑛
𝑥𝐾(𝑥𝐾)* +

1√
𝑛
𝑊𝐾 ,

where the 𝑊𝑘 are independent Hermitian matrices whose entries are distributed indepen-

dently (up to Hermitian symmetry) as C𝒩 (0, 1), the 𝜆𝑘 > 0 are signal-to-noise parameters,

and 𝑥𝑘 denotes the entrywise 𝑘th power of 𝑥. This multifrequency Gaussian model was first

introduced by the author and others in [120]. The associated MAP estimation problem is

an instance of the non-unique games framework, introduced by [18].

Thus we are given 𝐾 independent noisy matrix-valued observations of 𝑥; we can imagine

these observations as targeting different frequencies or Fourier modes. Given two indepen-

dent draws of 𝜆𝑥𝑥*/𝑛 + 𝑊/
√
𝑛 as in the previous section, the spectral method applied to

their average will produce a nontrivial estimate of 𝑥 as soon as 𝜆 > 1/
√
2. However, under

the multiple frequencies model above, with 𝐾 = 2 and 𝜆1 = 𝜆2 = 𝜆, nontrivial estimation

is provably impossible for 𝜆 < 0.937 (see Chapter 3); we present non-rigorous evidence in

Section 2.8 that the true statistical threshold should in fact remain 𝜆 = 1. Thus the multiple

frequencies model would seem to confound attempts to exploit the multiple observations

together. However, we will discuss how AMP enables us to obtain a much better estimate

when 𝜆 > 1 than is possible with one matrix alone.

Let us return to the issue of belief propagation over 𝑈(1), and of how to represent

distributions. One crude approach might be to discretize 𝑈(1) and express the density on

a finite subset of points; however, this is somewhat messy (e.g. the discretization may not

be preserved under rotation) and only becomes worse for more elaborate groups such as

𝑆𝑂(3) (here one can not even find arbitrarily fine discretizations on which the group acts

transitively).

Instead, we could exploit the rich structure of Fourier theory, and express a distribution

on 𝑈(1) by the Fourier series of its density5. Thus, if 𝜇(𝑡)
𝑤 is the belief distribution at vertex

5A dense subset of distributions satisfies appropriate continuity assumptions to discuss their densities
with respect to uniform measure, a Fourier series, etc., and we will not address these analytic technicalities
further.
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𝑤 and time 𝑡, we can express:
d𝜇

(𝑡)
𝑤

d𝜃/2𝜋
=
∑︁
𝑘∈Z

𝑣𝑤,𝑘𝑒
𝑖𝑘𝜃,

with 𝑣𝑤,0 = 1 and 𝑣𝑤,−𝑘 = 𝑣𝑤,𝑘. Computing the distributional message 𝑚𝑤→𝑢 from 𝑤 to 𝑢,

we obtain
d𝑚𝑡+1

𝑤→𝑢

d𝜃/2𝜋
= 1 +

∑︁
1≤|𝑘|≤𝐾

𝜆𝑘(𝑌𝑘)𝑢𝑤 𝑣𝑤,𝑘𝑒
𝑖𝑘𝜃 +𝑂((𝑌∙)

2
𝑢𝑤),

where we take 𝑌−𝑘 = 𝑌𝑘. As (𝑌𝑘)𝑢𝑤 is order 1/
√
𝑛 in probability, this approximation will

be asymptotically accurate. Thus it suffices to represent distributions by the coefficients

𝑣𝑤,𝑘 with |𝑘| ≤ 𝐾. By conjugate symmetry, the coefficients with 1 ≤ 𝑘 ≤ 𝐾 suffice. The

sufficiency of this finite description of each belief distribution is a key insight to our approach.

The other crucial observation concerns the remaining BP step of consolidating all incom-

ing messages into a new belief distribution. As each incoming message is a small perturbation

of the uniform distribution, the approximation log(1 + 𝑥) ≈ 𝑥 allows us to express the log-

density of the message distribution:

log
d𝑚𝑡+1

𝑤→𝑢

d𝜃/2𝜋
=

∑︁
1≤|𝑘|≤𝐾

𝜆𝑘(𝑌𝑘)𝑢𝑤 𝑣𝑤,𝑘𝑒
𝑖𝑘𝜃 +𝑂((𝑌∙)

2
𝑢𝑤).

We now add these log-densities to obtain the log-density of the new belief distribution, up

to normalization:

log
d𝜇𝑡+1

𝑢

d𝜃/2𝜋
+ const. =

∑︁
1≤|𝑘|≤𝐾

(︃∑︁
𝑤 ̸=𝑢

𝜆𝑘(𝑌𝑘)𝑢𝑤𝑣𝑤,𝑘

)︃
𝑒𝑖𝑘𝜃 +𝑂((𝑌∙)

2
𝑢𝑤).

We thus obtain the Fourier coefficients of the log-density of the new belief from the Fourier

coefficients of the density of the old belief, by matrix–vector products. Remarkably, this

tells us that the correct per-vertex nonlinear transformation to apply at each iteration is

the transformation from Fourier coefficients of the log-density to those of the density! In

other words, the transformation acts on Fourier series as composition with exp, followed

by normalization. (In section 2.6 we will see an alternative interpretation of this nonlinear
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transformation as an MMSE estimator.)

The only constraints on a valid log-density are those of conjugate symmetry on Fourier

coefficients; thus log-densities form an entire linear space. By contrast, densities are subject

to non-negativity constraints, and form a nontrivial convex body in R𝐾 . The latter space

is the analogue of the unit disk or the interval [−1, 1] in the preceding examples, and this

transformation from the Fourier series of a function to those of its exponential (together with

normalization) forms the analogue of the preceding soft-projection functions.

We thus arrive at an AMP algorithm for the multiple-frequency problem:

Algorithm 2.2.3 (AMP for 𝑈(1) synchronization with multiple frequencies).

∙ For each 1 ≤ 𝑘 ≤ 𝐾 and each vertex 𝑢, initialize 𝑣
(0)
𝑢,𝑘 to small random values in C and

initialize 𝑣
(−1)
𝑢,𝑘 = 0.

∙ Iterate for 1 ≤ 𝑡 ≤ 𝑇 :

1. For each 1 ≤ 𝑘 ≤ 𝐾, set 𝑐
(𝑡)
𝑘 = 𝜆𝑘𝑌𝑘𝑣

(𝑡−1)
𝑘 − 𝜆2

𝑘(1 − ⟨(𝑣
(𝑡−1)
𝑘 )2⟩)𝑣(𝑡−2)

𝑘 , the vector

of 𝑘th Fourier components of the estimated posterior log-densities, with Onsager

correction.

2. Compute 𝑣
(𝑡)
𝑘 , the vector of 𝑘th Fourier components of the estimated posterior

densities.

∙ Return ̂︀𝑥 = 𝑣
(𝑇 )
1 (or some rounding if a proper estimate in 𝑈(1)𝑛 is desired, or even

the entire per-vertex posteriors represented by 𝑐(𝑇 )).

Again, a more detailed derivation can be found in Sections 2.5 and 2.6.

It is worth emphasizing that only the expansion

log
d𝜇

(𝑡)
𝑢

d𝜃/2𝜋
+ const. = 2Re

∑︁
1≤𝑘≤𝐾

𝑐
(𝑡)
𝑘,𝑤𝑒

𝑖𝑘𝜃

is an accurate expansion of the estimated vertex posteriors. While this log-density is band-

limited, this still allows for the density to be a very spiked, concentrated function, without
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suffering effects such as the Gibbs phenomenon. By contrast, the finitely many 𝑣 coefficients

that this algorithm computes do not suffice to express the Fourier expansion of the density,

and a truncated expansion based on only the computed coefficients might even become

negative.

We conclude this section by noting that nothing in our derivation depended crucially

on the Gaussian observation model. The choice of model tells us how to propagate beliefs

along an edge according to a matrix–vector product, but we could carry this out for a larger

class of graphical models. The essential properties of a model, that enables this approach to

adapt, are:

∙ The model can be expressed as a graphical model with only pairwise interactions:

Pr(𝑥) ∝
∏︁
𝑢<𝑤

ℒ𝑢𝑤(𝑥𝑢, 𝑥𝑤).

∙ The interaction graph is dense (at least a constant fraction of pairs interact), with all

pair potentials individually weak (1 +𝑂(1/
√
𝑛)).

∙ The pair potentials ℒ𝑢𝑤(𝑥𝑢, 𝑥𝑤) depend only on the group ratio 𝑥𝑢𝑥
−1
𝑤 . (This is the

core property of a synchronization problem.)

∙ The pair potentials ℒ𝑢𝑤 are band-limited as a function of 𝑥𝑢𝑥
−1
𝑤 , to some finite collection

of Fourier modes. This assumption (or approximation) allows the potentials to be

expressed by a finite number of parameters.

∙ The noise is independent across edges, and the noise on different Fourier modes is

uncorrelated. This is satisfied by the Gaussian model and is used in our derivation of

the Onsager correction.

The formulation of AMP for general models of this form is discussed in the next section.
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2.3 AMP over general compact groups

The approach discussed above for 𝑈(1) synchronization with multiple frequencies readily

generalizes to the setting of an arbitrary compact group 𝐺, with Fourier theory generalized

to the representation theory of 𝐺. Just as the Fourier characters are precisely the irreducible

representations of 𝑈(1), we will represent distributions over 𝐺 by an expansion in terms of

irreducible representations, as described by the Peter–Weyl theorem. Under the assump-

tion (or approximation) of band-limited pairwise observations, it will suffice to store a finite

number of coefficients of this expansion. (Note that finite groups have a finite number of irre-

ducible representations and so the band-limited requirement poses no restriction in this case.

For infinite groups, the observations may not be band-limited, but we can approximately

them arbitrarily-well as such by taking sufficiently many of the most important irreducible

representations and discarding the rest.)

A geometric view on this is as follows. Belief propagation ideally sends messages in the

space of distributions on 𝐺; this is a form of formal convex hull on 𝐺, and is illustrated

in the case of Z/2 synchronization by sending messages valued in [−1, 1]. When 𝐺 is in-

finite, however, this space is infinite-dimensional and thus intractable. We could instead

ask whether the convex hull of 𝐺 taken in some finite-dimensional embedding is a sufficient

domain for messages. The key to our approach is the observation that, when observations

are band-limited, it suffices to take an embedding of 𝐺 described by a sum of irreducible

representations.

This section will be devoted to presenting our AMP algorithm in full generality, along

with the synchronization model that it applies to. In particular, the algorithm can run on the

general graphical model formulation of Section 2.3.2, but when we analyze its performance

we will restrict to the Gaussian observation model of Section 2.3.4.
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2.3.1 Representation theory preliminaries

Haar measure

A crucial property of compact groups is the existence of a (normalized) Haar measure, a

positive measure 𝜇 on the group that is invariant under left and right translation by any

group element, normalized such that 𝜇(𝐺) = 1 [40]. This measure amounts to a concept of

‘uniform distribution’ on such a group, and specializes to the ordinary uniform distribution

on a finite group. Throughout this chapter, integrals of the form

∫︁
𝐺

𝑓(𝑔) d𝑔,

are understood to be taken with respect to Haar measure.

Peter–Weyl decomposition

Fix a compact group 𝐺. We will be working with the density functions of distributions over

𝐺. In order to succinctly describe these, we use the representation-theoretic analogue of

Fourier series: the Peter–Weyl decomposition. The Peter–Weyl theorem asserts that 𝐿2(𝐺)

(the space of square-integrable, complex scalar functions on 𝐺) is the closure of the span

(with coefficients from C) of the following basis, which is furthermore orthonormal with

respect to the Hermitian inner product on 𝐿2(𝐺) [40]:

𝑅𝜌𝑎𝑏(𝑔) =
√︀

𝑑𝜌 𝜌(𝑔)𝑎𝑏,

indexed over all complex irreducible representations 𝜌 of 𝐺, and all 1 ≤ 𝑎 ≤ 𝑑𝜌, 1 ≤ 𝑏 ≤

𝑑𝜌 where 𝑑𝜌 = dim 𝜌. The representations are assumed unitary (which is without loss of

generality because any representation is isomorphic to a unitary one). The inner product is

taken to be conjugate-linear in the second input.

Since we want our algorithm to be able to store the description of a function using finite

space, we fix a finite list 𝒫 of irreducible representations to use. From now on, all Peter–Weyl
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decompositions will be assumed to only use representations from 𝒫 ; we describe functions

of this form as band-limited. We exclude the trivial representation from this list because we

will only need to describe functions up to an additive constant. Given a real-valued function

𝑓 : 𝐺→ R, we will often write its Peter–Weyl expansion in the form

𝑓(𝑔) =
∑︁
𝜌

⟨ ̂︀𝑓𝜌, 𝑅𝜌(𝑔)⟩,

where ̂︀𝑓𝜌 and 𝑅𝜌(𝑔) =
√︀

𝑑𝜌 𝜌(𝑔) are 𝑑𝜌 × 𝑑𝜌 complex matrices. Here 𝜌 ranges over the

irreducibles in 𝒫 ; we assume that the functions 𝑓 we are working with can be expanded

in terms of only these representations. The matrix inner product used here is defined by

⟨𝐴,𝐵⟩ = Tr(𝐴𝐵*). The Peter–Weyl coefficients of a function can be extracted by integration

against the appropriate basis functions:

̂︀𝑓𝜌 = ∫︁
𝐺

𝑅𝜌(𝑔)𝑓(𝑔) d𝑔.

By analogy to Fourier theory, we will sometimes refer to the coefficients ̂︀𝑓𝜌 as Fourier coef-

ficients, and refer to the irreducible representations as frequencies.

Representations of real, complex, and quaternionic type

Every irreducible complex representation of a compact group 𝐺 over C is of one of three

types: real type, complex type, or quaternionic type [40]. We will need to deal with each of

these slightly differently. In particular, for each type we are interested in the properties of

the Peter–Weyl coefficients that correspond to the represented function being real-valued.

A complex representation 𝜌 is of real type if it can be defined over the reals, i.e. it is

isomorphic to a real-valued representation. Thus in this case we assume without loss of

generality that we are working with a real-valued 𝜌. In this case it is clear that if 𝑓 is a

real-valued function then (by integrating against 𝑅𝜌) ̂︀𝑓𝜌 is real. Conversely, if ̂︀𝑓𝜌 is real then

the term ⟨ ̂︀𝑓𝜌, 𝑅𝜌(𝑔)⟩ (from the Peter–Weyl expansion) is real.

A representation 𝜌 is of complex type if 𝜌 is not isomorphic to its conjugate representation
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𝜌, which is the irreducible representation defined by 𝜌(𝑔) = 𝜌(𝑔). We will assume that the

complex-type representations in our list 𝒫 come in pairs, i.e. if 𝜌 is on the list then so is 𝜌.

If 𝑓 is real-valued, we see (by integrating against 𝑅𝜌 and 𝑅𝜌) that ̂︀𝑓𝜌 = ̂︀𝑓𝜌. Conversely, if̂︀𝑓𝜌 = ̂︀𝑓𝜌 holds then ⟨ ̂︀𝑓𝜌, 𝑅𝜌(𝑔)⟩+ ⟨ ̂︀𝑓𝜌, 𝑅𝜌(𝑔)⟩ is real.

Finally, a representation 𝜌 is of quaternionic type if it can be defined over the quaternions

in the following sense: 𝑑𝜌 is even and 𝜌(𝑔) is comprised of 2×2 blocks, each of which encodes

a quaternion by the following relation:

𝑎+ 𝑏𝑖+ 𝑐𝑗 + 𝑑𝑘 ↔

⎛⎝ 𝑎+ 𝑏𝑖 𝑐+ 𝑑𝑖

−𝑐+ 𝑑𝑖 𝑎− 𝑏𝑖

⎞⎠ .

Note that this relation respects quaternion addition and multiplication. Furthermore, quater-

nion conjugation (negate 𝑏, 𝑐, 𝑑) corresponds to matrix conjugate transpose. If a matrix is

comprised of 2×2 blocks of this form, we will call it block-quaternion. Now let 𝜌 be of quater-

nionic type (and assume without loss of generality that 𝜌 takes the above block-quaternion

form), and let 𝑓 be a real function 𝐺 → R. By integrating against 𝑅𝜌 we see that ̂︀𝑓𝜌 must

also be block-quaternion. Conversely, if ̂︀𝑓𝜌 is block-quaternion then ⟨ ̂︀𝑓𝜌, 𝑅𝜌(𝑔)⟩ is real; to see

this, write ⟨ ̂︀𝑓𝜌, 𝑅𝜌(𝑔)⟩ = Tr( ̂︀𝑓𝜌𝑅𝜌(𝑔)
*), note that ̂︀𝑓𝜌𝑅𝜌(𝑔)

* is block-quaternion, and note that

the trace of any quaternion block is real.

2.3.2 Graphical model formulation

As in Section 2.2.2, we take the standpoint of probabilistic inference over a graphical model.

Thus we consider the task of estimating 𝑔 ∈ 𝐺𝑛 from observations that induce a posterior

probability factoring into pairwise likelihoods:

Pr(𝑔) ∝
∏︁
𝑢<𝑤

ℒ𝑢𝑤(𝑔𝑢, 𝑔𝑤). (2.1)

We assume that the pair interactions ℒ𝑢𝑤(𝑔𝑢, 𝑔𝑤) are in fact a function of 𝑔𝑢𝑔−1
𝑤 ∈ 𝐺, de-

pending only on the relative orientation of the group elements. This factorization property
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amounts to a graphical model for 𝑔, with each entry 𝑔𝑢 ∈ 𝐺 corresponding to a vertex 𝑢,

and each pair interaction ℒ𝑢𝑤 represented by an edge of the model.

Taking a Peter–Weyl decomposition of log(ℒ𝑢𝑤) as a function of 𝑔𝑢𝑔−1
𝑤 allows us to write:

ℒ𝑢𝑤(𝑔𝑢, 𝑔𝑤) = exp
∑︁
𝜌

⟨︀
𝑌 𝜌
𝑢𝑤, 𝜌(𝑔𝑢𝑔

−1
𝑤 )
⟩︀
,

where 𝜌 runs over all irreducible representations of 𝐺. We require coefficients 𝑌 𝜌
𝑢𝑤 ∈ C𝑑𝜌×𝑑𝜌

for which this expansion is real-valued (for all 𝑔𝑢𝑔
−1
𝑤 ). We also require the symmetry

ℒ𝑢𝑤(𝑔𝑢, 𝑔𝑤) = ℒ𝑤𝑢(𝑔𝑤, 𝑔𝑢), which means 𝑌 𝜌
𝑢𝑤 = (𝑌 𝜌

𝑤𝑢)
*. Let 𝑌𝜌 be the 𝑛𝑑𝜌 × 𝑛𝑑𝜌 matrix

with blocks 𝑌 𝜌
𝑢𝑤. For all 𝑢, define ℒ𝑢𝑢 = 1 and 𝑌 𝜌

𝑢𝑢 = 0.

The input to our synchronization problem will simply be the coefficients 𝑌𝜌. These

define a posterior distribution 𝜇 on the latent vector 𝑔 of group elements, and our goal is to

approximately recover 𝑔 up to a global right-multiplication by some group element.

We suppose that the observations are band-limited : 𝑌𝜌 = 0 except on a finite set 𝒫 of

irreducible representations. This will allow us to reduce all Peter–Weyl decompositions to a

finite amount of relevant information. We will always exclude the trivial representation from

𝒫 : this representation can only contribute a constant factor to each pair likelihood, which

then disappears in the normalization, so that without loss of generality we can assume the

coefficient of the trivial representation to always be zero.

Many synchronization problems (for instance, sensor localization) have noise on each

pairwise measurement, and fit this graphical model formulation well. Other synchronization

problems (for instance, cryo-EM) are based on per-vertex measurements with independent

randomness; one can derive pairwise information by comparing these measurements, but

these pairwise measurements do not have independent noise and do not strictly fit the model

described above. Prior work has run into the same issue and achieved strong results nonethe-

less. Specifically, the non-unique games (NUG) model of [18] suggests the optimization
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problem of minimizing an objective

∑︁
𝑢<𝑤

𝑓𝑢𝑤(𝑔𝑢𝑔
−1
𝑤 ).

Such problems can be artificially placed into our framework by viewing them as the maximum

likelihood estimation problem corresponding to the graphical model above, with

ℒ𝑢𝑤(𝑔𝑢, 𝑔𝑤) = exp(−𝛽𝑓𝑢𝑤(𝑔𝑢𝑔−1
𝑤 )) (2.2)

for an arbitrary positive ‘inverse temperature’ 𝛽. For true probabilistic models, our approach

attempts Bayes-optimal inference (minimizing mean squared error), while the NUG approach

attempts maximum likelihood estimation which may have higher expected error. In our

approach, the maximum likelihood problem can be recovered by scaling up all potentials,

i.e. taking the low-temperature limit 𝛽 →∞ in (2.2).

One might also formulate a version of our model that allows node potentials, as seen for

instance in image segmentation [72] and some community detection problems [152]:

Pr(𝑔) ∝

(︃∏︁
𝑢<𝑤

ℒ𝑢𝑣(𝑔𝑢, 𝑔𝑤)

)︃(︃∏︁
𝑢

ℒ𝑢(𝑔𝑢)

)︃
,

expressing a nontrivial prior or observation on each group element. Although this model

is compatible with our methods (so long as the node potentials are also band-limited), we

suppress this generality for the sake of readability.

2.3.3 AMP algorithm

We now state our AMP algorithm. The algorithm takes as input the log-likelihood coefficients

𝑌𝜌 ∈ C𝑛𝑑𝜌×𝑛𝑑𝜌 , for each 𝜌 in a finite list 𝒫 of irreducibles (which must not contain the

trivial representation; also for each complex-type representation 𝜌 in the list, 𝜌 must also

appear in the list). The algorithm’s state at time 𝑡 is comprised of the Fourier coefficients

𝐶
(𝑡)
𝜌 ∈ C𝑛𝑑𝜌×𝑑𝜌 , which are updated as follows.
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Algorithm 2.3.1 (AMP for synchronization over compact groups).

∙ For each 𝜌 ∈ 𝒫 and each vertex 𝑢, initialize 𝑉
(0)
𝑢,𝜌 to small random values in C and

initialize 𝑉
(−1)
𝑢,𝜌 = 0.

∙ Iterate for 1 ≤ 𝑡 ≤ 𝑇 :

– For each 𝜌 ∈ 𝒫 , set

𝐶(𝑡)
𝑢,𝜌 = 𝑑−1

𝜌

∑︁
𝑤 ̸=𝑢

𝑌 𝜌
𝑢𝑤𝑉

(𝑡−1)
𝑤,𝜌 − 𝑑−2

𝜌 |𝑌
𝜌
typ|2𝑉 (𝑡−2)

𝑢,𝜌

∑︁
𝑤

(︀
𝑑𝜌𝐼 − (𝑉 (𝑡−1)

𝑤,𝜌 )*𝑉 (𝑡−1)
𝑤,𝜌

)︀
,

the Fourier coefficients of the estimated posterior log-densities, with Onsager cor-

rection. Here |𝑌 𝜌
typ|2 denotes the average squared-norm of the entries of 𝑌𝜌.

– For each 𝑢 and each 𝜌 ∈ 𝒫 , set 𝑉
(𝑡)
𝑢,𝜌 = ℰ𝜌(𝐶(𝑡)

𝑢 ), where as in Section 2.2.4, the

nonlinear transformation

ℰ𝜌(𝐶) =

∫︁
𝐺

𝑅𝜌(𝑔) exp

(︃∑︁
𝜌′

⟨𝐶𝜌′ , 𝑅𝜌′(𝑔)⟩

)︃
d𝑔
⧸︁∫︁

𝐺

exp

(︃∑︁
𝜌′

⟨𝐶𝜌′ , 𝑅𝜌′(𝑔)⟩

)︃
d𝑔

(2.3)

takes the Fourier coefficients for a function 𝑓 on 𝐺 and returns those of exp ∘𝑓 ,

re-normalized to have integral 1. These 𝑉
(𝑡)
𝑢,𝜌 are the Fourier coefficients of the

estimated posterior densities, truncated to the contribution from irreducibles 𝒫 ,

which suffice for the next iteration.

∙ Return the posteriors represented by 𝐶
(𝑇 )
𝑢,𝜌 , or some rounding of these (e.g. the per-

vertex MAP estimate).

This algorithm follows the intuition of Section 2.2, and derivations can be found in Sec-

tions 2.5 and 2.6.

Note that each iteration runs in time 𝑂(𝑛2), which is linear in the input matrices. This

runtime is due to the matrix–vector products; the rest of the iteration takes 𝑂(𝑛) time. We

expect 𝑂(log 𝑛) iterations to suffice, resulting in a nearly-linear-time algorithm with respect
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to the matrix inputs. Some applications may derive from per-vertex observations that are

pairwise compared to produce edge observations, hacked into this framework by an abuse

of probability; our algorithm then takes nearly-quadratic time with respect to the vertex

observations. However, some such per-vertex applications produce matrices with a low-rank

factorization 𝑌𝜌 = 𝑈𝜌𝑈
⊤
𝜌 , for which the matrix–vector product can be performed in 𝑂(𝑛)

time.

2.3.4 Gaussian observation model

Our AMP algorithm handles the general graphical model formulation above, but we will

be able to analyze its performance in more detail when restricted to the following concrete

Gaussian observation model (which we first introduced in [120]), generalizing the Gaussian

models of Section 2.2. First, latent group elements 𝑔𝑢 are drawn independently and uniformly

from 𝐺 (from Haar measure). Then for each representation 𝜌 in 𝒫 , we observe the 𝑛𝑑𝜌×𝑛𝑑𝜌

matrix

𝑀𝜌 =
𝜆𝜌

𝑛
𝑋𝜌𝑋

*
𝜌 +

1√︀
𝑛𝑑𝜌

𝑊𝜌.

Here 𝑋𝜌 is the 𝑛𝑑𝜌 × 𝑑𝜌 matrix formed by vertically stacking the 𝑑𝜌 × 𝑑𝜌 matrices 𝜌(𝑔𝑢)

for all vertices 𝑢. 𝜆𝜌 is a signal-to-noise parameter for the frequency 𝜌. The noise 𝑊𝜌 is a

Gaussian random matrix drawn from the GOE, GUE, or GSE, depending on whether 𝜌 is

of real type, complex type, or quaternionic type, respectively. In any case, 𝑊𝜌 is normalized

so that each off-diagonal6 entry has expected squared-norm 1. To be concrete, in the real

case the entries are 𝒩 (0, 1) and in the complex case, the real and imaginary parts of each

entry are 𝒩 (0, 1/2). For the quaternionic case, each 2× 2 block encodes a quaternion value

𝑎+ 𝑏𝑖+ 𝑐𝑗 + 𝑑𝑘 in the usual way (see Section 2.3.1) where 𝑎, 𝑏, 𝑐, 𝑑 are 𝒩 (0, 1/2). The noise

matrices 𝑊𝜌 are independent across representations except when we have a conjugate pair

of complex-type representations we draw 𝑀𝜌 randomly as above and define 𝑀𝜌 = 𝑀𝜌 and

𝜆𝜌 = 𝜆𝜌. Note that the normalization is such that the signal term has spectral norm 𝜆𝜌 and
6The diagonal entries (or diagonal 2×2 quaternion blocks) are unimportant, as discussed previously. One

natural choice is to zero out those entries of 𝑀𝜌. Another is to take 𝑊𝜌 with diagonal entries (or blocks)
𝒩 (0, 2) (real case), 𝒩 (0, 1) (complex case), or 𝒩 (0, 1)𝐼2 (quaternion case).
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the noise term has spectral norm 2.

The author and others first introduced the above Gaussian synchronization model in

[120]. Special cases of this model have been studied previously for synchronization over Z/2

or 𝑈(1) with a single frequency [16, 56, 82, 34] (previously implicit in [141]). In fact, [56]

derives AMP for the Z/2 case and proves that it is information-theoretically optimal. The

idea of optimizing objective functions that have information on multiple frequencies comes

from [18].

In Appendix A.1, we show how the Gaussian observation model fits into the graphical

model formulation by deriving the corresponding coefficient matrices 𝑌𝜌. In particular, we

show that 𝑌𝜌 = 𝑑𝜌𝜆𝜌𝑀𝜌, a scalar multiple of the observed Gaussian matrix.

2.3.5 Representation theory of some common examples

In this section we discuss the representation theory of a few central examples, namely Z/𝐿,

𝑈(1), and 𝑆𝑂(3), and connect the general formalism back to the examples of Section 2.2.

Representations of Z/𝐿 and 𝑈(1). The irreducible representations of these groups are

one-dimensional, described by the discrete Fourier transform and the Fourier series, respec-

tively. 𝑈(1) has frequencies indexed by 𝑘 ∈ Z, given by 𝜌(𝑔) = 𝑔𝑘 where 𝑔 ∈ 𝑈(1) (i.e.

a unit-norm complex number). All of these representations are of complex type. We will

say “𝑈(1) with 𝐾 frequencies” to refer to the frequencies 1, . . . , 𝐾 along with their con-

jugates, the frequencies −1, . . . ,−𝐾. Similarly, if we identify Z/𝐿 with the complex 𝐿th

roots of unity, we have frequencies defined the same way as above, except to avoid redun-

dancy we restrict the range of 𝑘 as follows. If 𝐿 is odd, we allow 𝑘 ∈ {1, 2, . . . , (𝐿 − 1)/2}

along with their conjugates (negations). If 𝐿 is even, we have complex-type representations

𝑘 ∈ {1, 2, . . . , 𝐿/2− 1} (along with their conjugates), plus an additional real-type represen-

tation 𝑘 = 𝐿/2. Again, “Z/𝐿 with 𝐾 frequencies” means we take frequencies 1, . . . , 𝐾 along

with their conjugates (when applicable).

For the case of Z/2 we can now see how the tanh function from the AMP algorithm of
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Section 2.2.2 arises as a special case of the nonlinear transformation ℰ occurring in AMP.

The only nontrivial representation of Z/2 is the ‘parity’ representation in which −1 acts as

−1. In this context, ℰ will first input the Fourier series of a log-density with respect to the

uniform measure on {±1}:

log
d𝜇𝑢

d𝑥
+ const. = 𝑐𝑥

and evaluate this at ±1 to obtain the values ±𝑐. We then compute the exponential of this

at each point to obtain the un-normalized density of 𝑒−𝑐 at −1 and 𝑒𝑐 at 1. Normalizing,

the density values are 𝑒−𝑐/(𝑒−𝑐 + 𝑒𝑐) and 𝑒𝑐/(𝑒−𝑐 + 𝑒𝑐), so that the new parity coefficient is

ℰparity(𝑐) =
𝑒𝑐 − 𝑒−𝑐

𝑒𝑐 + 𝑒−𝑐
= tanh 𝑐.

Representations of 𝑆𝑂(3). This group has one irreducible representation 𝜌𝑘 of each odd

dimension 𝑑𝑘 = 2𝑘 + 1; the 𝑘 = 0 representation is the trivial representation 𝜌0(𝑔) = 1,

and the 𝑘 = 1 representation is the standard representation of 𝑆𝑂(3) as rotations of three-

dimensional space. All of these representations are of real type, and may be described as

the action of rotations on the 2𝑘 + 1-dimensional space of homogeneous degree 𝑘 spherical

harmonics. Frequently in the literature (for instance in molecular chemistry), a complex

basis for the spherical harmonics is given, and the representation matrices are the complex-

valued Wigner D-matrices; however, the representation can be defined over the reals, as is

demonstrated by any real orthogonal basis for the spherical harmonics. See e.g. Section II.5 of

[40] for a more detailed account. As in the cases above, we will often refer to synchronization

problems over “𝑆𝑂(3) with 𝐾 frequencies”, in which the observations are assumed to be

band-limited to the first 𝐾 nontrivial irreducibles with 1 ≤ 𝑘 ≤ 𝐾.

2.4 Experimental results

We present a brief empirical exploration of the statistical performance of AMP in various

settings, and as compared to other algorithms.

In Figure 2-3 we compare the performance of the spectral method, projected power
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Figure 2-3: Comparison of iterative algorithms for Gaussian Z/2 synchro-
nization. The horizontal axis represents the signal-to-noise ratio 𝜆, and
the vertical axis depicts the log-error ln(1−|⟨𝑥, ̂︀𝑥⟩/𝑛|) where 𝑥 ∈ {±1}𝑛 is
the ground truth and ̂︀𝑥 ∈ {±1}𝑛 is the (rounded) output of the algorithm.
The four curves are projected power iteration (green), soft-threshold power
iteration (red), spectral method (blue), and AMP (black). Each data point
is an average of 200 trials with 𝑛 = 2000 vertices.

iteration, soft-threshold power iteration without an Onsager correction, and full AMP (see

Sections 2.2.1 and 2.2.2) for Gaussian Z/2 synchronization. The spectral method achieves

the optimal threshold of 𝜆 = 1 as to when nontrivial recovery is possible, but does not achieve

the optimal correlation afterwards. The projected power method appears to asymptotically

achieve the optimal correlation as 𝜆 → ∞, but performs worse than the spectral method

for small 𝜆. Soft-thresholding offers a reasonable improvement on this, but the full AMP

algorithm strictly outperforms all other methods. This reflects the optimality result of [56]

and highlights the necessity for the Onsager term. The gains are fairly modest in this setting,

but increase with more complicated synchronization problems.

Figures 2-4 and 2-5 compare the performance of AMP on Gaussian 𝑈(1) synchronization

with multiple frequencies; see Section 2.2.4 for the model. In sharp contrast to spectral

methods, which offer no reasonable way to couple the frequencies together, AMP produces

an estimate that is orders of magnitude more accurate than what is possible with a single
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Figure 2-4: Gaussian 𝑈(1) synchronization
with 𝐾 frequencies; from bottom to top,
𝐾 = 1, . . . , 6. The signal-to-noise ratios
𝜆𝑘 are all equal, with the common value
given by the horizontal axis. Each curve de-
picts the correlation |⟨𝑥, ̂︀𝑥⟩/𝑛| between the
ground truth and the AMP estimate. Each
data point is an average of 50 trials with
𝑛 = 1000 vertices.

Figure 2-5: Here the vertical axis depicts
the log-error ln(1−|⟨𝑥, ̂︀𝑥⟩/𝑛|). From top to
bottom: 𝐾 = 1, . . . , 6.

frequency.

In Figures 2-6 and 2-7, we see similar results over 𝑆𝑂(3), under the Gaussian model of

Section 2.3.4. This also demonstrates that AMP is an effective synchronization algorithm

for more complicated, non-abelian Lie groups.

This ability to exploit multiple frequencies represents a promising step toward improved

algorithms for cryo-electron microscopy, which may be viewed as a synchronization problem

over 𝑆𝑂(3). Some previous approaches to this problem effectively band-limit the observa-

tions to a single frequency and then apply a spectral method [142], and the experiments in

Figures 2-4–2-7 demonstrate that our algorithm stands a compelling chance of achieving a

higher-quality reconstruction.

We remark that some numerical issues arise when computing the nonlinear transformation

ℰ in our AMP algorithm, which involves integration over the group. Our implementation of

ℰ for 𝑈(1) and 𝑆𝑂(3) is based on evaluating each log-density on a discretization of the group,
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Figure 2-6: Gaussian 𝑆𝑂(3) synchroniza-
tion with 𝐾 frequencies; from bottom to
top, 𝐾 = 1, 2, 3. The signal-to-noise
ratios 𝜆𝑘 are all equal, with the com-
mon value given by the horizontal axis.
Each curve depicts the squared correlation
‖𝑋⊤ ̂︀𝑋‖𝐹/(𝑛√3) between the ground truth
and the AMP estimate. Here 𝑋 and ̂︀𝑋 are
3𝑛× 𝑛 matrices where each 3× 3 block en-
codes an element of 𝑆𝑂(3) via the standard
representation (rotation matrices). Each
data point is an average of 5 trials with
𝑛 = 100 vertices.

Figure 2-7: Here the vertical axis depicts
the log-error ln(1−‖𝑋⊤ ̂︀𝑋‖𝐹/(𝑛√3)). From
top to bottom: 𝐾 = 1, 2, 3.

taking the pointwise exponential, and thus approximating each integral by a discrete sum.

This approach is somewhat crude but appears to work adequately in our experiments; there is

undoubtedly room for this numerical procedure to be improved. More sophisticated methods

may be necessary to obtain adequate results on any higher-dimensional Lie groups. Note also

that if the vertex posterior in question is extremely concentrated near a point, the numerical

value of each integral will depend significantly on whether this spike lies near a discretization

point; however, this should affect both the numerator and denominator integrals in (2.3) by

approximately equal factors, so as to have a minimal effect on the normalized value of ℰ𝜌.
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2.5 Derivation of AMP from belief propagation

In this section we derive the general AMP algorithm of Section 2.3 starting from belief

propagation, similarly to [64]. We begin with the belief propagation update step (see e.g.

[105]), writing messages 𝜇
(𝑡)
𝑢→𝑣 as densities with respect to Haar measure:

d𝜇
(𝑡)
𝑢→𝑣

d𝑔𝑢
=

1

𝑍
(𝑡)
𝑢→𝑣

∏︁
𝑤 ̸=𝑢,𝑣

∫︁
𝐺

ℒ𝑢𝑤(𝑔𝑢, 𝑔𝑤)
d𝜇

(𝑡−1)
𝑤→𝑢

d𝑔𝑤
d𝑔𝑤.

Here 𝑡 denotes the timestep and 𝑍
(𝑡)
𝑢→𝑣 is the appropriate normalization constant. Expand this

(positive) probability density as the exponential of an 𝐿2 function, expressed as a Peter–Weyl

expansion:

d𝜇
(𝑡)
𝑢→𝑣

d𝑔𝑢
= exp

∑︁
𝜌𝑎𝑏

𝐶
(𝑡)
𝑢→𝑣,𝜌𝑎𝑏𝑅𝜌𝑎𝑏(𝑔𝑢).

We can extract these Fourier coefficients 𝐶
(𝑡)
𝑢→𝑣,𝜌𝑎𝑏 by integrating against the basis func-

tions above. Assume that 𝜌 is not the trivial representation; then:

𝐶
(𝑡)
𝑢→𝑣,𝜌𝑎𝑏 =

∫︁
𝐺

𝑅𝜌𝑎𝑏(𝑔𝑢) log
d𝜇

(𝑡−1)
𝑢→𝑣

d𝑔𝑢
d𝑔𝑢

=

∫︁
𝐺

𝑅𝜌𝑎𝑏(𝑔𝑢) log

(︃
1

𝑍
(𝑡−1)
𝑢→𝑣

∏︁
𝑤 ̸=𝑢,𝑣

∫︁
𝐺

ℒ𝑢𝑤(𝑔𝑢, 𝑔𝑤)
d𝜇

(𝑡−1)
𝑤→𝑢

d𝑔𝑤
d𝑔𝑤

)︃
d𝑔𝑢

=

∫︁
𝐺

𝑅𝜌𝑎𝑏(𝑔𝑢)
∑︁
𝑤 ̸=𝑢,𝑣

log

(︃∫︁
𝐺

exp

(︃∑︁
𝜌′

⟨
𝑌 𝜌′

𝑢𝑤, 𝜌
′(𝑔𝑢𝑔

−1
𝑤 )
⟩)︃ d𝜇

(𝑡−1)
𝑤→𝑢

d𝑔𝑤
d𝑔𝑤

)︃
d𝑔𝑢.

As the 𝑌 𝜌′
𝑢𝑤 are small, we can pass to a linear expansion about these, incurring 𝑜(1) error as

𝑛→∞:

≈
∫︁
𝐺

𝑅𝜌𝑎𝑏(𝑔𝑢)
∑︁
𝑤 ̸=𝑢,𝑣

(︃
log

∫︁
𝐺

d𝜇
(𝑡−1)
𝑤→𝑢

d𝑔𝑤
d𝑔𝑤 +

∑︁
𝜌′

∫︁
𝐺

⟨
𝑌 𝜌′

𝑢𝑤, 𝜌
′(𝑔𝑢𝑔

−1
𝑤 )
⟩d𝜇(𝑡−1)

𝑤→𝑢

d𝑔𝑤
d𝑔𝑤

⧸︂∫︁
𝐺

d𝜇
(𝑡−1)
𝑤→𝑢

d𝑔𝑤
d𝑔𝑤

)︃
d𝑔𝑢

=
∑︁
𝑤 ̸=𝑢,𝑣

∑︁
𝜌′

∫︁
𝐺

∫︁
𝐺

𝑅𝜌𝑎𝑏(𝑔𝑢)
⟨
𝑌 𝜌′

𝑢𝑤, 𝜌
′(𝑔𝑢𝑔

−1
𝑤 )
⟩d𝜇(𝑡−1)

𝑤→𝑢

d𝑔𝑤
d𝑔𝑤 d𝑔𝑢.
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To progress further, we will expand the middle factor of the integrand:

⟨
𝑌 𝜌′

𝑢𝑤, 𝜌
′(𝑔𝑢𝑔

−1
𝑤 )
⟩
=
⟨
𝑌 𝜌′

𝑢𝑤, 𝜌
′(𝑔𝑢)𝜌

′(𝑔𝑤)
*
⟩

=
∑︁
𝑎′𝑏′𝑐′

𝑌 𝜌′

𝑢𝑤,𝑎′𝑏′ 𝜌
′(𝑔𝑢)𝑎′𝑐′ 𝜌

′(𝑔𝑤)𝑏′𝑐′ .

Returning to the previous derivation:

𝐶
(𝑡)
𝑢→𝑣,𝜌𝑎𝑏 =

∑︁
𝑤 ̸=𝑢,𝑣

∑︁
𝜌′

∑︁
𝑎′𝑏′𝑐′

∫︁
𝐺

∫︁
𝐺

𝑅𝜌𝑎𝑏(𝑔𝑢)𝑌
𝜌′

𝑢𝑤,𝑎′𝑏′𝜌
′(𝑔𝑢)𝑎′𝑐′𝜌

′(𝑔𝑤)𝑏′𝑐′
d𝜇

(𝑡−1)
𝑤→𝑢

d𝑔𝑤
d𝑔𝑤 d𝑔𝑢

=
∑︁
𝑤 ̸=𝑢,𝑣

∑︁
𝜌′

∑︁
𝑎′𝑏′𝑐′

𝑌 𝜌′

𝑢𝑤,𝑎′𝑏′

∫︁
𝐺

𝑅𝜌𝑎𝑏(𝑔𝑢)𝜌′(𝑔𝑢)𝑎′𝑐′ d𝑔𝑢 ·
∫︁
𝐺

𝜌′(𝑔𝑤)𝑏′𝑐′
d𝜇

(𝑡−1)
𝑤→𝑢

d𝑔𝑤
d𝑔𝑤

= 𝑑−1
𝜌′

∑︁
𝑤 ̸=𝑢,𝑣

∑︁
𝜌′

∑︁
𝑎′𝑏′𝑐′

𝑌 𝜌′

𝑢𝑤,𝑎′𝑏′

∫︁
𝐺

𝑅𝜌𝑎𝑏(𝑔𝑢)𝑅𝜌′𝑎′𝑐′(𝑔𝑢) d𝑔𝑢 ·
∫︁
𝐺

𝑅𝜌′𝑏′𝑐′(𝑔𝑤)
d𝜇

(𝑡−1)
𝑤→𝑢

d𝑔𝑤
d𝑔𝑤

= 𝑑−1
𝜌′

∑︁
𝑤 ̸=𝑢,𝑣

∑︁
𝜌′

∑︁
𝑎′𝑏′𝑐′

𝑌 𝜌′

𝑢𝑤,𝑎′𝑏′𝛿𝜌,𝜌′𝛿𝑎,𝑎′𝛿𝑏,𝑐′

∫︁
𝐺

𝑅𝜌′𝑏′𝑐′(𝑔𝑤)
d𝜇

(𝑡−1)
𝑤→𝑢

d𝑔𝑤
d𝑔𝑤

= 𝑑−1
𝜌

∑︁
𝑤 ̸=𝑢,𝑣

∑︁
𝑏′

𝑌 𝜌
𝑢𝑤,𝑎𝑏′

∫︁
𝐺

𝑅𝜌𝑏′𝑏(𝑔𝑤)
d𝜇

(𝑡−1)
𝑤→𝑢

d𝑔𝑤
d𝑔𝑤.

In matrix form,

𝐶(𝑡)
𝑢→𝑣,𝜌 = 𝑑−1

𝜌

∑︁
𝑤 ̸=𝑢,𝑣

𝑌 𝜌
𝑢𝑤

∫︁
𝐺

𝑅𝜌(𝑔𝑤)
d𝜇

(𝑡−1)
𝑤→𝑢

d𝑔𝑤
d𝑔𝑤.

Let ℰ :
⨁︀

𝜌C𝑑𝜌×𝑑𝜌 →
⨁︀

𝜌C𝑑𝜌×𝑑𝜌 denote the transformation from the nontrivial Fourier

coefficients 𝐶𝑢→𝑣,𝜌 of log d𝜇
(𝑡)
𝑢→𝑣

d𝑔𝑢
to the Fourier coefficients of d𝜇

(𝑡)
𝑢→𝑣

d𝑔𝑢
. Then we have

𝐶(𝑡)
𝑢→𝑣,𝜌 = 𝑑−1

𝜌

∑︁
𝑤 ̸=𝑢,𝑣

𝑌 𝜌
𝑢𝑤ℰ𝜌(𝐶(𝑡−1)

𝑤→𝑢 ).

The map ℰ amounts to exponentiation in the evaluation basis, except that the trivial Fourier

coefficient is missing from the input, causing an unknown additive shift. This corresponds

to an unknown multiplicative shift in the output, which we correct for by noting that d𝜇
(𝑡)
𝑢→𝑣

d𝑔𝑢

should normalize to 1. Thus ℰ amounts to exponentiation followed by normalization.
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Explicitly, we can let

𝐼𝜌𝑎𝑏(𝐶) =

∫︁
𝐺

𝑅𝜌𝑎𝑏(𝑔) exp

(︃∑︁
𝜌′𝑎′𝑏′

𝐶𝜌′𝑎′𝑏′𝑅𝜌′𝑎′𝑏′(𝑔)

)︃
d𝑔.

Then ℰ𝜌𝑎𝑏(𝐶) = 𝐼𝜌𝑎𝑏(𝐶)/𝐼triv(𝐶) where triv denotes the trivial representation 𝑅triv(𝑔) = 1.

2.5.1 Onsager correction

In this section we complete the derivation of AMP by replacing the non-backtracking nature

by an Onsager correction term, reducing the number of messages from 𝑛2 to 𝑛. This is

similar to the derivation in Appendix A of [23].

In order to remove the non-backtracking nature of the AMP recurrence, let us define

𝐶(𝑡)
𝑢,𝜌 = 𝑑−1

𝜌

∑︁
𝑤 ̸=𝑢

𝑌 𝜌
𝑢𝑤ℰ𝜌(𝐶(𝑡−1)

𝑤→𝑢 )

= 𝐶(𝑡)
𝑢→𝑣,𝜌 + 𝛿(𝑡)𝑢→𝑣,𝜌,

where 𝛿
(𝑡)
𝑢→𝑣,𝜌 = 𝑑−1

𝜌 𝑌 𝜌
𝑢𝑣ℰ𝜌(𝐶

(𝑡−1)
𝑣→𝑢 ). Then, substituting 𝐶

(𝑡−1)
𝑤→𝑢 = 𝐶

(𝑡−1)
𝑤 − 𝛿

(𝑡−1)
𝑤→𝑢 , we have

𝐶(𝑡)
𝑢,𝜌 = 𝑑−1

𝜌

∑︁
𝑤 ̸=𝑢

𝑌 𝜌
𝑢𝑤ℰ𝜌

(︁
{𝐶(𝑡−1)

𝑤,𝜌′ − 𝑑−1
𝜌′ 𝑌

𝜌′

𝑤𝑢ℰ𝜌′(𝐶(𝑡−2)
𝑢→𝑤 )}𝜌′

)︁
≈ 𝑑−1

𝜌

∑︁
𝑤 ̸=𝑢

𝑌 𝜌
𝑢𝑤ℰ𝜌(𝐶(𝑡−1)

𝑤 )− 𝑑−1
𝜌

∑︁
𝑤 ̸=𝑢

𝑌 𝜌
𝑢𝑤𝐷ℰ𝜌

⃒⃒
𝐶

(𝑡−1)
𝑤

[︁
{𝑑−1

𝜌′ 𝑌
𝜌′

𝑤𝑢ℰ𝜌′(𝐶(𝑡−2)
𝑢→𝑤 )}𝜌′

]︁

where 𝐷 denotes the total derivative

≈ 𝑑−1
𝜌

∑︁
𝑤 ̸=𝑢

𝑌 𝜌
𝑢𝑤ℰ𝜌(𝐶(𝑡−1)

𝑤 )− 𝑑−1
𝜌

∑︁
𝑤 ̸=𝑢

𝑌 𝜌
𝑢𝑤𝐷ℰ𝜌

⃒⃒
𝐶

(𝑡−1)
𝑤

[︁
{𝑑−1

𝜌′ 𝑌
𝜌′

𝑤𝑢ℰ𝜌′(𝐶(𝑡−2)
𝑢 )}𝜌′

]︁
.

Under the assumption that 𝑌 consists of per-edge 𝑂(𝑛−1/2) noise and 𝑂(𝑛−1) signal, the

error incurred in these two steps should be 𝑜(1). We thus reach an entirely non-backtracking
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recurrence where the first term is a message-passing step and the second term is the so-called

Onsager correction. It remains to simplify this. We focus on a single matrix coefficient of

the correction:

Ons
(𝑡)
𝑢,𝜌𝑎𝑏 = 𝑑−1

𝜌

∑︁
𝑤 ̸=𝑢

∑︁
𝑐

𝑌 𝜌
𝑢𝑤,𝑎𝑐𝐷ℰ𝜌

⃒⃒
𝐶

(𝑡−1)
𝑤

[︁
{𝑑−1

𝜌′ 𝑌
𝜌′

𝑤𝑢ℰ𝜌′(𝐶(𝑡−2)
𝑢 )}

]︁
𝑐𝑏

= 𝑑−1
𝜌

∑︁
𝑤 ̸=𝑢

∑︁
𝜌′𝑐𝑒𝑓

𝑌 𝜌
𝑢𝑤,𝑎𝑐

𝜕ℰ𝜌𝑐𝑏
𝜕𝐶𝜌′𝑒𝑓

⃒⃒
𝐶

(𝑡−1)
𝑤

(𝑑−1
𝜌′ 𝑌

𝜌′

𝑤𝑢ℰ𝜌′(𝐶(𝑡−2)
𝑢 ))𝑒𝑓

= 𝑑−1
𝜌

∑︁
𝑤 ̸=𝑢

∑︁
𝜌′𝑐𝑒𝑓ℎ

𝑌 𝜌
𝑢𝑤,𝑎𝑐

𝜕ℰ𝜌𝑐𝑏
𝜕𝐶𝜌′𝑒𝑓

⃒⃒
𝐶

(𝑡−1)
𝑤

𝑑−1
𝜌′ 𝑌

𝜌′

𝑤𝑢,𝑒ℎℰ𝜌′ℎ𝑓 (𝐶
(𝑡−2)
𝑢 ).

As in the derivation of [23], we now make a few simplifying approximations which we expect

to be correct in the large-𝑛 limit. We expect sufficiently little correlation between the

quantity 𝑌 𝜌
𝑢𝑤,𝑎𝑐𝑌

𝜌′

𝑤𝑢,𝑒ℎ and the other factors that, by the law of large numbers (since there

are many terms in the sum), we can replace this quantity by its expectation. We assume, as

in the Gaussian model, that the noise component of 𝑌 is independent across edges, across

frequencies, and across matrix entries (other than explicit dependencies such as symmetry).

It follows that the only terms in which 𝑌 𝜌
𝑢𝑤,𝑎𝑐𝑌

𝜌′

𝑤𝑢,𝑒ℎ has significantly nonzero mean is when

𝜌 = 𝜌′, 𝑎 = ℎ, and 𝑐 = 𝑒. In this case we have 𝑌 𝜌
𝑢𝑤,𝑎𝑐𝑌

𝜌′

𝑤𝑢,𝑒ℎ = |𝑌 𝜌
𝑢𝑤,𝑎𝑐|2. Further replacing this

by its expected value (which we assume depends only on 𝜌) yields

Ons
(𝑡)
𝑢,𝜌𝑎𝑏 = 𝑑−2

𝜌 |𝑌
𝜌
typ|2

∑︁
𝑓

ℰ𝜌𝑎𝑓 (𝐶(𝑡−2)
𝑢 )

∑︁
𝑤 ̸=𝑢

∑︁
𝑐

𝜕ℰ𝜌𝑐𝑏
𝜕𝐶𝜌𝑐𝑓

⃒⃒
𝐶

(𝑡−1)
𝑤

where |𝑌 𝜌
typ|2 denotes the average squared-norm of the entries of 𝑌𝜌.

An interlude, understanding derivatives of ℰ :

𝜕𝐼𝜌𝑎𝑏
𝜕𝐶𝜌′𝑐𝑑

=

∫︁
𝐺

𝑅𝜌𝑎𝑏(𝑔)𝑅𝜌′𝑐𝑑(𝑔) exp
∑︁
𝜌′′𝑎′𝑏′

𝐶𝜌′′𝑎′𝑏′𝑅𝜌′′𝑎′𝑏′(𝑔) d𝑔.
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In particular,

𝜕𝐼triv
𝜕𝐶𝜌𝑎𝑏

=

∫︁
𝐺

𝑅𝜌𝑎𝑏(𝑔) exp
∑︁
𝜌′𝑎′𝑏′

𝐶𝜌′𝑎′𝑏′𝑅𝜌′𝑎′𝑏′(𝑔) d𝑔

= 𝐼𝜌𝑎𝑏.

Note the following convenient identity:

∑︁
𝑐

𝜕𝐼𝜌𝑐𝑏
𝜕𝐶𝜌𝑐𝑓

=

∫︁
𝐺

(︃∑︁
𝑐

𝑅𝜌𝑐𝑏(𝑔)𝑅𝜌𝑐𝑓 (𝑔)

)︃
exp

∑︁
𝜌′𝑎′𝑏′

𝐶𝜌′𝑎′𝑏′𝑅𝜌′𝑎′𝑏′(𝑔) d𝑔

= 𝑑𝜌

∫︁
𝐺

(︃∑︁
𝑐

𝜌(𝑔)𝑐𝑏𝜌(𝑔
−1)𝑓𝑐

)︃
exp

∑︁
𝜌′𝑎′𝑏′

𝐶𝜌′𝑎′𝑏′𝑅𝜌′𝑎′𝑏′(𝑔) d𝑔

= 𝑑𝜌

∫︁
𝐺

𝜌(𝑔−1𝑔)𝑓𝑏 exp
∑︁
𝜌′𝑎′𝑏′

𝐶𝜌′𝑎′𝑏′𝑅𝜌′𝑎′𝑏′(𝑔) d𝑔

= 𝑑𝜌𝛿𝑏𝑓

∫︁
𝐺

exp
∑︁
𝜌′𝑎′𝑏′

𝐶𝜌′𝑎′𝑏′𝑅𝜌′𝑎′𝑏′(𝑔) d𝑔

= 𝑑𝜌𝛿𝑏𝑓𝐼triv(𝐶).

Recalling that ℰ𝜌𝑎𝑏(𝐶) = 𝐼𝜌𝑎𝑏(𝐶)/𝐼triv(𝐶), we have

∑︁
𝑐

𝜕ℰ𝜌𝑐𝑏
𝜕𝐶𝜌𝑐𝑓

=
𝐼triv

∑︀
𝑐

𝜕𝐼𝜌𝑐𝑏
𝜕𝐶𝜌𝑐𝑓

−
∑︀

𝑐 𝐼𝜌𝑐𝑏𝐼𝜌𝑐𝑓

𝐼2triv

= 𝑑𝜌𝛿𝑏𝑓 −
∑︁
𝑐

ℰ𝜌𝑐𝑏(𝐶)ℰ𝜌𝑐𝑓 (𝐶)

= (𝑑𝜌𝐼 − ℰ𝜌(𝐶)*ℰ𝜌(𝐶))𝑓𝑏 .

Thus we obtain the following form for the Onsager correction:

Ons(𝑡)𝑢,𝜌 = 𝑑−2
𝜌 |𝑌

𝜌
typ|2ℰ𝜌(𝐶(𝑡−2)

𝑢 )𝑀 (𝑡)
𝜌 , 𝑀 (𝑡)

𝜌 =
∑︁
𝑤

𝑑𝜌𝐼 − ℰ𝜌(𝐶(𝑡−1)
𝑤 )*ℰ𝜌(𝐶(𝑡−1)

𝑤 ),
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with each AMP iteration reading as

𝐶(𝑡)
𝑢,𝜌 = 𝑑−1

𝜌

∑︁
𝑤 ̸=𝑢

𝑌 𝜌
𝑢𝑤ℰ𝜌(𝐶(𝑡−1)

𝑤 )−Ons(𝑡)𝑢,𝜌.

2.6 MMSE derivation and state evolution

The goal of this section is to derive the state evolution equations that govern the behavior of

AMP on the Gaussian synchronization model of Section 2.3.4 (in the large 𝑛 limit). Along

the way, we will give an alternative derivation of the algorithm (excluding the Onsager term)

which shows that the nonlinear function ℰ has an interpretation as an MMSE (minimum

mean squared error) estimator. This derivation is similar to [56] and based on ideas first

introduced by [63]. We do not give a proof that the state evolution equations derived here

are correct (i.e. that AMP obeys them) but we will argue for their correctness in Section 2.7.

2.6.1 MMSE estimator

We begin by defining a ‘scalar’ problem: a simplification of the Gaussian synchronization

model where we attempt to recover a single group element from noisy measurements. We

will be able to analyze the Gaussian synchronization model by connection to this simpler

model. (This is the idea of single letterization from information theory.) Suppose there

is an unknown group element 𝑔 drawn uniformly from 𝐺 (Haar measure) and for each

irreducible representation 𝜌 in our list 𝒫 we are given a measurement 𝑢𝜌 = 𝜇𝜌𝜌(𝑔) + 𝜎𝜌𝑧𝜌

(for some constants 𝜇𝜌, 𝜎𝜌). Here 𝑧𝜌 is a 𝑑𝜌 × 𝑑𝜌 non-symmetric matrix of Gaussian entries

(real, complex, or block-quaternion, depending on the type of 𝜌) with all entries (or blocks)

independent and each entry normalized to have expected squared-norm 1. (Note that 𝑧𝜌 is

the same as an off-diagonal block of the matrix 𝑊𝜌 from Section 2.3.4.) For 𝜌 of complex

type, we only get a measurement 𝑢𝜌 for one representation in each conjugate pair, and

define 𝑢𝜌 = 𝑢𝜌. The MMSE estimator for 𝜌(𝑔) (minimizing the matrix mean squared error

E‖̂︂𝜌(𝑔)− 𝜌(𝑔)‖2𝐹 ) is simply the conditional expectation
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E
[︁
𝜌(𝑔)

⃒⃒⃒
{𝑢𝑞}𝑞

]︁
=

∫︁
ℎ∈𝐺

𝜌(ℎ) exp

(︃
−
∑︁
𝑞

1

2𝜎2
𝑞

‖𝑢𝑞 − 𝜇𝑞𝑞(ℎ)‖2𝐹

)︃⧸︁∫︁
ℎ∈𝐺

exp

(︃
−
∑︁
𝑞

1

2𝜎2
𝑞

‖𝑢𝑞 − 𝜇𝑞𝑞(ℎ)‖2𝐹

)︃

=

∫︁
ℎ∈𝐺

𝜌(ℎ) exp

(︃∑︁
𝑞

𝜇𝑞

𝜎2
𝑞

⟨𝑢𝑞, 𝑞(ℎ)⟩

)︃⧸︁∫︁
ℎ∈𝐺

exp

(︃∑︁
𝑞

𝜇𝑞

𝜎2
𝑞

⟨𝑢𝑞, 𝑞(ℎ)⟩

)︃

≡ ℱ𝜌

(︃{︂
𝜇𝑞

𝜎2
𝑞

𝑢𝑞

}︂
𝑞

)︃

where

ℱ𝜌({𝑤𝑞}𝑞) =
∫︁
ℎ∈𝐺

𝜌(ℎ) exp

(︃∑︁
𝑞

⟨𝑤𝑞, 𝑞(ℎ)⟩

)︃⧸︁∫︁
ℎ∈𝐺

exp

(︃∑︁
𝑞

⟨𝑤𝑞, 𝑞(ℎ)⟩

)︃
.

Here 𝑞 ranges over irreducible representations in our list 𝒫 (which includes both 𝑞 and 𝑞 for

representations of complex type). The likelihoods used in the above computation are derived

similarly to those in Appendix A.1. We recognize ℱ as a rescaling of the function ℰ from

the AMP update step.

2.6.2 AMP update step

Consider the Gaussian observation model 𝑀𝜌 = 𝜆𝜌

𝑛
𝑋𝜌𝑋

*
𝜌 + 1√

𝑛𝑑𝜌
𝑊𝜌 from Section 2.3.4.

Similarly to [56], the MMSE-AMP update step (without Onsager term) is

𝑈 𝑡+1
𝜌 = 𝑀𝜌ℱ𝜌

(︃{︂
𝜇𝑡
𝑞

(𝜎𝑡
𝑞)

2
𝑈 𝑡
𝑞

}︂
𝑞

)︃

where 𝑡 indicates the timestep and 𝜇𝑡
𝜌, 𝜎

𝑡
𝜌 will be defined based on state evolution below.

Here the AMP state 𝑈 𝑡
𝜌 is 𝑛𝑑𝜌 × 𝑑𝜌 with a 𝑑𝜌 × 𝑑𝜌 block for each vertex. ℱ𝜌 is applied to

each of these blocks separately. We will motivate this AMP update step below, but notice

its similarity to the MMSE estimator above.
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2.6.3 State evolution

The idea of state evolution is that the AMP iterates can be approximately modeled as

‘signal’ plus ‘noise’ [63]. Namely, we postulate that 𝑈 𝑡
𝜌 = 𝜇𝑡

𝜌𝑋𝜌 + 𝜎𝑡
𝜌𝑍𝜌 for some constants

𝜇𝑡, 𝜎𝑡, where 𝑍𝜌 is a 𝑛𝑑𝜌 × 𝑑𝜌 Gaussian noise matrix with each 𝑑𝜌 × 𝑑𝜌 block independently

distributed like 𝑧𝜌 (from the scalar model) with 𝑍𝜌 = 𝑍𝜌 for conjugate pairs. Recall 𝑋𝜌 has

blocks 𝜌(𝑔𝑢), the ground truth. Note that this sheds light on the AMP update step above:

at each iteration we are given 𝑈 𝑡
𝑞 , a noisy copy of the ground truth; the first thing we do is

to apply the MMSE estimator entrywise.

We will derive a recurrence for how the parameters 𝜇𝜌 and 𝜎𝜌 change after one iteration.

To do this, we assume that the noise 𝑊𝜌 is independent from 𝑍𝜌 at each timestep. This

assumption is far from true; however, it turns out that AMP’s Onsager term corrects for

this (e.g. [23]). In other words, we derive state evolution by omitting the Onsager term and

assuming independent noise at each timestep. Then if we run AMP (with the Onsager term

and the same noise at each timestep), it behaves according to state evolution. We now derive

state evolution:

𝑈 𝑡+1
𝜌 = 𝑀𝜌ℱ𝜌

(︃{︂
𝜇𝑡
𝑞

(𝜎𝑡
𝑞)

2
𝑈 𝑡
𝑞

}︂
𝑞

)︃

=

(︃
𝜆𝜌

𝑛
𝑋𝜌𝑋

*
𝜌 +

1√︀
𝑛𝑑𝜌

𝑊𝜌

)︃
ℱ𝜌

(︃{︂
𝜇𝑡
𝑞

(𝜎𝑡
𝑞)

2

(︀
𝜇𝑡
𝑞𝑋𝑞 + 𝜎𝑡

𝑞𝑍𝑞

)︀}︂
𝑞

)︃

=

(︃
𝜆𝜌

𝑛
𝑋𝜌𝑋

*
𝜌 +

1√︀
𝑛𝑑𝜌

𝑊𝜌

)︃
ℱ𝜌

(︂{︁
𝛾𝑡
𝑞𝑋𝑞 +

√︁
𝛾𝑡
𝑞𝑍𝑞

}︁
𝑞

)︂

where 𝛾𝑡
𝑞 =

(︁
𝜇𝑡
𝑞

𝜎𝑡
𝑞

)︁2

=
𝜆𝜌

𝑛
𝑋𝜌𝑋

*
𝜌 ℱ𝜌

(︂{︁
𝛾𝑡
𝑞𝑋𝑞 +

√︁
𝛾𝑡
𝑞𝑍𝑞

}︁
𝑞

)︂
+

1√︀
𝑛𝑑𝜌

𝑊𝜌ℱ𝜌

(︂{︁
𝛾𝑡
𝑞𝑋𝑞 +

√︁
𝛾𝑡
𝑞𝑍𝑞

}︁
𝑞

)︂
.
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First focus on the signal term:

𝜆𝜌

𝑛
𝑋𝜌𝑋

*
𝜌 ℱ𝜌

(︂{︁
𝛾𝑡
𝑞𝑋𝑞 +

√︁
𝛾𝑡
𝑞𝑍𝑞

}︁
𝑞

)︂
≈ 𝜆𝜌𝑋𝜌 E𝑔,𝑧𝑞

[︂
𝜌(𝑔)*ℱ𝜌

(︂{︁
𝛾𝑡
𝑞𝑞(𝑔) +

√︁
𝛾𝑡
𝑞𝑧𝑞

}︁
𝑞

)︂]︂

where 𝑔 is drawn from Haar measure on 𝐺, and 𝑧𝑞 is a non-symmetric Gaussian matrix of

the appropriate type (as in Section 2.6.1). Define 𝐴𝑡
𝜌 ∈ C𝑑𝜌×𝑑𝜌 to be the second matrix in

the expression above:

𝐴𝑡
𝜌 ≡ E𝑔,𝑧𝑞

[︂
𝜌(𝑔)*ℱ𝜌

(︂{︁
𝛾𝑡
𝑞𝑞(𝑔) +

√︁
𝛾𝑡
𝑞𝑧𝑞

}︁
𝑞

)︂]︂
.

We will see shortly that 𝐴𝑡
𝜌 is a multiple 𝑎𝑡𝜌 ∈ R of the identity and so we can now write the

signal term as 𝜆𝜌𝑎
𝑡
𝜌𝑋𝜌. Therefore our new signal parameter is 𝜇𝑡+1

𝜌 = 𝜆𝜌𝑎
𝑡
𝜌.

We take a short detour to state some properties of 𝐴𝑡
𝜌, which we prove in Appendix A.2.

Lemma 2.6.1. 𝐴𝑡
𝜌 is a real multiple of the identity: 𝐴𝑡

𝜌 = 𝑎𝑡𝜌𝐼𝑑𝜌 for some 𝑎𝑡𝜌 ∈ R. Further-

more, we have the following equivalent formulas for 𝑎𝑡𝜌:

(i) E𝑔,𝑧𝑞

[︁
𝜌(𝑔)*ℱ𝜌

(︁{︀
𝛾𝑡
𝑞𝑞(𝑔) +

√︀
𝛾𝑡
𝑞𝑧𝑞
}︀
𝑞

)︁]︁
(ii) E𝑔,𝑧𝑞 [ℱ𝜌 (· · · )* ℱ𝜌 (· · · )]

(iii) E𝑧𝑞

[︁
ℱ𝜌

(︁{︀
𝛾𝑡
𝑞𝐼𝑑𝑞 +

√︀
𝛾𝑡
𝑞𝑧𝑞
}︀
𝑞

)︁]︁
(iv) E𝑧𝑞 [ℱ𝜌 (· · · )* ℱ𝜌 (· · · )]

where · · · denotes the argument to ℱ𝜌 from the previous line.

Returning to state evolution, we now focus on the noise term:

1√︀
𝑛𝑑𝜌

𝑊𝜌ℱ𝜌

(︂{︁
𝛾𝑡
𝑞𝑋𝑞 +

√︁
𝛾𝑡
𝑞𝑍𝑞

}︁
𝑞

)︂
.

Each entry of this 𝑛𝑑𝜌 × 𝑑𝜌 matrix is Gaussian. The variance (expected squared-norm) of
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entry (𝑖, 𝑗) is (approximately)

1

𝑛𝑑𝜌

𝑛𝑑𝜌∑︁
𝑘=1

⃒⃒⃒⃒
⃒ℱ𝜌

(︂{︁
𝛾𝑡
𝑞𝑋𝑞 +

√︁
𝛾𝑡
𝑞𝑍𝑞

}︁
𝑞

)︂
𝑘,𝑗

⃒⃒⃒⃒
⃒
2

≈ 1

𝑑𝜌
E𝑔,𝑧𝑞

𝑑𝜌∑︁
𝑘=1

⃒⃒⃒⃒
⃒ℱ𝜌

(︂{︁
𝛾𝑡
𝑞𝑞(𝑔) +

√︁
𝛾𝑡
𝑞𝑧𝑞

}︁
𝑞

)︂
𝑘,𝑗

⃒⃒⃒⃒
⃒
2

=
1

𝑑𝜌
E [ℱ𝜌(· · · )*ℱ𝜌(· · · )]𝑗𝑗

=
1

𝑑𝜌
(𝐴𝑡

𝜌)𝑗𝑗

=
1

𝑑𝜌
𝑎𝑡𝜌.

We therefore have the new noise parameter (𝜎𝑡+1
𝜌 )2 =

𝑎𝑡𝜌
𝑑𝜌

.

To summarize, we now have the state evolution recurrence 𝜇𝑡+1
𝜌 = 𝜆𝜌𝑎

𝑡
𝜌 and (𝜎𝑡+1

𝜌 )2 =
𝑎𝑡𝜌
𝑑𝜌

.

2.6.4 Simplified AMP update step

Note that the state evolution recurrence implies the relation

𝜇𝑡+1
𝜌

(𝜎𝑡+1
𝜌 )2

= 𝑑𝜌𝜆𝜌.

Provided our initial values of 𝜇𝜌, 𝜎𝜌 satisfy this relation (which can always be arranged by

scaling the initial 𝑈𝜌 appropriately), our AMP update step (without Onsager term) becomes

𝑈 𝑡+1
𝜌 = 𝑀𝜌ℱ𝜌

(︁{︀
𝑑𝜌𝜆𝜌𝑈

𝑡
𝑞

}︀
𝑞

)︁
.

This is convenient because we can implement AMP without keeping track of the state evolu-

tion parameters 𝜇𝑡
𝜌, 𝜎

𝑡
𝜌. Also note that this variant of AMP matches the original derivation

after the rescaling 𝐶𝑡
𝜌 =

√︀
𝑑𝜌𝜆𝜌𝑈

𝑡
𝜌 (and excluding the Onsager term).

2.6.5 Reduction to single parameter (per frequency)

We will rewrite the state evolution recurrence in terms of a single parameter per frequency.

This parameter will be 𝛾𝑡
𝜌, which was introduced earlier: 𝛾𝑡

𝜌 =
(︁

𝜇𝑡
𝜌

𝜎𝑡
𝜌

)︁2
. Recall the state
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evolution recurrence 𝜇𝑡+1
𝜌 = 𝜆𝜌𝑎

𝑡
𝜌 and (𝜎𝑡+1

𝜌 )2 =
𝑎𝑡𝜌
𝑑𝜌

. We therefore have the update step

𝛾𝑡+1
𝜌 =

(︂
𝜇𝑡+1
𝜌

𝜎𝑡+1
𝜌

)︂2

=
(𝜆𝜌𝑎

𝑡
𝜌)

2

𝑎𝑡𝜌/𝑑𝜌
= 𝑑𝜌𝜆

2
𝜌𝑎

𝑡
𝜌.

Using part (iii) of Lemma 2.6.1 we can write this as:

𝛾𝑡+1
𝜌 = 𝜆2

𝜌 E𝑧𝑞Trℱ𝜌

(︂{︁
𝛾𝑡
𝑞𝐼𝑑𝑞 +

√︁
𝛾𝑡
𝑞𝑧𝑞

}︁
𝑞

)︂
. (2.4)

This is the final form of our state evolution recurrence. The relation between 𝜇𝜌, 𝜎𝜌, 𝛾𝜌 can

be summarized as 𝛾𝜌 = 𝑑𝜌𝜆𝜌𝜇𝜌 = 𝑑2𝜌𝜆
2
𝜌𝜎

2
𝜌.

We expect that the state evolution recurrence (2.4) exactly governs the behavior of AMP

in the large 𝑛 limit. Although the derivation above was heuristic, we discuss its correctness

in Section 2.7. There is a caveat regarding how it should be initialized (see Section 2.7)

but in practice we can imagine the initial 𝛾 value is a small random vector. (Note that the

initialization 𝛾 = 0⃗ is problematic because state evolution will never leave zero.) We expect

that state evolution converges to some fixed point of the recurrence. Some complications

arise if there are multiple fixed points (see Section 2.8) but we expect there to be a unique

fixed point that is reached from any small initialization. This fixed point 𝛾* describes the

output of AMP in the sense that (following the postulate of state evolution) the final AMP

iterate is approximately distributed as 𝑈𝜌 ≈ 𝜇*
𝜌𝑋𝜌 + 𝜎*

𝜌𝑍𝜌, which in terms of 𝛾* is (up to

scaling) 𝑈𝜌 ≈ 𝛾*
𝜌𝑋𝜌 +

√︀
𝛾*
𝜌𝑍𝜌. (See [23] for the precise sense in which we expect this to be

true.) Note that one can use this to translate a 𝛾* value into any measure of performance,

such as MSE. This gives an exact asymptotic characterization of the performance of AMP

for any set of 𝜆𝜌 values. The most prominent feature of AMP’s performance is the threshold

at 𝜆 = 1, which we derive in the next section.

One can check that our state evolution recurrence matches the Bayes-optimal cavity and

replica predictions of [82] for Z/2 and 𝑈(1) with one frequency. Indeed, we expect AMP to

be statistically optimal in these settings (and many others too; see Section 2.8), and this has

been proven rigorously for Z/2 [56].
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2.6.6 Threshold at 𝜆 = 1

In this section we use the state evolution occurrence to derive the threshold above which

AMP achieves nontrivial recovery. In particular, if 𝜆𝜌 < 1 for all frequencies 𝜌 then the AMP

fixed point 𝛾* is equal to the zero vector and so AMP gives trivial performance (random

guessing) in the large 𝑛 limit. On the other hand, if 𝜆𝜌 > 1 for at least one frequency 𝜌 then

𝛾* is nonzero and AMP achieves nontrivial recovery.

The zero vector is always a fixed point of state evolution. Whether or not AMP achieves

nontrivial performance depends on whether the zero vector is a stable or unstable fixed point.

Therefore we consider the regime where 𝛾𝜌 is small for all 𝜌. When the input {𝑤𝑞}𝑞 to ℱ𝜌 is

small, we can approximate ℱ𝜌 by its linearization.

ℱ𝜌

(︁
{𝑤𝑞}𝑞

)︁
≈
∫︁
ℎ

𝜌(ℎ)

[︃
1 +

∑︁
𝑞

⟨𝑤𝑞, 𝑞(ℎ)⟩

]︃
=

∫︁
ℎ

𝜌(ℎ)
∑︁
𝑞

⟨𝑤𝑞, 𝑞(ℎ)⟩

and so

ℱ𝜌

(︁
{𝑤𝑞}𝑞

)︁
𝑎𝑏
≈
∫︁
ℎ

𝜌(ℎ)𝑎𝑏
∑︁
𝑞𝑐𝑑

𝑤𝑞𝑐𝑑𝑞(ℎ)𝑐𝑑

=
∑︁
𝑞𝑐𝑑

𝑤𝑞𝑐𝑑

∫︁
ℎ

𝜌(ℎ)𝑎𝑏𝑞(ℎ)𝑐𝑑

=
∑︁
𝑞𝑐𝑑

𝑤𝑞𝑐𝑑
1

𝑑𝜌
𝛿𝜌𝑎𝑏,𝑞𝑐𝑑

=
𝑤𝜌𝑎𝑏

𝑑𝜌

which means ℱ𝜌

(︁
{𝑤𝑞}𝑞

)︁
≈ 𝑤𝜌

𝑑𝜌
. Now the state evolution update step becomes

𝛾𝑡+1
𝜌 = 𝜆2

𝜌 E𝑧𝑞Trℱ𝜌

(︂{︁
𝛾𝑡
𝑞𝐼𝑑𝑞 +

√︁
𝛾𝑡
𝑞𝑧𝑞

}︁
𝑞

)︂
≈ 𝜆2

𝜌 E𝑧𝑞Tr
1

𝑑𝜌

(︁
𝛾𝑡
𝜌𝐼𝑑𝜌 +

√︁
𝛾𝑡
𝜌𝑧𝑞

)︁
= 𝜆2

𝜌𝛾
𝑡
𝜌.
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This means that when 𝛾 is small (but nonzero), 𝛾𝜌 shrinks towards zero if 𝜆𝜌 < 1 and grows

in magnitude if 𝜆𝜌 > 1. We conclude the threshold at 𝜆 = 1.

2.7 Correctness of state evolution?

In this section we justify the heuristic derivation of state evolution in the previous section

and argue for its correctness. We first discuss prior work that provides a rigorous foundation

for the methods we used, in related settings. We then show numerically that our AMP

algorithm obeys the state evolution equations.

2.7.1 Rigorous work on state evolution

State evolution was introduced along with AMP by [63], based on density evolution in the

sparse setting of LDPC codes [126]. It was later proven rigorously that AMP obeys state

evolution in the large 𝑛 limit (in a particular formal sense) for certain forms of the AMP

iteration [23, 81]. In particular, Z/2 synchronization with Gaussian noise (a special case of

our model) falls into this framework and thus admits a rigorous analysis [56]. Although the

proofs of [23, 81] only consider the case of real-valued AMP, it has been stated [102] that the

proof extends to the complex-valued case. This covers our synchronization model over 𝑈(1)

with one frequency. In order to cover our general formulation of AMP over any group with

any number of frequencies, one needs to replace the complex numbers by a different real

algebra (namely a product of matrix algebras). We expect that this generalization should

follow from the existing methods.

There is, however, an additional caveat involving the initialization of state evolution. In

practice, we initialize AMP to small random values. Recall that we only need to recover

the group elements up to a global right-multiplication and so there exists a favorable global

right-multiplication so that our random initialization has some correlation with the truth.

However, this correlation is 𝑜(1) and corresponds to 𝛾 = 0⃗ in the large 𝑛 limit. This means

that technically, the formal proof of state evolution (say for Z/2) tells us that for any fixed
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𝑡, AMP achieves 𝛾 = 0⃗ after 𝑡 iterations in the large 𝑛 limit. Instead we would like to show

that after 𝜔(1) iterations we achieve a nonzero 𝛾. It appears that proving this would require

a non-asymptotic analysis of AMP, such as [131]. It may appear that this initialization issue

can be fixed by initializing AMP with a spectral method, which achieves Ω(1) correlation with

the truth; however this does not appear to easily work due to subtle issue about correlation

between the noise and iterates. In practice, the initialization issue is actually not an issue

at all: with a small random initialization, AMP consistently escapes from the trivial fixed

point (provided some 𝜆 exceeds 1). One way to explain this is that when the AMP messages

are small, the nonlinear function ℱ is essentially the identity (see Section 2.6.6) and so AMP

is essentially just the power method; this roughly means that AMP automatically initializes

itself to the output of the spectral method.

2.7.2 Experiments on state evolution

We now present experimental evidence that AMP obeys the state evolution equations. In

Figure 2-8 we show two experiments, one with 𝑈(1) and one with 𝑆𝑂(3). In both cases we

see that the performance of AMP closely matches the state evolution prediction. We see

some discrepancy near the 𝜆 = 1 threshold, which can be attributed to the fact that here we

are running AMP with finite 𝑛 whereas state evolution describes the 𝑛→∞ behavior.

2.8 Statistical-to-computational gaps

In various settings it has been shown, using standard but non-rigorous methods from statis-

tical physics, that the analysis of AMP and state evolution yields a complete picture of the

various “phase transitions” that occur in a computational problem (e.g. [97, 96]). In some

settings, certain features of these predictions have been confirmed rigorously (e.g. [89, 22]).

In this section we will use these methods to give non-rigorous predictions about statistical-

to-computational gaps in the Gaussian synchronization model.

In Section 2.6.6 we have seen that (in the large 𝑛 limit) AMP achieves nontrivial recovery
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Figure 2-8: AMP compared to the state evolution equations experimentally. Left: 𝑈(1)
with 𝐾 frequencies, for 𝐾 = 1, 2, 3, 4 (from top to bottom) with 𝑛 = 100. The solid line
is AMP and the dotted line is the state evolution prediction. The horizontal axis is the
signal-to-noise ratio 𝜆, which we take to be equal on all frequencies. The vertical axis is the
natural logarithm of error, which is defined as error = 1−|⟨𝑥, ̂︀𝑥⟩/𝑛| ∈ [0, 1] where 𝑥 ∈ 𝑈(1)𝑛

is the truth and ̂︀𝑥 ∈ 𝑈(1)𝑛 is the (rounded) output of AMP. In particular, a log error value
of zero (top of the figure) indicates trivial recovery (random guessing), and lower values are
better. Right: 𝑆𝑂(3) with 𝐾 frequencies, for 𝐾 = 1, 2 (from top to bottom), with 𝑛 = 50.
Now error is measured as error = 1− 1√

3𝑛
‖𝑋⊤ ̂︀𝑋‖𝐹 ∈ [0, 1] where 𝑋, ̂︀𝑋 are 3𝑛× 𝑛 matrices

whose 3 × 3 blocks encode elements of 𝑆𝑂(3) via the standard representation (3D rotation
matrices).

if and only if 𝜆 > 1 on at least one frequency. In this section, we will see that it is sometimes

statistically possible to succeed below this threshold, although no known efficient algorithm

achieves this. A rigorous analysis of an inefficient estimator has indeed confirmed that the

𝜆 = 1 threshold can be beaten in some cases (see Chapter 3); the non-rigorous computations

in this section give sharp predictions for exactly when this is possible.

2.8.1 Free energy

Recall the parameter 𝛾 = {𝛾𝜌}𝜌 from the state evolution recurrence (2.4); 𝛾 captures the

amount of information that AMP’s current state has about each frequency, with 𝛾𝜌 = 0

indicating no information and 𝛾𝜌 →∞ indicating complete knowledge.

An important quantity is the Bethe free energy per variable (also called the replica sym-

metric potential function) of a state 𝛾, which for the Gaussian synchronization model is given
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(up to constants) by

𝑓(𝛾) = −1

4

∑︁
𝜌

𝑑2𝜌𝜆
2
𝜌 +

1

2

∑︁
𝜌

𝑑𝜌𝛾𝜌 +
1

4

∑︁
𝜌

𝛾2
𝜌

𝜆2
𝜌

− E𝑧 logE𝑔 exp

(︃∑︁
𝜌

⟨𝜌(𝑔), 𝛾𝜌𝐼𝑑𝜌 +
√
𝛾𝜌𝑧𝜌⟩

)︃

where 𝑧𝜌 is a 𝑑𝜌 × 𝑑𝜌 matrix of i.i.d. standard Gaussians (of the appropriate type: real,

complex, or quaternionic, depending on 𝜌), and 𝑔 is drawn from Haar measure on the group.

We do not include the derivation of this expression, but it can be computed from belief

propagation (as in [96]) or from the replica calculation (as in [82]).

Roughly speaking, the interpretation of the Bethe free energy is that it is the objective

value that AMP is trying to minimize. AMP can be thought of as starting from the origin

𝛾 = 0 and performing naïve gradient descent in the free energy landscape until it reaches a

local minimum; the value of 𝛾 at this minimum describes the final state of AMP. (It can be

shown that the fixed points of the state evolution recurrence (2.4) are precisely the stationary

points of the Bethe free energy.) As is standard for these types of problems, we conjecture

that AMP is optimal among all polynomial-time algorithms. However, with no restriction on

efficiency, the information-theoretically optimal estimator is given by the global minimum of

the free energy. (This has been shown rigorously for the related problem of rank-one matrix

estimation [22].) The intuition here is that the optimal estimator should use exhaustive

search to enumerate all fixed points of AMP and return the one of lowest Bethe free energy.

Note that just because we can compute the 𝛾 value that minimizes the Bethe free energy

it does not mean we can achieve this 𝛾 with an efficient algorithm; 𝛾 represents correlation

between the AMP iterates and the ground truth, and since the truth is unknown it is hard

to find iterates that have a prescribed 𝛾.

2.8.2 Examples

We now examine the Bethe free energy landscapes of some specific synchronization problems

at various values of 𝜆, and discuss the implications. Our primary examples will be 𝑈(1)

and Z/𝐿 with various numbers of frequencies, as discussed in Section 2.3.5. Recall that
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references to 𝑈(1) or Z/𝐿 “with 𝐾 frequencies” means that observations are band-limited to

the Fourier modes 𝑒𝑖𝑘𝜃 with |𝑘| ≤ 𝐾.

Our first example is 𝑈(1) with a single frequency, shown in Figure 2-9. Here we see

that the problem transitions from (statistically) ‘impossible’ to ‘easy’ (AMP achieves non-

trivial recovery) at 𝜆 = 1, with no (computationally) ‘hard’ regime. In particular, AMP is

statistically optimal for every value of 𝜆.
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Figure 2-9: Free energy landscape for 𝑈(1) with 1 frequency. Left: 𝜆 < 1. The global
minimum of free energy occurs at 𝛾 = 0, indicating that AMP or any other estimator
achieves zero correlation with the truth. Right: 𝜆 > 1. Now the global minimum occurs at
nonzero 𝛾, and this is achieves by AMP. Therefore AMP achieves the statistically optimal
MSE (mean squared error). This MSE departs continuously from zero at the 𝜆 = 1 threshold.

Our next example is a single-frequency problem that exhibits a computational gap (a

‘hard’ phase). In Figure 2-10 we take the alternating group 𝐴4 with its irreducible 3-

dimensional representation as the rotational symmetries of a tetrahedron. When 𝜆 > 1,

AMP achieves statistically optimal performance but when 𝜆 is below 1 but sufficiently large,

AMP gives trivial performance while the statistically optimal estimator gives nontrivial per-

formance. This means we have a computational gap, i.e. there are values of 𝜆 below the

AMP threshold (𝜆 = 1) where nontrivial recovery is statistically possible.

Next we move on to some 2-frequency problems, where 𝛾 is now a 2-dimensional vector.

In Figure 2-11 we see an example with no computational gap, and an example with a com-

putational gap. Note that the free energy landscape at the AMP threshold 𝜆 = (1, . . . , 1)
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(a) 𝜆 = 0.8, impossible
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(b) 𝜆 = 0.91, impossible
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(c) 𝜆 = 0.92, hard
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(d) 𝜆 = 1.1, easy

Figure 2-10: Free energy landscape for 𝐴4 with 1 frequency: the standard 3-dimensional
representation (rigid motions of a tetrahedron). (a) 𝜆 = 0.8. The global minimizer is 𝛾 = 0
so no estimator achieves nontrivial recovery. (b) 𝜆 = 9.1. A new local minimum in the free
energy has appeared, but the global minimum is still at 𝛾 = 0 and so nontrivial recovery
remains impossible. (c) 𝜆 = 9.2. AMP is stuck at 𝛾 = 0 but the (inefficient) statistically
optimal estimator achieves a nontrivial 𝛾 (the global minimum). AMP is not statistically
optimal. This computational gap appears at 𝜆 ≈ 0.913, at which point the global minimizer
transitions discontinuously from 𝛾 = 0 to some positive value. (d) 𝜆 = 1.1. AMP achieves
optimal recovery. The AMP 𝛾 value transitions discontinuously from zero to optimal at
𝜆 = 1.

reveals whether or not a computational gap exists: there is a gap if and only if the global

minimum of free energy does not occur at the origin.

We now state some experimental results regarding which synchronization problems have
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Figure 2-11: Free energy landscape for 2-frequency problems at the critical value 𝜆 = (1, 1).
Darker colors indicate lower free energy. Left: Z/6 with 2 frequencies. Here the origin is the
global minimizer of free energy and so there is no computational gap, i.e. nontrivial recovery
is statistically impossible when both 𝜆1 and 𝜆2 are below 1. Right: Z/5 with 2 frequencies.
Here the global minimizer (marked with an X) does not lie at the origin and so there is a
computational gap, i.e. there is a regime where nontrivial recovery is statistically possible
yet AMP fails.

computational gaps. For 𝑈(1) with (the first) 𝐾 frequencies, there is a gap iff 𝐾 ≥ 3. For

Z/𝐿 with 𝐾 frequencies, there is a gap for 𝐾 ≥ 3 and no gap for 𝐾 = 1; when 𝐾 = 2 there

is only a gap for 𝐿 = 5. For 𝑆𝑂(3) with 𝐾 frequencies, there is a gap for all 𝐾 ≥ 1.

In Chapter 3 we will give some rigorous lower bounds for Gaussian synchronization

problems, showing for instance that 𝑈(1) with one frequency is statistically impossible below

𝜆 = 1. The non-rigorous results above predict further results that we were unable to show

rigorously, e.g. 𝑈(1) with two frequencies and Z/3 (with one frequency) are statistically

impossible below the 𝜆 = 1 threshold.

In the examples above we saw that when every 𝜆 is below 1, AMP gives trivial perfor-

mance, and when some 𝜆 exceeds 1, AMP gives statistically optimal performance. However,

the behavior can be more complicated, namely AMP can exhibit nontrivial but sub-optimal

performance. In Figure 2-12 we show such an example: Z/25 with 9 frequencies.
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Figure 2-12: An example where AMP gives nontrivial but sub-optimal performance. Here we
take Z/25 with 9 frequencies. Set 𝜆𝑘 = 0.8 for 𝑘 = 1, . . . , 8 and 𝜆9 = 1.1. Since we cannot
visualize the free energy landscape in 9 dimensions, we instead plot the state evolution
recurrence as it evolves over time (number of iterations 𝑡) from two different starting points.
The bottom two curves correspond to AMP’s performance, where we initialize 𝛾 to be small:
𝛾 = (0.05, 0.05). The solid line is 𝛾9 and the dashed line is 𝛾1 (which is representative
of 𝛾2, . . . , 𝛾8). The top two curves correspond to a “warm start” 𝛾 = (0.7, 0.7). We see
that with the warm start, state evolution converges to a different fixed point with larger 𝛾
values, and thus better correlation with the truth. Furthermore, this fixed point has lower
free energy (not shown) than the lower one, indicating that the information-theoretically
optimal estimator outperforms AMP.
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Chapter 3

Synchronization: contiguity and rigorous

bounds

This chapter is adapted from joint work with Amelia Perry, Afonso Bandeira, and Ankur

Moitra [120]. The journal version [122] is comprised of the first part of the preprint [120];

this chapter is based primarily on the second part but shares some content with [122].

3.1 Introduction

In the previous chapter we gave a sharp but non-rigorous analysis of the Gaussian synchro-

nization model, determining the optimal mean squared error achievable for any given value

of the signal-to-noise parameter(s) 𝜆. In particular, we identified a threshold at 𝜆 = 1, above

which AMP (or simply PCA) achieves nontrivial correlation with the truth. The goal of

this chapter is to rigorously investigate whether the 𝜆 = 1 threshold is optimal, i.e. whether

there is any estimator that can succeed when 𝜆 ≤ 1.

Take for example, the simple case of Z/2 synchronization: we observe

𝑌 =
𝜆

𝑛
𝑥𝑥⊤ +

1√
𝑛
𝑊, (3.1)
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where 𝑥 ∈ {±1}𝑛 is the signal to be recovered, 𝑊 is a GOE matrix1, and 𝜆 > 0 is the

signal-to-noise parameter.

We are interested in the following statistical questions:

∙ Detection: For what values of 𝜆 is it possible to consistently distinguish (with proba-

bility 1− 𝑜(1) as 𝑛→∞) between a random matrix 𝑌 drawn from the Z/2 model and

a pure noise matrix (𝜆 = 0)?

∙ Recovery : For what values of 𝜆 does there exist an estimator that achieves non-

vanishing correlation with 𝑥 as 𝑛→∞?

Random matrix theory gives a precise analysis of PCA (top eigenvector) for the Z/2

model:

Theorem 3.1.1 ([69, 25]). Let 𝑌 be drawn from the Z/2 model (3.1).

∙ If 𝜆 ≤ 1, the top eigenvalue of 𝑌 converges almost surely to 2 as 𝑛 → ∞, and the

top (unit-norm) eigenvector 𝑣 has trivial correlation with the spike: ⟨𝑣, 𝑥⟩2 → 0 almost

surely.

∙ If 𝜆 > 1, the top eigenvalue converges almost surely to 𝜆+1/𝜆 > 2 and 𝑣 has nontrivial

correlation with the spike: ⟨𝑣, 𝑥⟩2 → 1− 1/𝜆2 almost surely.

Therefore PCA solves the detection and recovery problems precisely when 𝜆 > 1. Our goal

is now to investigate whether any method (perhaps having nothing to do with eigenvalues

or eigenvectors) can beat this threshold. (Recall that although AMP outperforms PCA in

terms of mean squared error once above the threshold, it does not achieve a better threshold.

In this chapter, we will only be concerned with the threshold.)

Our focus in this chapter will be on proving non-detection lower bounds, i.e. proving

that the detection problem is statistically impossible when 𝜆 is below a certain value. To do

this, we will use a second moment method associated with the classical notion of contiguity
1Gaussian orthogonal ensemble: a random symmetric matrix with off-diagonal entries 𝒩 (0, 1), diagonal

entries 𝒩 (0, 2), and all entries independent (up to symmetry).
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[92]. If we can compute a particular second moment and show that it is finite, non-detection

follows immediately. This method has been used recently to study detection thresholds in

the stochastic block model [114, 19] and other planted models [109, 20].

Curiously, there is no formal relation between detection and recovery in general; there

are simple (but pathological) example of problems for which one is possible but not the

other. However, for all the problems considered in this chapter, we expect that the detection

and recovery thresholds are identical. (This is known to be true, for instance, for the Z/2

model: both the detection and recovery thresholds occur at 𝜆 = 1 [56, 120].) For models

with Gaussian noise, [20] give a general method to transfer non-detection lower bounds to

non-recovery lower bounds.

To give a broader perspective, we remark that the Z/2 model above is a special case of the

spiked Wigner model from random matrix theory, in which the signal (“spike”) 𝑥 is any vector

of norm
√
𝑛 (not necessarily entrywise ±1). Theorem 3.1.1 holds in this more general setting

and so PCA exhibits a threshold at 𝜆 = 1. An analogous spectral threshold (the celebrated

BBP transition [12]) occurs in the related spiked Wishart (covariance) model. Work by

the author and collaborators [120, 119] uses the second moment method to investigate the

statistical detection threshold for spiked Wigner, spiked Wishart, and spiked tensor models;

various assumptions on the structure of the signal 𝑥 are considered.

The second moment method does not always give a sharp lower bound on the detection

threshold. In cases where it is loose, it can sometimes be strengthened by conditioning

away from certain “bad” events that are extremely rare but cause the second moment to

blow up. In this chapter, we will make use of a variant of this idea due to [19]. More

involved conditioning methods (due to the author and others) can give even tighter bounds

[119, 20]. More generally, modified second moment methods of a similar nature have appeared

in contexts such as branching Brownian motion [39], branching random walks [8, 36], the

Gaussian free field [33, 38, 37], cover times for random walks [54], community detection

in random networks [11, 150], and thresholds for random satisfiability problems (e.g. 𝑘-

colorability, 𝑘-sat) [48, 49, 47, 45, 46].
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For the related question of determining the recovery threshold, sharp bounds have been

achieved in some settings using methods based on the I-MMSE formula (e.g. [56, 57]), and

interpolation methods (e.g. [22, 95]). Some of these methods also give sharp bounds on the

detection threshold [44, 9].

In this chapter we study the Gaussian synchronization model defined in the previous

chapter, as well as a simpler “truth-or-Haar” model for synchronization over finite groups.

As discussed above, we give lower bounds on the detection threshold using the notion of

contiguity and the associated second moment method. We furthermore give upper bounds

on the detection threshold by analyzing inefficient algorithms based on exhaustive search.

The rest of this chapter is organized as follows. In Section 3.2 we define contiguity and

present the second moment method which will be the core of our proofs. In Section 3.3 we

define the truth-or-Haar model and give both lower and upper bounds. In Section 3.4 we

recall the Gaussian synchronization model and give both lower and upper bounds.

3.2 Contiguity and the second moment method

Contiguity and related ideas will play a crucial role in this chapter. To give some back-

ground, contiguity was first introduced by [92] and since then has found many applications

throughout probability and statistics. This notion and related tools such as the small sub-

graph conditioning method have been used to establish many fundamental results about

random graphs (e.g. [128, 80, 108]; see [153] for a survey). It has also been used to show

the impossibility of detecting community structure in certain regimes of the stochastic block

model [114, 19]. We will take inspiration from many of these works, in how we go about

establishing contiguity. It is formally defined as follows:

Definition 3.2.1 ([92]). Let distributions 𝑃𝑛, 𝑄𝑛 be defined on the measurable space

(Ω𝑛,ℱ𝑛). We say that the sequence 𝑃𝑛 is contiguous to 𝑄𝑛, and write 𝑃𝑛 C 𝑄𝑛, if for

any sequence of events 𝐴𝑛, 𝑄𝑛(𝐴𝑛)→ 0 =⇒ 𝑃𝑛(𝐴𝑛)→ 0 as 𝑛→∞.

Contiguity implies that the distributions 𝑃𝑛 and 𝑄𝑛 cannot be reliably distinguished in the
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following sense:

Claim 3.2.2. If 𝑃𝑛C𝑄𝑛 then there is no a statistical test 𝒟 that takes a sample from either

𝑃𝑛 or 𝑄𝑛 (say each is chosen with probability 1
2
) and correctly outputs which of the two

distributions it came from with error probability 𝑜(1) as 𝑛→∞.

Proof. Suppose that such a test 𝒟 exists. Let 𝐴𝑛 be the event that 𝒟 outputs ‘𝑃𝑛.’ Since

𝒟 succeeds reliably when the sample comes from 𝑄𝑛, we have 𝑄𝑛(𝐴𝑛)→ 0 (as 𝑛→∞). By

contiguity this means 𝑃𝑛(𝐴𝑛) → 0. But this contradicts the fact that 𝒟 succeeds reliably

when the sample comes from 𝑃𝑛.

Note that 𝑃𝑛 C 𝑄𝑛 and 𝑄𝑛 C 𝑃𝑛 are not the same. Nevertheless either of them implies

non-distinguishability. Also, showing that two distributions are contiguous does not rule out

the existence of a test that distinguishes between then with constant probability. In fact, for

many pairs of contiguous random graph models, such tests do exist.

Our goal in this chapter is to show thresholds below which planted and pure noise models

are contiguous. We will do this through computing a particular second moment, related to

the 𝜒2-divergence as 1 + 𝜒2(𝑃𝑛||𝑄𝑛), through a form of the second moment method:

Lemma 3.2.3 (explicit in [109], implicit in earlier work). Let {𝑃𝑛} and {𝑄𝑛} be two se-

quences of probability measures on (Ω𝑛,ℱ𝑛). If the second moment

E
𝑄𝑛

[︃(︂
d𝑃𝑛

d𝑄𝑛

)︂2
]︃

exists and remains bounded as 𝑛→∞, then 𝑃𝑛 C𝑄𝑛.

All of the contiguity results in this chapter will follow through Lemma 3.2.3. The roles

of 𝑃𝑛 and 𝑄𝑛 are not symmetric, and we will always take 𝑃𝑛 to be the spiked distribution

(where a planted signal is present) and take 𝑄𝑛 to be the unspiked (pure noise) distribution,

as the second moment is more tractable to compute in this direction. We include the proof

of Lemma 3.2.3 here for completeness:
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Proof. Let {𝐴𝑛} be a sequence of events. Using Cauchy–Schwarz,

𝑃𝑛(𝐴𝑛) =

∫︁
𝐴𝑛

d𝑃𝑛 =

∫︁
𝐴𝑛

d𝑃𝑛

d𝑄𝑛

d𝑄𝑛 ≤

√︃∫︁
𝐴𝑛

(︂
d𝑃𝑛

d𝑄𝑛

)︂2

d𝑄𝑛 ·

√︃∫︁
𝐴𝑛

d𝑄𝑛

≤

√︃
E
𝑄𝑛

(︂
d𝑃𝑛

d𝑄𝑛

)︂2

·
√︀
𝑄𝑛(𝐴𝑛).

The first factor is bounded; so if 𝑄𝑛(𝐴𝑛)→ 0 as 𝑛→∞, we must also have 𝑃𝑛(𝐴𝑛)→ 0, as

desired.

There will be times when the above second moment is infinite but we are still able to

prove contiguity using a modified second moment that conditions on ‘good’ events. This

idea is based on [19].

Lemma 3.2.4. Let 𝜔𝑛 be a ‘good’ event that occurs with probability 1− 𝑜(1) under 𝑃𝑛. Let

𝑃 be the conditional distribution of 𝑃 given 𝜔𝑛. If

E
𝑄𝑛

⎡⎣(︃ d𝑃𝑛

d𝑄𝑛

)︃2
⎤⎦

remains bounded as 𝑛→∞, then 𝑃𝑛 C𝑄𝑛.

Proof. By Lemma 3.2.3 we have 𝑃𝑛C𝑄𝑛. This implies 𝑃𝑛C𝑄𝑛 because 𝑃𝑛(𝐴𝑛)→ 0 implies

𝑃𝑛(𝐴𝑛)→ 0 (since 𝑃𝑛(𝜔𝑛)→ 1).

3.3 The truth-or-Haar model

3.3.1 Main results

In this section we study a very simple model for synchronization over finite groups: for each

pair of group elements we either observe the true relative group element, or a uniformly

random one.
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Definition 3.3.1. Let 𝐺 be a finite group and let 𝑝 ≥ 0. In the truth-or-Haar model

ToH(𝑝,𝐺) we first draw a vector 𝑔 ∈ 𝐺𝑛 where each coordinate 𝑔𝑢 is chosen independently

from uniform (Haar) measure on 𝐺. For each unordered pair {𝑢, 𝑣} (with 𝑢 ̸= 𝑣), with

probability 𝑝 = 𝑝√
𝑛

let 𝑌𝑢𝑣 = 𝑔𝑢𝑔
−1
𝑣 , and otherwise let 𝑌𝑢𝑣 be drawn uniformly from 𝐺.

Define 𝑌𝑣𝑢 = (𝑌𝑢𝑣)
−1 and 𝑌𝑢𝑢 = 1 (the identity element of 𝐺). We reveal the matrix

𝑌 ∈ 𝐺𝑛×𝑛.

The truth-or-Haar model is not interesting for infinite groups 𝐺. This is because if 𝐺 is

infinite, the detection problem can be solved for any 𝑝 > 0 by checking whether there is a

consistent triangle, i.e. three vertices 𝑢, 𝑣, 𝑤 such that 𝑌𝑢𝑣𝑌𝑣𝑤𝑌𝑤𝑣 = 1.

This problem has been studied previously by [141] for the case where the group 𝐺 is the

cyclic group Z/𝐿. It is important to note that since we only have pairwise measurements,

we can only hope to recover the group elements up to a global right-multiplication by some

group element.

[141] shows that for 𝐺 = Z/𝐿 there is a spectral approach that succeeds at detection and

recovery above the threshold 𝑝 > 1. Specifically, the spectral method identifies each group

element with a complex 𝐿th root of unity and takes the top eigenvalue (and eigenvector) of

the complex-valued observed matrix 𝑌 . We expect that an efficient algorithm for detection

exists for any finite group above this 𝑝 = 1 threshold: for instance, if the group has a Z/𝐿

quotient (for any 𝐿) we can apply the Z/𝐿 spectral algorithm.

Using the second moment method, we will prove the following lower bound for the truth-

or-Haar model:

Theorem 3.3.2. Let 𝐺 be a finite group of order 𝐿 and let 𝑝 ≥ 0. If

𝑝 < 𝑝*𝐿 ,

√︃
2(𝐿− 1) log(𝐿− 1)

𝐿(𝐿− 2)

then ToH(𝐺, 𝑝) is contiguous to ToH(𝐺, 0). For 𝐿 = 2, 𝑝*2 = 1 (the limit value of the 0/0

expression).

The proof will span Sections 3.3.2 and 3.3.3. We provide some numerical values for the
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critical value 𝑝*.

𝐿 2 3 4 5 6 10 100

𝑝* 1 0.961 0.908 0.860 0.819 0.703 0.305

Note that this lower bound matches the spectral threshold 𝑝 = 1 when 𝐿 = 2, but does

not match it for 𝐿 ≥ 3. We also give an upper bound for the truth-or-Haar model using an

inefficient algorithm:

Theorem 3.3.3. Let 𝐺 be a finite group of order 𝐿 ≥ 2. If

𝑝 >

√︂
4 log𝐿

𝐿− 1

there is a computationally inefficient algorithm that can distinguish between the spiked and

unspiked models.

The proof will be given in Section 3.3.4.

For small 𝐿, this theorem is not very interesting because the right-hand side exceeds the

spectral threshold of 1. However, for 𝐿 ≥ 11, the right-hand side drops below 1, indicating

that it is information-theoretically possible to go below the spectral threshold. However, we

expect that no efficient algorithm can beat the spectral threshold.

As 𝐿→∞, this upper bound differs from the lower bound of Theorem 3.3.2 by a factor of
√
2. Here we expect that the upper bound is asymptotically tight and that the lower bound

can be improved by a factor of
√
2 (asymptotically) using a more sophisticated conditioning

method of the author and others [119]; here the event conditioned on depends not only on

the signal but also on the noise.

3.3.2 Second moment computation

We will now establish contiguity results in the truth-or-Haar model. Let 𝑝 = 𝑝√
𝑛
. Let 𝑃𝑛 be

the ‘spiked’ model ToH𝑛(𝑝,𝐺) and let 𝑄𝑛 = ToH𝑛(0, 𝐺) be the ‘unspiked’ model in which
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the observations are completely random. We give an upper bound on the second moment:

d𝑃𝑛

d𝑄𝑛

= E
𝑔

∏︁
𝑢<𝑣

𝑝1[𝑌𝑢𝑣 = 𝑔𝑢𝑔
−1
𝑣 ] + (1− 𝑝)/𝐿

1/𝐿
,

E
𝑄𝑛

[︃(︂
d𝑃𝑛

d𝑄𝑛

)︂2
]︃
= E

𝑔,𝑔′

∏︁
𝑢<𝑣

E
𝑌𝑢𝑣∼𝑄𝑛

(𝑝𝐿1[𝑌𝑢𝑣 = 𝑔𝑢𝑔
−1
𝑣 ] + 1− 𝑝)(𝑝𝐿1[𝑌𝑢𝑣 = 𝑔′𝑢(𝑔

′
𝑣)

−1] + 1− 𝑝)

= E
𝑔,𝑔′

∏︁
𝑢<𝑣

E
𝑌𝑢𝑣∼𝑄𝑛

(𝑝2𝐿2
1[𝑔𝑢𝑔

−1
𝑣 = 𝑌𝑢𝑣 = 𝑔𝑢𝑔

−1
𝑣 ] + 𝑝(1− 𝑝)𝐿1[𝑌𝑢𝑣 = 𝑔𝑢𝑔

−1
𝑣 ]

+ 𝑝(1− 𝑝)𝐿1[𝑌𝑢𝑣 = 𝑔′𝑢(𝑔
′
𝑣)

−1] + (1− 𝑝)2)

= E
𝑔,𝑔′

∏︁
𝑢<𝑣

(1 + 𝑝2(𝐿1[𝑔𝑢𝑔
−1
𝑣 = 𝑔′𝑢(𝑔

′
𝑣)

−1]− 1))

= E
𝑔,𝑔′

∏︁
𝑢<𝑣

(1 + 𝑝2(𝐿1[𝑔−1
𝑢 𝑔′𝑢 = 𝑔−1

𝑣 𝑔′𝑣]− 1))

≤ E
𝑔,𝑔′

∏︁
𝑢<𝑣

exp
[︀
𝑝2(𝐿1[𝑔−1

𝑢 𝑔′𝑢 = 𝑔−1
𝑣 𝑔′𝑣]− 1)

]︀
≤ E

𝑔,𝑔′

∏︁
𝑢,𝑣

exp

[︂
𝑝2

2
(𝐿1[𝑔−1

𝑢 𝑔′𝑢 = 𝑔−1
𝑣 𝑔′𝑣]− 1)

]︂

= 𝑒−𝑛2𝑝2/2 E
𝑔,𝑔′

exp

[︃
𝑝2𝐿

2

∑︁
𝑢,𝑣

1[𝑔−1
𝑢 𝑔′𝑢 = 𝑔−1

𝑣 𝑔′𝑣]

]︃
.

3.3.3 The conditioning method

Our next step will be to make use of a result of [19] (Proposition 5) involving boundedness

of a particular expectation involving multinomial random variables. We refer to this as the

conditioning method because it involves conditioning away from bad events via Lemma 3.2.4.

For convenience, we restate the setup and result of [19].

Let Δ𝑞 denote the simplex {(𝜋1, . . . , 𝜋𝑞) : 𝜋𝑖 ≥ 0,
∑︀

𝑖 𝜋𝑖 = 1}. For 𝜋 ∈ Δ𝑞, let Δ𝑞2(𝜋)

denote the set of 𝑞 × 𝑞 matrices whose row- and column-sums are given by 𝜋, namely:

Δ𝑞2(𝜋) = {𝛼 ∈ R𝑞×𝑞 : 𝛼𝑖𝑗 ≥ 0 ∀𝑖𝑗,
𝑞∑︁

𝑖=1

𝛼𝑖𝑗 = 𝜋𝑗 ∀𝑗,
𝑞∑︁

𝑗=1

𝛼𝑖𝑗 = 𝜋𝑖 ∀𝑖}.
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Fix a 𝑞2 × 𝑞2 matrix 𝐴 and some 𝜋 ∈ Δ𝑞. Let 𝛼 ∈ Δ𝑞2(𝜋) be given by 𝛼𝑖𝑗 = 𝜋𝑖𝜋𝑗, let

𝑁 ∼ Multinomial(𝑛, 𝛼), and 𝑋 = (𝑁 −𝑛𝛼)/
√
𝑛. Fix a sequence 𝑎𝑛 such that

√
𝑛≪ 𝑎𝑛 ≪ 𝑛

and define Ω𝑛 to be the event that |
∑︀

𝑖 𝑁𝑖𝑗 − 𝑛𝜋𝑗| ≤ 𝑎𝑛 ∀𝑗 and |
∑︀

𝑗 𝑁𝑖𝑗 − 𝑛𝜋𝑖| ≤ 𝑎𝑛 ∀𝑖.

Since
√
𝑛≪ 𝑎𝑛, the probability of Ω𝑛 converges to 1.

Proposition 3.3.4 ([19] Proposition 5). Define

𝑚 , sup
𝛼∈Δ𝑞2 (𝜋)

(𝛼− 𝛼)⊤𝐴(𝛼− 𝛼)

𝐷(𝛼, 𝛼)

where 𝐷 is the KL divergence: 𝐷(𝛼, 𝛼) =
∑︀

𝑖𝑗 𝛼𝑖𝑗 log(𝛼𝑖𝑗/𝛼𝑖𝑗). If 𝑚 < 1 then

E[1Ω𝑛 exp(𝑋
⊤𝐴𝑋)]→ E exp(𝑍⊤𝐴𝑍) <∞,

as 𝑛→∞, where 𝑍 ∼ 𝒩 (0, diag(𝛼)− 𝛼𝛼⊤). If instead 𝑚 < 1 then

E[1Ω𝑛 exp(𝑋
⊤𝐴𝑋)]→∞

as 𝑛→∞.

The intuition behind the above result is the following. Think of 𝛼 = 𝑁/𝑛 so that

𝑋 =
√
𝑛(𝛼−𝛼). Thus we can write exp(𝑋⊤𝐴𝑋) = exp(𝑛(𝛼−𝛼)⊤𝐴(𝛼−𝛼)). The probability

that a particular 𝛼 occurs is asymptotically exp(−𝑛𝐷(𝛼, 𝛼)). This means

E[1Ω𝑛 exp(𝑋
⊤𝐴𝑋)] ≈

∫︁
𝛼

exp[𝑛((𝛼− 𝛼)⊤𝐴(𝛼− 𝛼)−𝐷(𝛼, 𝛼))] (3.2)

where the integral is over 𝛼 values for which Ω𝑛 holds. Now apply the saddle point method

(also called Laplace’s method): as 𝑛 becomes large, (3.2) is dominated by the value of 𝛼 for

which

(𝛼− 𝛼)⊤𝐴(𝛼− 𝛼)−𝐷(𝛼, 𝛼) (3.3)

is maximized. In particular, (3.2) is bounded as 𝑛 → ∞ if (3.3) is negative for every

𝛼 ∈ Δ𝑞2(𝜋). Rearranging this yields the condition 𝑚 < 1 in Proposition 3.3.4. The fact that
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we are restricting to the event Ω𝑛 helps us here; if we did not include the indicator 1Ω𝑛 , we

would have to change Δ𝑞2(𝜋) to Δ𝑞2 (the simplex of dimension 𝑞2) in the definition of 𝑚,

which in some cases gives a larger value of 𝑚 and thus a weaker result.

Let us now see how to use Proposition 3.3.4 to bound a conditional variant of the second

moment from Section 3.3.2. Let 𝑞 = 𝐿 and 𝜋 = (1/𝐿, . . . , 1/𝐿) ∈ Δ𝑞. For a vector 𝑔 ∈ 𝐺𝑛,

let 𝜔𝑛(𝑔) be the event ⃒⃒⃒
|{𝑢 : 𝑔𝑢 = 𝑎}| − 𝑛/𝐿

⃒⃒⃒
≤ 𝑎𝑛.

We will compute the conditional second moment E𝑄𝑛

[︂(︁
d𝑃𝑛

d𝑄𝑛

)︁2]︂
where 𝑃 is the conditional

distribution 𝑃𝑛|𝜔𝑛(𝑔). Our goal is to show that this conditional second moment remains

bounded as 𝑛→∞ so that contiguity 𝑃𝑛 C𝑄𝑛 follows from Lemma 3.2.4.

Similarly to Section 3.3.2, we compute

d𝑃𝑛

d𝑄𝑛

≤ (1 + 𝑜(1))𝑒−𝑛2𝑝2/2 E
𝑔,𝑔′

𝜔𝑛(𝑔)𝜔𝑛(𝑔
′) exp

[︃
𝑝2𝐿

2

∑︁
𝑢,𝑣

1[𝑔−1
𝑢 𝑔′𝑢 = 𝑔−1

𝑣 𝑔′𝑣]

]︃
.

Let 𝑁𝑎𝑏 = |{𝑢 | 𝑔𝑢 = 𝑎, 𝑔′𝑢 = 𝑏}| and note that 𝑁 ∼ Multinomial(𝑛, 𝛼) where 𝛼 = 1
𝐿21𝐿2 .

Define Ω𝑛 as above (depending on 𝑁). Let 𝑋 = 𝑁−𝑛𝛼√
𝑛
∈ R𝐿2 , and let 𝐴 be the 𝐿2 × 𝐿2

matrix 𝐴𝑎𝑏,𝑎′𝑏′ =
𝑝2𝐿
2
1{𝑎−1𝑏 = 𝑎′−1𝑏′} where (recall) 𝑝 = 𝑝√

𝑛
. We can now write

d𝑃𝑛

d𝑄𝑛

≤ (1 + 𝑜(1))E[1Ω𝑛 exp(𝑋
⊤𝐴𝑋)]

and so by Proposition 3.3.4 we have that E𝑄𝑛

[︂(︁
d𝑃𝑛

d𝑄𝑛

)︁2]︂
is bounded provided

sup
𝛼∈Δ𝑞2 (𝜋)

(𝛼− 𝛼)⊤𝐴(𝛼− 𝛼)

𝐷(𝛼, 𝛼)
< 1.
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Rewrite the numerator:

(𝛼− 𝛼)⊤𝐴(𝛼− 𝛼) = 𝛼⊤𝐴𝛼− 2𝛼⊤𝐴𝛼 + 𝛼⊤𝐴𝛼

=
𝑝2𝐿

2

(︃∑︁
𝑎𝑏𝑎′𝑏′

𝛼𝑎𝑏𝛼𝑎′𝑏′1{𝑎−1𝑏 = 𝑎′−1𝑏′} − 2

𝐿
+

1

𝐿

)︃

=
𝑝2𝐿

2

(︃∑︁
ℎ∈𝐺

𝛼2
ℎ −

1

𝐿

)︃

where 𝛼ℎ =
∑︀

(𝑎,𝑏)∈𝑆ℎ
𝛼𝑎𝑏 and 𝑆ℎ = {(𝑎, 𝑏) | 𝑎−1𝑏 = ℎ}.

In Appendix B.1 we prove the following result which provides the solution to the opti-

mization problem above and thus completes the proof of Theorem 3.3.2.

Proposition 3.3.5. For 𝐿 ≥ 2,

sup
𝛼

𝐿

2

(︀∑︀
ℎ∈𝐺 𝛼2

ℎ − 1
𝐿

)︀
𝐷(𝛼, 𝛼)

=
𝐿(𝐿− 2)

2(𝐿− 1) log(𝐿− 1)

where 𝛼 ranges over (vectorized) nonnegative 𝐿 × 𝐿 matrices with row- and column-sums

equal to 1
𝐿
. When 𝐿 = 2, the right-hand side is taken to equal 1 (the limit value of the 0/0

expression).
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3.3.4 Upper bound via exhaustive search

In this subsection, we show that exhaustive search outperforms spectral methods in the

Truth-or-Haar Model when 𝐿 is large enough. Specifically, we prove Theorem 3.3.3.

We will use an inefficient algorithm based on exhaustive search over all candidate solutions

𝑔 ∈ 𝐺𝑛. Given an observed matrix 𝑌 valued in 𝐺, let 𝑇 (𝑔) be the number of edges satisfied

by 𝑔, i.e. the number of unordered pairs {𝑢, 𝑣} (with 𝑢 ̸= 𝑣) such that 𝑌𝑢𝑣 = 𝑔𝑢𝑔
−1
𝑣 . The

algorithm will distinguish between 𝑃𝑛 = ToH(𝐺, 𝑝) and 𝑄𝑛 = ToH(𝐺, 0) by thresholding

𝑇 = max𝑔∈𝐺𝑛 𝑇 (𝑔) (at some cutoff to be determined later).

Suppose 𝑌 is drawn from 𝑃𝑛 and let 𝑔* ∈ 𝐺𝑛 be the true spike. Then 𝑇 (𝑔) ∼ Binom(𝑁, 𝑝′)

where 𝑁 =
(︀
𝑛
2

)︀
and 𝑝′ = 𝑝+ 1−𝑝

𝐿
. By Hoeffding’s inequality,

𝑃𝑛(𝑇 (𝑔
*) ≤ 𝑁𝑝′ − 𝑘) ≤ exp

(︂
−2𝑘2

𝑁

)︂

which in turn implies 𝑃𝑛(𝑇 (𝑔
*) ≤ 𝑁𝑝′ − 𝑛 log 𝑛) = 𝑜(1).

Now suppose 𝑌 is drawn from 𝑄𝑛 and fix any 𝑔 ∈ 𝐺𝑛. Then 𝑇 (𝑔) ∼ Binom(𝑁, 1/𝐿). By

the Chernoff bound,

𝑄𝑛(𝑇 (𝑔) ≥ 𝑘) ≤ exp (−𝑁𝐷(𝑘/𝑁 ‖ 1/𝐿))

where 𝐷 (𝑎 ‖ 𝑏) = 𝑎 log(𝑎/𝑏) + (1 − 𝑎) log((1 − 𝑎)/(1 − 𝑏)). By a union bound over all 𝐿𝑛

choices for 𝑔,

𝑄𝑛(𝑇 ≥ 𝑁𝑝′ − 𝑛 log 𝑛) ≤ 𝐿𝑛 exp

(︂
−𝑁𝐷

(︂
𝑁𝑝′ − 𝑛 log 𝑛

𝑁

⃦⃦⃦⃦
1

𝐿

)︂)︂
= exp

(︂
𝑛 log𝐿−𝑁𝐷

(︂
𝑝+

1− 𝑝

𝐿
−𝒪

(︂
log 𝑛

𝑛

)︂ ⃦⃦⃦⃦
1

𝐿

)︂)︂
= exp (𝑛 log𝐿−𝑁𝐷 (1/𝐿+Δ ‖ 1/𝐿))
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where Δ = 𝑝(1− 1/𝐿)−𝒪
(︀
log𝑛
𝑛

)︀
= 𝑝(𝐿−1)√

𝑛𝐿
− 𝑜

(︁
1√
𝑛

)︁

= exp

[︂
𝑛 log𝐿−𝑁

(︂
(1/𝐿+Δ) log

(︂
1/𝐿+Δ

1/𝐿

)︂
+ (1− 1/𝐿−Δ) log

(︂
1− 1/𝐿−Δ

1− 1/𝐿

)︂)︂]︂
= exp

[︂
𝑛 log𝐿−𝑁

(︂
(1/𝐿+Δ) log (1 + 𝐿Δ) + (1− 1/𝐿−Δ) log

(︂
1− 𝐿Δ

𝐿− 1

)︂)︂]︂
= exp

[︃
𝑛 log𝐿−𝑁

(︁
(1/𝐿+Δ)(𝐿Δ− 1

2
𝐿2Δ2)

+

(︂
𝐿− 1

𝐿
−Δ

)︂(︂
− 𝐿Δ

𝐿− 1
− 𝐿2Δ2

2(𝐿− 1)2

)︂
+ 𝑜(1/𝑛)

)︁]︃

= exp

[︂
𝑛 log𝐿−𝑁

(︂
Δ+ 𝐿Δ2 − 1

2
𝐿Δ2 −Δ+

𝐿

𝐿− 1
Δ2 − 𝐿Δ2

2(𝐿− 1)
+ 𝑜(1/𝑛)

)︂]︂
= exp

[︂
𝑛 log𝐿− 𝑛2

2
Δ21

2

(︂
𝐿+

𝐿

𝐿− 1

)︂
+ 𝑜(𝑛)

]︂
= exp

[︃
𝑛 log𝐿− 𝑛

4
𝑝2
(︂
𝐿− 1

𝐿

)︂2(︂
𝐿2

𝐿− 1

)︂
+ 𝑜(𝑛)

]︃
= exp

[︁
𝑛 log𝐿− 𝑛

4
𝑝2(𝐿− 1) + 𝑜(𝑛)

]︁
= 𝑜(1)

provided log𝐿 < 𝑝2(𝐿− 1)/4, i.e.

𝑝 >

√︂
4 log𝐿

𝐿− 1
.

Therefore, it is possible to reliably distinguish 𝑃𝑛 and 𝑄𝑛 by thresholding 𝑇 at 𝑁𝑝′−𝑛 log 𝑛.

3.4 The Gaussian synchronization model

3.4.1 The model

Recall that the truth-or-Haar model is only meaningful for finite groups. Thus, to study

synchronization problems over infinite groups such as 𝑈(1) (unit-norm complex numbers)

we need the noise to be continuous in nature. This motivates our Gaussian synchronization

model in which we add Gaussian noise to the true relative group elements 𝑔𝑢𝑔−1
𝑣 . This model
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was defined in Section 2.3.4), and we gave a sharp non-rigorous analysis of the statistical and

computational limits of the model in Chapter 2. We repeat the definition of the model here

for the reader’s convenience. (We will also use a slightly different convention for quaternionic-

type representations in this chapter; see Remark 3.4.4 below.) The model is very general,

allowing for any compact group, and for observations on different ‘frequencies’ (irreducible

representations of the group).

We now define the model. In order to have a sensible notion of adding Gaussian noise

to a group element, we need to introduce some representation theory. We will assume the

reader is familiar with the basics of representation theory. See Section 1.4 or e.g. [40] for an

introduction.

Since we will be discussing representations of quaternionic type, we need to recall basic

facts about quaternions. (Quaternions and quaternionic-type representations can be skipped

on a first reading.) Quaternions take the form 𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘 where 𝑎, 𝑏, 𝑐, 𝑑 ∈ R

and (non-commutative) multiplication follows the rules 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1. Like

complex numbers, quaternions support the operations norm |𝑞| =
√
𝑎2 + 𝑏2 + 𝑐2 + 𝑑2, real

part Re(𝑞) = 𝑎, and conjugate 𝑞 = 𝑎− 𝑏𝑖− 𝑐𝑗−𝑑𝑘 satisfying 𝑞1𝑞2 = 𝑞2 𝑞1 and 𝑞𝑞 = 𝑞𝑞 = |𝑞|2.

These allow for the natural notions of unitarity and conjugate transpose 𝐴* for quaternion-

valued matrices 𝐴. The algebra of quaternions is denoted by H.

Let 𝐺 be a compact group. The irreducible representations of 𝐺 over C are finite dimen-

sional. Every irreducible representation of 𝐺 over C has one of three types: real, complex,

or quaternionic. Representations of real type can be defined over the reals (i.e. each group

element is assigned a matrix with real-valued entries). Representations of complex type are

(unlike the other types) not isomorphic to their complex conjugate representation 𝜌. Repre-

sentations of quaternionic type can be assumed to take the following form: each 2× 2 block

of complex numbers encodes a quaternion value using the correspondence

𝑎+ 𝑏𝑖+ 𝑐𝑗 + 𝑑𝑘 ↔

⎛⎝ 𝑎+ 𝑏𝑖 𝑐+ 𝑑𝑖

−𝑐+ 𝑑𝑖 𝑎− 𝑏𝑖

⎞⎠ .
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Alternatively, we can think of quaternionic-type representations as being defined over the

quaternions (i.e. each group element is assigned a quaternion-valued matrix) with dimension

half as large. We will assume that our irreducible representations (over C) are defined over

R, C, or H, depending on whether their type is real, complex, or quaternionic (respectively).

Representations of complex type come in conjugate pairs. Without loss of generality, all

these representations can be taken to be unitary.

Let 𝑑𝜌 be the dimension of representation 𝜌. For quaternionic-type representations we

let 𝑑𝜌 be the quaternionic dimension, which is half the complex dimension (this differs from

our convention in Chapter 2; see Remark 3.4.4 below). (For real-type representations, the

real and complex dimensions are the same.) In defining our Gaussian model we need to fix

a finite list of representations (‘frequencies’) to work with.

Definition 3.4.1. Let 𝐺 be a compact group. A list of frequencies Ψ is a finite set of

non-isomorphic irreducible (over C) representations of 𝐺. We do not allow the trivial repre-

sentation to be included in this list. For representations of complex type, we do not allow 𝜌

and its conjugate 𝜌 to both appear in the list.

We need to introduce Gaussian noise of various types. The type of noise used will

correspond to the type of the representation in question.

Definition 3.4.2. A standard Gaussian of real, complex, or quaternionic type is defined to

be

∙ for real type, 𝒩 (0, 1)

∙ for complex type: 𝒩 (0, 1/2) +𝒩 (0, 1/2) 𝑖

∙ for quaternionic type: 𝒩 (0, 1/4) +𝒩 (0, 1/4) 𝑖+𝒩 (0, 1/4) 𝑗 +𝒩 (0, 1/4) 𝑘

where each component is independent.

Note that the normalization ensures that the expected squared norm is 1.
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Definition 3.4.3. Let a GOE, GUE, or GSE (respectively) matrix be a random Hermitian

matrix where the off-diagonals are standard Gaussians of real, complex, or quaternionic

type (respectively), and the diagonal entries are real Gaussians 𝒩 (0, 2/𝛽) where 𝛽 = 1, 2, 4

(respectively) depending on the type. All entries are independent except for the Hermitian

constraint.

These matrices are the well-known Gaussian orthogonal (resp. unitary, symplectic) ensembles

from random matrix theory.

Remark 3.4.4. We point out that we have used slightly different conventions from Chap-

ter 2. Namely, for quaternionic-type representations we have decreased (by a factor of 2)

both the definition of 𝑑𝜌 and the variance of quaternionic Gaussian noise. These conventions

will be more convenient in this chapter. Roughly speaking, in Chapter 2 we wanted to think

of quaternionic representations as defined over C, whereas here we think of them defined

over the quaternions H.

We can now formally state the Gaussian synchronization model over any compact group.

Definition 3.4.5. Let 𝐺 be a compact group and let Ψ be a list of frequencies. For each

𝜌 ∈ Ψ, let 𝜆𝜌 ≥ 0. The Gaussian synchronization model GSynch({𝜆𝜌}, 𝐺,Ψ) is defined

as follows. To sample from the 𝑛th distribution, draw a vector 𝑔 ∈ 𝐺𝑛 by sampling each

coordinate independently from Haar (uniform) measure on 𝐺. Let 𝑋𝜌 be the 𝑛𝑑𝜌 × 𝑑𝜌

matrix formed by stacking the matrices 𝜌(𝑔𝑢) for all 𝑢. For each frequency 𝜌 ∈ Ψ, reveal the

𝑛𝑑𝜌 × 𝑛𝑑𝜌 matrix

𝑌𝜌 =
𝜆𝜌

𝑛
𝑋𝜌𝑋

*
𝜌 +

1√︀
𝑛𝑑𝜌

𝑊𝜌

where 𝑊𝜌 is an 𝑛𝑑𝜌 × 𝑛𝑑𝜌 Hermitian Gaussian matrix (GOE, GUE, or GSE depending on

whether 𝜌 has real, complex, or quaternionic type, respectively). If we write a scalar 𝜆 in

place of {𝜆𝜌} we mean that 𝜆𝜌 = 𝜆 for all 𝜌.

When 𝜆𝜌 > 1 for at least one 𝜌, we can use PCA (top eigenvalue) to reliably distin-

guish between 𝑃𝑛 = GSynch𝑛({𝜆𝜌}, 𝐺,Ψ) and 𝑄𝑛 = GSynch𝑛(0, 𝐺,Ψ); this follows from
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Theorem 3.1.1. If given 𝐾 frequencies, all with the same 𝜆, it may appear that one should

be able to combine the frequencies in order to achieve the threshold 𝜆 > 1/
√
𝐾; after all,

this would be possible if given 𝐾 independent observations of a single frequency. However,

our contiguity results will show that 𝜆 > 1/
√
𝐾 is not sufficient. In fact, we conjecture that

𝜆 > 1 is required for any efficient algorithm to succeed at detection (see Chapter 2), although

there are inefficient algorithms that succeed below this (as we will show in Section 3.4.6).

3.4.2 Second moment computation

Let 𝑃𝑛 be GSynch({𝜆𝜌}, 𝐺,Ψ) and let 𝑄𝑛 be GSynch(0, 𝐺,Ψ). Let 𝛽𝜌 = 1, 2, 4 for real-,

complex-, or quaternionic-type (respectively). We will use the standard Hermitian inner

product for matrices: ⟨𝐴,𝐵⟩ = Tr(𝐴𝐵*) where 𝐵* denotes the conjugate transpose of 𝐵.

d𝑃𝑛

d𝑄𝑛

= E
𝑋

∏︁
𝜌∈Ψ

exp

(︂
−𝛽𝜌𝑛𝑑𝜌

4

⃦⃦⃦
𝑌𝜌 − 𝜆𝜌

𝑛
𝑋𝜌𝑋

*
𝜌

⃦⃦⃦2
𝐹

)︂
exp

(︁
−𝛽𝜌𝑛𝑑𝜌

4
‖𝑌 ‖2𝐹

)︁
= E

𝑋

∏︁
𝜌

exp

(︂
𝛽𝜌𝜆𝜌𝑑𝜌

2
Re
⟨︀
𝑌𝜌, 𝑋𝜌𝑋

*
𝜌

⟩︀
−

𝛽𝜌𝜆
2
𝜌𝑑𝜌

4𝑛

⃦⃦
𝑋𝜌𝑋

*
𝜌

⃦⃦2
𝐹

)︂
.

E
𝑄𝑛

(︂
d𝑃𝑛

d𝑄𝑛

)︂2

= E
𝑌∼𝑄𝑛

E
𝑋,𝑋′

∏︁
𝜌

exp

(︂
𝛽𝜌𝜆𝜌𝑑𝜌

2
Re
⟨︀
𝑌𝜌, 𝑋𝜌𝑋

*
𝜌 +𝑋 ′

𝜌𝑋
′*
𝜌

⟩︀
−

𝛽𝜌𝜆
2
𝜌𝑑𝜌

4𝑛

⃦⃦
𝑋𝜌𝑋

*
𝜌

⃦⃦2
𝐹
−

𝛽𝜌𝜆
2
𝜌𝑑𝜌

4𝑛

⃦⃦
𝑋 ′

𝜌𝑋
′*
𝜌

⃦⃦2
𝐹

)︂

= E
𝑋,𝑋′

∏︁
𝜌

E
𝑌𝜌

exp

(︂
𝛽𝜌𝜆𝜌𝑑𝜌

2
Re
⟨︀
𝑌𝜌, 𝑋𝜌𝑋

*
𝜌 +𝑋 ′

𝜌𝑋
′*
𝜌

⟩︀
−

𝛽𝜌𝜆
2
𝜌𝑑𝜌

4𝑛

⃦⃦
𝑋𝜌𝑋

*
𝜌

⃦⃦2
𝐹
−

𝛽𝜌𝜆
2
𝜌𝑑𝜌

4𝑛

⃦⃦
𝑋 ′

𝜌𝑋
′*
𝜌

⃦⃦2
𝐹

)︂
.
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Use the Gaussian moment-generating function to eliminate 𝑌 : if 𝑧 is a scalar (from R, C,

or H) and 𝑦 is a standard Gaussian of the same type, then E exp(Re(𝑦𝑧)) = exp( 1
2𝛽
|𝑧|2).

Recall that 𝑌𝜌 (drawn from 𝑄𝑛) is Hermitian with each off-diagonal entry 1√
𝑛𝑑𝜌

times a stan-

dard Gaussian (of the appropriate type), and each diagonal entry real Gaussian 𝒩 (0, 𝛽/2).

Continuing from above,

= E
𝑋,𝑋′

∏︁
𝜌

exp

(︂
1

2𝛽𝜌

1

𝑛𝑑𝜌
𝛽2
𝜌𝜆

2
𝜌𝑑

2
𝜌

1

2

⃦⃦
𝑋𝜌𝑋

*
𝜌 +𝑋 ′

𝜌𝑋
′*
𝜌

⃦⃦2
𝐹
−

𝛽𝜌𝜆
2
𝜌𝑑𝜌

4𝑛

⃦⃦
𝑋𝜌𝑋

*
𝜌

⃦⃦2
𝐹
−

𝛽𝜌𝜆
2
𝜌𝑑𝜌

4𝑛

⃦⃦
𝑋 ′

𝜌𝑋
′*
𝜌

⃦⃦2
𝐹

)︂

= E
𝑋,𝑋′

∏︁
𝜌

exp

(︂
𝛽𝜌𝜆

2
𝜌𝑑𝜌

4𝑛

⃦⃦
𝑋𝜌𝑋

*
𝜌 +𝑋 ′

𝜌𝑋
′*
𝜌

⃦⃦2
𝐹
−

𝛽𝜌𝜆
2
𝜌𝑑𝜌

4𝑛

⃦⃦
𝑋𝜌𝑋

*
𝜌

⃦⃦2
𝐹
−

𝛽𝜌𝜆
2
𝜌𝑑𝜌

4𝑛

⃦⃦
𝑋 ′

𝜌𝑋
′*
𝜌

⃦⃦2
𝐹

)︂

= E
𝑋,𝑋′

∏︁
𝜌

exp

(︂
𝛽𝜌𝜆

2
𝜌𝑑𝜌

4𝑛
2Re

⟨︀
𝑋𝜌𝑋

*
𝜌 , 𝑋

′
𝜌𝑋

′*
𝜌

⟩︀)︂

= E
𝑋,𝑋′

∏︁
𝜌

exp

(︂
𝛽𝜌𝜆

2
𝜌𝑑𝜌

2𝑛

⃦⃦
𝑋*

𝜌𝑋
′
𝜌

⃦⃦2
𝐹

)︂
.

3.4.3 The sub-Gaussian method

We will aim to show contiguity at a point where all 𝜆’s are equal: 𝜆𝜌 = 𝜆 for all 𝜌. (Note

however that if we show contiguity at some 𝜆 and we then decrease some of the individual

𝜆𝜌’s, we still have contiguity because the second moment above will only decrease.) Ideally

we want contiguity for all 𝜆 < 1, matching the spectral threshold.

For each 𝑢 ∈ [𝑛] let 𝑍𝑢 be a vector in R𝐷 where 𝐷 =
∑︀

𝜌∈Ψ 𝛽𝜌𝑑
2
𝜌, formed as follows.

First draw ℎ𝑢 independently from Haar measure on 𝐺. For each 𝜌, vectorize the matrix√︀
𝛽𝜌𝑑𝜌 𝜌(ℎ𝑢) into a real-valued vector of length 𝛽𝜌𝑑

2
𝜌 by separating the 𝛽𝜌 components of

each of the 𝑑2𝜌 entries. Finally, concatenate all these vectors together to form 𝑍𝑢. Let 𝑍(𝐺,Ψ)

denote the distribution that each 𝑍𝑢 follows.

We can rewrite the second moment as

E
𝑄𝑛

(︂
d𝑃𝑛

d𝑄𝑛

)︂2

= E
𝑍
exp

⎛⎝𝜆2

2𝑛

⃦⃦⃦⃦
⃦∑︁

𝑢

𝑍𝑢

⃦⃦⃦⃦
⃦
2
⎞⎠ .
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(Here ℎ𝑢 = 𝑔−1
𝑢 𝑔′𝑢.)

We will use the following definition of sub-Gaussian for vector-valued random variables.

Definition 3.4.6. We say 𝑧 ∈ R𝑚 is sub-Gaussian with covariance proxy 𝜎2𝐼 if E[𝑧] = 0

and for all vectors 𝑣 ∈ R𝑚,

E exp (⟨𝑧, 𝑣⟩) ≤ exp

(︂
1

2
𝜎2‖𝑣‖2

)︂
.

More generally we can allow for a covariance proxy Σ that is not a multiple of the identity

by replacing 𝜎2‖𝑣‖2 by 𝑣⊤Σ𝑣, but we will not need this here. Standard methods in the theory

of large deviations give the following multivariate sub-Gaussian tail bound.

Lemma 3.4.7. Suppose 𝑧 ∈ R𝑚 is sub-Gaussian with covariance proxy 𝜎2𝐼. Let 𝜀 > 0. For

all 𝑎 ≥ 0,

P[‖𝑧‖2 ≥ 𝑎] ≤ 𝐶 exp

(︂
−𝑎(1− 𝜀)

2𝜎2

)︂
where 𝐶 = 𝐶(𝜀,𝑚) is a constant depending only on 𝜀 and the dimension 𝑚.

Proof. Let 𝑣1, . . . , 𝑣𝐶 ∈ R𝑚 be a collection of unit vectors such that for every unit vector̂︀𝑧 ∈ R𝑚, there exists 𝑖 satisfying ⟨̂︀𝑧, 𝑣𝑖⟩ ≥ √1− 𝜀. If ‖𝑧‖2 ≥ 𝑎 then there must exist 𝑖 such

that ⟨𝑧, 𝑣𝑖⟩ ≥
√︀

𝑎(1− 𝜀). For a fixed 𝑖 and for any 𝑡 > 0 we have

P[⟨𝑧, 𝑣𝑖⟩ ≥
√︀
𝑎(1− 𝜀)] = P[exp(𝑡⟨𝑧, 𝑣𝑖⟩) ≥ exp(𝑡

√︀
𝑎(1− 𝜀))]

≤ E[exp(⟨𝑧, 𝑡𝑣𝑖⟩)] exp(−𝑡
√︀

𝑎(1− 𝜀))

≤ exp

(︂
1

2
𝜎2𝑡2

)︂
exp(−𝑡

√︀
𝑎(1− 𝜀))

setting 𝑡 =
√︀

𝑎(1− 𝜀)/𝜎2,

= exp

(︂
−𝑎(1− 𝜀)

2𝜎2

)︂
.

The result now follows by a union bound over all 𝑖.
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The following theorem gives a sufficient condition for contiguity in terms of the sub-

Gaussian property.

Theorem 3.4.8 (sub-Gaussian method). Let 𝐺 be a compact group and let Ψ be a list of

frequencies. Suppose 𝑍(𝐺,Ψ) (defined above) is sub-Gaussian with covariance proxy 𝜎2𝐼. If

𝜆 < 1/𝜎 then GSynch(𝜆,𝐺,Ψ) is contiguous to GSynch(0, 𝐺,Ψ).

Proof. Note that
∑︀

𝑢 𝑍𝑢 is sub-Gaussian with covariance proxy 𝑛𝜎2𝐼. From above we have

E
𝑄𝑛

(︂
d𝑃𝑛

d𝑄𝑛

)︂2

= E exp

⎛⎝𝜆2

2𝑛

⃦⃦⃦⃦
⃦∑︁

𝑢

𝑍𝑢

⃦⃦⃦⃦
⃦
2
⎞⎠

=

∫︁ ∞

0

P

⎡⎣exp
⎛⎝𝜆2

2𝑛

⃦⃦⃦⃦
⃦∑︁

𝑢

𝑍𝑢

⃦⃦⃦⃦
⃦
2
⎞⎠ ≥𝑀

⎤⎦ 𝑑𝑀

=

∫︁ ∞

0

P
[︂
‖𝑍‖2 ≥ 2𝑛 log𝑀

𝜆2

]︂
𝑑𝑀

≤ 1 +

∫︁ ∞

1

P
[︂
‖𝑍‖2 ≥ 2𝑛 log𝑀

𝜆2

]︂
𝑑𝑀

≤ 1 +

∫︁ ∞

1

𝐶 exp

(︂
−(1− 𝜀)

2𝑛𝜎2

2𝑛 log𝑀

𝜆2

)︂
𝑑𝑀

= 1 +

∫︁ ∞

1

𝐶 exp

(︂
−(1− 𝜀) log𝑀

𝜎2𝜆2

)︂
𝑑𝑀

= 1 +

∫︁ ∞

1

𝐶𝑀−(1−𝜀)/(𝜎2𝜆2) 𝑑𝑀

which is finite provided that (1 − 𝜀)/(𝜎2𝜆2) > 1. The second inequality uses Lemma 3.4.7.

Since 𝜀 was arbitrary, this completes the proof.

Note that E[𝑍(𝐺,Ψ)] = 0 (which is a requirement for sub-Gaussianity) is automatically

satisfied; this follows from the Peter–Weyl theorem on orthogonality of matrix entries, which

we will discuss in more detail in Section 3.4.5 (see also Section 2.3.1).
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3.4.4 Applications of the sub-Gaussian method

In this section we use Theorem 3.4.8 to prove contiguity for some specific synchronization

problems.

First we consider 𝑈(1) with a single frequency. It was predicted in [82] that the statistical

threshold for this problem should be the spectral threshold 𝜆 = 1; we now confirm this.

Theorem 3.4.9 (𝑈(1) with one frequency). Consider the group 𝑈(1) of unit-norm complex

numbers under multiplication. Identify each element 𝑒𝑖𝜃 of 𝑈(1) with its angle 𝜃. Let Ψ1 be

the list containing the single frequency 𝜌 : 𝜃 ↦→ 𝑒𝑖𝜃. For any 𝜆 < 1, GSynch(𝜆, 𝑈(1),Ψ1) is

contiguous to GSynch(0, 𝑈(1),Ψ1).

Proof. We have 𝑍(𝑈(1),Ψ1) =
√
2 (cos 𝜃, sin 𝜃) where 𝜃 is drawn uniformly from [0, 2𝜋]. To-

wards showing sub-Gaussianity we have, for any 𝑣 ∈ R2,

E exp
(︀⟨︀
𝑍(𝑈(1),Ψ1), 𝑣

⟩︀)︀
= E𝜃 exp

(︁√
2 𝑣1 cos 𝜃 +

√
2 𝑣2 sin 𝜃

)︁
= E𝜃 exp

(︁√
2 ‖𝑣‖ cos 𝜃

)︁
.

Letting 𝑤 = ‖𝑣‖, it is sufficient to show for all 𝑤 ≥ 0,

E𝜃 exp
(︁√

2𝑤 cos 𝜃
)︁
≤ exp

(︂
1

2
𝑤2

)︂
.

This can be verified numerically but we also provide a rigorous proof. Using the Taylor

expansion of exp and the identity

E𝜃

[︀
cos𝑘 𝜃

]︀
=

⎧⎨⎩
(𝑘−1)!!

𝑘!!
𝑘 even

0 𝑘 odd
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we have

E𝜃 exp
(︁√

2𝑤 cos 𝜃
)︁
= E𝜃

∑︁
𝑘≥0

2𝑘/2𝑤𝑘 cos𝑘 𝜃

𝑘!
=
∑︁
𝑘≥0

2𝑘𝑤2𝑘E𝜃 cos
2𝑘 𝜃

(2𝑘)!

=
∑︁
𝑘≥0

2𝑘𝑤2𝑘(2𝑘 − 1)!!

(2𝑘)!(2𝑘)!!
=
∑︁
𝑘≥0

2𝑘𝑤2𝑘

(2𝑘)!!(2𝑘)!!

≤
∑︁
𝑘≥0

𝑤2𝑘

(2𝑘)!!
=
∑︁
𝑘≥0

𝑤2𝑘

2𝑘𝑘!
= exp

(︂
1

2
𝑤2

)︂
.

The exchange of expectation and infinite sum is justified by the Fubini–Tonelli theorem,

provided we can show absolute convergence:

∑︁
𝑘≥0

E𝜃

⃒⃒⃒⃒
2𝑘/2𝑤𝑘 cos𝑘 𝜃

𝑘!

⃒⃒⃒⃒
≤
∑︁
𝑘≥0

⃒⃒⃒⃒
2𝑘/2𝑤𝑘

𝑘!

⃒⃒⃒⃒

which converges by the ratio test.

We now add a second frequency.

Example 3.4.10 (𝑈(1) with two frequencies). Consider again 𝑈(1) but now let Ψ2 be the

list of two frequencies: 𝜌1 : 𝜃 ↦→ 𝑒𝑖𝜃 and 𝜌2 : 𝜃 ↦→ 𝑒2𝑖𝜃. For any 𝜆 < 𝜆* ≈ 0.9371 (numerically

computed), GSynch(𝜆, 𝑈(1),Ψ2) is contiguous to GSynch(0, 𝑈(1),Ψ2).

(We use “example” rather than “theorem” to indicate results that rely on numerical compu-

tations.) Although we are unable to show that the spectral threshold is optimal, note that

this rules out the possibility that the threshold for two frequencies drops to 1/
√
2 (which is

what we would have if one could perfectly synthesize the frequencies). We expect that the

true statistical threshold for this problem is 𝜆 = 1 and that our results are not tight here.

We now move on to the case of Z/𝐿.

Details. We have 𝑍(𝑈(1),Ψ2) =
√
2 (cos 𝜃, sin 𝜃, cos(2𝜃), sin(2𝜃)). Our threshold is 𝜆* = 1/𝜎*

where

(𝜎*)2 = sup
𝑣

2

‖𝑣‖
logE

(︀
⟨𝑍(𝑈(1),Ψ2), 𝑣⟩

)︀
= sup

𝑣

2

‖𝑣‖
logE𝜃

(︁√
2(𝑣1 cos 𝜃 + 𝑣2 sin 𝜃 + 𝑣3 cos(2𝜃) + 𝑣4 sin(2𝜃))

)︁
.
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By the change of variables 𝜃 ↦→ 𝜃− 𝜃0 (for some 𝜃0) we can rotate (𝑣1, 𝑣2) arbitrarily, and so

we can take 𝑣2 = 0 and 𝑣1 ≥ 0 without loss of generality. By grid search over 𝑣1, 𝑣3, 𝑣4, we

see numerically that the maximizer is 𝑣* = (0.720, 0, 0.559, 0) which yields contiguity for all

𝜆 < 𝜆* ≈ 0.937.

Example 3.4.11 (Z/𝐿 with one frequency). Now consider Z/𝐿 = {0, 1, . . . , 𝐿−1} (mod 𝐿)

with 𝐿 ≥ 2 and Ψ1 the list of one frequency: 𝑗 ↦→ exp(2𝜋𝑖𝑗/𝐿). For 𝐿 = 3, we have

contiguity GSynch(𝜆,Z/𝐿,Ψ1)CGSynch(0,Z/𝐿,Ψ1) for all 𝜆 < 𝜆*
3 ≈ 0.961. For 𝐿 = 2 and

all 𝐿 ≥ 4, we have contiguity for all 𝜆 < 1.

Details. This is shown numerically in a manner similar to the examples above. Of course

we cannot test this for all values of 𝐿, but we conjecture that the 𝜆* = 1 trend continues

indefinitely.

We have that the spectral threshold is optimal for all 𝐿 except 3. It is surprising that 𝐿 = 3

is an exception here, be we expect that this is a weakness of our techniques and that the

true threshold for 𝐿 = 3 is also 𝜆 = 1.

Finally we give a coarse but general result for any group with any number of frequencies.

Theorem 3.4.12 (any group, any frequencies). Let 𝐺 be any group and let Ψ be any list

of frequencies, with 𝐷 =
∑︀

𝜌∈Ψ 𝛽𝜌𝑑
2
𝜌. If 𝜆 < 1/

√
𝐷 then GSynch(𝜆,𝐺,Ψ) is contiguous to

GSynch(0, 𝐺,Ψ).

Proof. Since our representations 𝜌 are unitary, we have ‖𝜌(𝑔)‖2𝐹 = 𝑑𝜌 for any 𝑔 ∈ 𝐺, and

so ‖𝑍(𝐺,Ψ)‖2 = 𝐷. This means for any vector 𝑣 we have |⟨𝑍(𝐺,Ψ), 𝑣⟩| ≤ ‖𝑍(𝐺,Ψ)‖‖𝑣‖ =
√
𝐷‖𝑣‖. By Hoeffding’s Lemma this implies the sub-Gaussian condition E exp(⟨𝑍(𝐺,Ψ), 𝑣⟩) ≤

exp(1
2
𝐷‖𝑣‖2).

3.4.5 The conditioning method for finite groups

Here we give an alternative method to show contiguity for finite groups, based on the con-

ditioning method of [19] (see Section 3.3.3). Let 𝐺 be a finite group with |𝐺| = 𝐿. Again
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take all the 𝜆’s to be equal: 𝜆𝜌 = 𝜆 for all 𝜌. For 𝑎, 𝑏 ∈ 𝐺, let 𝑁𝑎𝑏 = |{𝑢 | 𝑔𝑢 = 𝑎, 𝑔′𝑢 = 𝑏}|.

Rewrite the second moment in terms of 𝑁𝑎𝑏:

E𝑋,𝑋′

∏︁
𝜌

exp

(︂
𝛽𝜌𝜆

2
𝜌𝑑𝜌

2𝑛

⃦⃦
𝑋*

𝜌𝑋
′
𝜌

⃦⃦2
𝐹

)︂
= E𝑋,𝑋′ exp

(︃
𝜆2

2𝑛

∑︁
𝜌

𝛽𝜌𝑑𝜌
∑︁
𝑐

(𝑋*
𝜌𝑋

′
𝜌)

2
𝑐

)︃

where 𝑐 ranges over all (real-valued) coordinates of entries of 𝜌(𝑔) (e.g. imaginary part of

top right entry)

= E𝑔,𝑔′ exp

⎛⎝𝜆2

2𝑛

∑︁
𝜌

𝛽𝜌𝑑𝜌
∑︁
𝑐

(︃∑︁
𝑢

𝜌(𝑔−1
𝑢 𝑔′𝑢)𝑐

)︃2
⎞⎠

= E𝑁 exp

⎛⎝𝜆2

2𝑛

∑︁
𝜌

𝛽𝜌𝑑𝜌
∑︁
𝑐

(︃∑︁
𝑎𝑏

𝑁𝑎𝑏 𝜌(𝑎
−1𝑏)𝑐

)︃2
⎞⎠

= E𝑁 exp

(︂
1

𝑛
𝑁⊤𝐴𝑁

)︂
= E𝑁 exp

(︀
𝑌 ⊤𝐴𝑌

)︀
where 𝑌 = 𝑁⃗−𝑛𝛼√

𝑛
, 𝛼 = 1

𝐿21𝐿2 , and 𝐴 is the 𝐿2 × 𝐿2 matrix

𝐴𝑎𝑏,𝑎′𝑏′ =
𝜆2

2

∑︁
𝜌

𝛽𝜌𝑑𝜌
∑︁
𝑐

𝜌(𝑎−1𝑏)𝑐 𝜌(𝑎
′−1

𝑏′)𝑐.

To justify the last step, note that 𝛼 is in the kernel of 𝐴 because all row- and column-sums of

𝐴 are zero. This follows from the Peter–Weyl theorem on orthogonality of matrix coefficients,

which we will discuss in more detail shortly. By Proposition 5 in [19] (Proposition 3.3.4 in

this thesis) we have contiguity provided that

sup
𝛼

𝛼⊤𝐴𝛼

𝐷(𝛼, 𝛼)
< 1

where 𝛼 ranges over (vectorized) 𝐿×𝐿 matrices with all row- and column-sums equal to 1
𝐿
.
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Theorem 3.4.13 (conditioning method). Let 𝐺 be a finite group of order 𝐿 and let Ψ be a

list of frequencies. Let 𝐴 be the 𝐿2 × 𝐿2 matrix 𝐴𝑎𝑏,𝑎′𝑏′ =
1
2

∑︀
𝜌∈Ψ 𝛽𝜌𝑑𝜌

∑︀
𝑐 𝜌(𝑎

−1𝑏)𝑐𝜌(𝑎
′−1𝑏′)𝑐

where 𝑎, 𝑏, 𝑎′, 𝑏′ ∈ 𝐺 and 𝑐 ranges over (real) coordinates of matrix entries. Let 𝐷(𝑢, 𝑣)

denote the KL divergence between two vectors: 𝐷(𝑢, 𝑣) =
∑︀

𝑖 𝑢𝑖 log(𝑢𝑖/𝑣𝑖). If

𝜆 <

[︃
sup
𝛼

𝛼⊤𝐴𝛼

𝐷(𝛼, 𝛼)

]︃−1/2

then GSynch(𝜆,𝐺,Ψ) is contiguous to GSynch(0, 𝐺,Ψ). Here 𝛼 ranges over (vectorized)

𝐿× 𝐿 matrices with all row- and column-sums equal to 1
𝐿
.

A finite group has only a finite number of irreducible representations (over C), so let us

now specialize to the case where our list Ψ contains all of them (excluding the trivial repre-

sentation, and only taking one representation per conjugate pair). Expand the numerator:

𝛼⊤𝐴𝛼 =
𝜆2

2

∑︁
𝜌

𝛽𝜌𝑑𝜌
∑︁
𝑐

(︃∑︁
𝑎𝑏

𝛼𝑎𝑏 𝜌(𝑎
−1𝑏)𝑐

)︃2

=
𝜆2

2

∑︁
𝜌

𝛽𝜌𝑑𝜌
∑︁
𝑐

(︃∑︁
ℎ

𝛼ℎ 𝜌(ℎ)𝑐

)︃2

where 𝛼ℎ =
∑︀

(𝑎,𝑏)∈𝑆ℎ
𝛼𝑎𝑏 and 𝑆ℎ = {(𝑎, 𝑏) | 𝑎−1𝑏 = ℎ}. We now appeal to the Peter–Weyl

theorem on the orthogonality of matrix coefficients: the basis functions 𝜒𝜌𝑖𝑗(ℎ) =
√︁

𝑑C𝜌 𝜌(ℎ)𝑖𝑗

(for all irreducible 𝜌 over C and matrix entries 𝑖, 𝑗) form an orthonormal basis for C𝐺 under

the Hermitian inner product ⟨𝑓1, 𝑓2⟩ , 1
𝐿

∑︀
ℎ∈𝐺 𝑓1(ℎ)𝑓2(ℎ). Here 𝑑C𝜌 is the dimension as a

complex representation, which is the same as 𝑑𝜌 for real- and complex-type but equal to

2𝑑𝜌 for quaternionic-type. This means the above can be thought of as projecting the vector

{𝛼ℎ}ℎ∈𝐺 onto these basis elements and then computing the ℓ2 norm of the result. By the

basis-invariance of the ℓ2 norm, we can rewrite the above as

𝜆2𝐿2

2

⎡⎣ 1

𝐿

∑︁
ℎ

𝛼2
ℎ −

(︃
1

𝐿

∑︁
ℎ

𝛼ℎ

)︃2
⎤⎦ =

𝜆2𝐿

2

[︃∑︁
ℎ

𝛼2
ℎ −

1

𝐿

]︃
.

The second term here corrects for the fact that the trivial representation did not appear in

our original expression. Note that the factor of 𝛽 = 2 for complex representations corrects
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for the fact that we were only using one representation per conjugate pair. The factor

of 𝛽 = 4 for quaternionic representations corrects for the fact that we were thinking of

these representations as being defined over H rather than C; the corresponding complex

representation has dimension twice as large and represents each quaternion value by the

following 2× 2 complex matrix:

𝑎+ 𝑏𝑖+ 𝑐𝑗 + 𝑑𝑘 ↔

⎛⎝ 𝑎+ 𝑏𝑖 𝑐+ 𝑑𝑖

−𝑐+ 𝑑𝑖 𝑎− 𝑏𝑖

⎞⎠ .

(One factor of 2 comes from the fact that 𝑑C𝜌 = 2𝑑𝜌 and the other factor of 2 comes from the

fact that the squared-Frobenius norm of this 2× 2 matrix is twice the squared-norm of the

associated quaternion.)

Note that we now have exactly the same optimization problem that we arrived at for the

truth-or-Haar model with 𝜆 in place of 𝑝, so we can apply Proposition 3.3.5 to immediately

obtain the following.

Theorem 3.4.14. Let 𝐺 be a finite group of order 𝐿 ≥ 2 and let Ψall be the list of all

frequencies (excluding the trivial one and only taking one from each conjugate pair). If for

all 𝜌 ∈ Ψall,

𝜆𝜌 < 𝜆*
𝐿 ,

√︃
2(𝐿− 1) log(𝐿− 1)

𝐿(𝐿− 2)

then GSynch({𝜆𝜌}, 𝐺,Ψall) is contiguous to GSynch(0, 𝐺,Ψall). For 𝐿 = 2, 𝜆*
2 = 1 (the limit

value of the 0/0 expression).

Here we have used the monotonicity of the second moment: if we show contiguity when

all the 𝜆𝜌’s are equal to some 𝜆, and we then decrease some of the individual 𝜆𝜌’s, we will

still have contiguity.

Interestingly, our critical value 𝜆*
𝐿 is the same as our critical value 𝑝*𝐿 from the truth-or-

Haar model. As discussed previously, this matches the spectral threshold 𝜆 = 1 only when

𝐿 = 2. However, for small values of 𝐿, our 𝜆*
𝐿 is quite close to 1 (see the table in Section 3.3).

Also note that when 𝐿 = 3, Theorem 3.4.14 matches (and proves rigorously) the numerical
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value 𝜆* ≈ 0.961 of Example 3.4.11 (obtained via the sub-Gaussian method). Note that when

𝐿 = 3, Z/𝐿 only has one frequency, so these two results apply to the same problem. However,

we see that the conditioning method gains no advantage over the sub-Gaussian method in

this case. This seems to be true in general for synchronization problems because there are

no particularly ‘bad’ values for the spike due to symmetry of the group.

3.4.6 Upper bound via exhaustive search

In this subsection, we analyze the performance of exhaustive search in the Gaussian Syn-

chronization Model. Specifically, we show:

Theorem 3.4.15. Let 𝐺 be a finite group of order 𝐿 and let Ψ be a list of frequencies. If

∑︁
𝜌∈Ψ

𝜆2
𝜌𝛽𝜌𝑑

2
𝜌 > 4 log𝐿

there is a computationally inefficient algorithm that can distinguish between the spiked and

unspiked models.

See Corollary 3.4.17 below for a simplification in the case of all frequencies.

Let 𝑃𝑛 = GSynch𝑛({𝜆𝜌}, 𝐺,Ψ) and let 𝑄𝑛 = GSynch𝑛(0, 𝐺,Ψ). By the Neyman–Pearson

lemma, the most powerful test statistic for distinguishing 𝑃𝑛 from 𝑄𝑛 is the likelihood ratio
d𝑃𝑛

d𝑄𝑛
. Similarly to [20] we use the following modified likelihood ratio. For 𝑔 ∈ 𝐺𝑛, let 𝑉𝜌(𝑔)

be the 𝑛𝑑𝜌 × 𝑑𝜌 matrix formed by stacking the matrices 𝜌(𝑔𝑢). Given 𝑌 = {𝑌𝜌} drawn from

either 𝑃𝑛 or 𝑄𝑛, our test is to compute 𝑇 = max𝑔∈𝐺𝑛 𝑇 (𝑔) where

𝑇 (𝑔) =
∑︁
𝜌∈Ψ

𝜆𝜌𝛽𝜌𝑑𝜌Tr(𝑉𝜌(𝑔)
*𝑌𝜌𝑉𝜌(𝑔)).

If 𝑇 ≥
∑︀

𝜌 𝑛𝜆
2
𝜌𝛽𝜌𝑑

2
𝜌−
√
𝑛 log 𝑛 then we answer ‘𝑃𝑛’; otherwise, ‘𝑄𝑛.’ The definition of 𝑇 (𝑔) is

motivated by the computation of d𝑃𝑛

d𝑄𝑛
in Section 3.4; in fact, 𝑇 (𝑔) is equal (up to constants)

to d𝑃𝑛(𝑌 |𝑔)
d𝑄𝑛(𝑌 )

. Note that this test is not computationally-efficient because it involves testing all
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possible solutions 𝑔 ∈ 𝐺𝑛. The best computationally-efficient test that we know of is PCA

(or AMP), which succeeds if and only if at least one 𝜆𝜌 exceeds 1.

The proof of Theorem 3.4.15 will require the following computation.

Lemma 3.4.16. Let 𝑉 be a fixed 𝑛𝑑 × 𝑑 matrix where each 𝑑 × 𝑑 block is unitary of some

type (R,C,H). Let 𝑊 be an 𝑛𝑑× 𝑛𝑑 Hermitian Gaussian matrix of the corresponding type

(GOE, GUE, GSE, respectively). Let 𝛽 be 1, 2, 4 (respectively) depending on the type. Then

Tr(𝑉 *𝑊𝑉 ) ∼ 𝒩 (0, 2𝑛2𝑑/𝛽).

Proof. Let 𝑢, 𝑣 index the 𝑑× 𝑑 blocks, and let 𝑎, 𝑏, 𝑐 index the entries within each block.

Tr(𝑉 *𝑊𝑉 ) =
∑︁
𝑢,𝑣

Tr (𝑉 *
𝑢𝑊𝑢𝑣𝑉𝑣)

=
∑︁
𝑢<𝑣

2TrRe (𝑉 *
𝑢𝑊𝑢𝑣𝑉𝑣) +

∑︁
𝑢

Tr (𝑉 *
𝑢𝑊𝑢𝑢𝑉𝑢)

=
∑︁
𝑢<𝑣

∑︁
𝑎,𝑏,𝑐

2Re [(𝑉 *
𝑢 )𝑎𝑏(𝑊𝑢𝑣)𝑏𝑐(𝑉𝑣)𝑐𝑎] +

∑︁
𝑢

∑︁
𝑎,𝑏,𝑐

(𝑉 *
𝑢 )𝑎𝑏(𝑊𝑢𝑢)𝑏𝑐(𝑉𝑢)𝑐𝑎

=
∑︁
𝑢<𝑣

∑︁
𝑎,𝑏,𝑐

2Re [(𝑉 *
𝑢 )𝑎𝑏(𝑊𝑢𝑣)𝑏𝑐(𝑉𝑣)𝑐𝑎] +

∑︁
𝑢

∑︁
𝑎, 𝑏<𝑐

2Re [(𝑉 *
𝑢 )𝑎𝑏(𝑊𝑢𝑢)𝑏𝑐(𝑉𝑢)𝑐𝑎]

+
∑︁
𝑢

∑︁
𝑎,𝑏

(𝑉 *
𝑢 )𝑎𝑏(𝑊𝑢𝑢)𝑏𝑏(𝑉𝑢)𝑏𝑎

=
∑︁
𝑢<𝑣

∑︁
𝑏,𝑐

2𝒩 (0, |
∑︁
𝑎

(𝑉 *
𝑢 )𝑎𝑏(𝑉𝑣)𝑐𝑎|2/𝛽) +

∑︁
𝑢

∑︁
𝑏<𝑐

2𝒩 (0, |
∑︁
𝑎

(𝑉 *
𝑢 )𝑎𝑏(𝑉𝑢)𝑐𝑎|2/𝛽)

+
∑︁
𝑢

∑︁
𝑏

𝒩 (0, 2|
∑︁
𝑎

(𝑉 *
𝑢 )𝑎𝑏(𝑉𝑢)𝑏𝑎|2/𝛽)

= 𝒩 (0, 2
∑︁
𝑢,𝑣

∑︁
𝑏,𝑐

|
∑︁
𝑎

(𝑉 *
𝑢 )𝑎𝑏(𝑉𝑣)𝑐𝑎|2/𝛽)

= 𝒩 (0, 2
∑︁
𝑢,𝑣

∑︁
𝑏,𝑐

∑︁
𝑎,𝑎′

(𝑉𝑢)𝑏𝑎(𝑉𝑣)𝑐𝑎(𝑉𝑣)𝑐𝑎′(𝑉𝑢)𝑏𝑎′/𝛽)

= 𝒩 (0, 2
∑︁
𝑢,𝑣

∑︁
𝑎,𝑎′

𝛿𝑎𝑎′/𝛽)

= 𝒩 (0, 2𝑛2𝑑/𝛽).

105



Proof of Theorem 3.4.15. We will now prove Theorem 3.4.15 by showing that (given the

condition in the theorem) the test 𝑇 = max𝑔 𝑇 (𝑔) (defined above) succeeds with probability

1− 𝑜(1). If 𝑌𝜌 is drawn from the unspiked model 𝑄𝑛 : 1√
𝑛𝑑𝜌

𝑊 then for any 𝑔 ∈ 𝐺𝑛 we have

𝑇 (𝑔) =
∑︁
𝜌

𝜆𝜌𝛽𝜌𝑑𝜌
1√︀
𝑛𝑑𝜌

Tr(𝑉𝜌(𝑔)
*𝑊𝑉𝜌(𝑔)) =

∑︁
𝜌

𝜆𝜌𝛽𝜌𝑑𝜌
1√︀
𝑛𝑑𝜌
𝒩
(︂
0,

2𝑛2𝑑𝜌
𝛽𝜌

)︂
= 𝒩

(︃
0,
∑︁
𝜌

2𝑛𝜆2
𝜌𝛽𝜌𝑑

2
𝜌

)︃
.

If instead 𝑌𝜌 is drawn from the spiked model 𝑃𝑛 : 𝑌𝜌 =
𝜆𝜌

𝑛
𝑋𝜌𝑋

*
𝜌 +

1√
𝑛𝑑𝜌

𝑊 and we take 𝑔 to

be the ground truth 𝑔* (so that 𝑉𝜌(𝑔) = 𝑋𝜌), we have

𝑇 (𝑔*) =
∑︁
𝜌

𝜆𝜌𝛽𝜌𝑑𝜌Tr

(︂
𝜆𝜌

𝑛
𝑋*

𝜌𝑋𝜌𝑋
*
𝜌𝑋𝜌 +

1√
𝑛𝑑𝜌

𝑉 *
𝜌 𝑊𝑉𝜌

)︂
=
∑︁
𝜌

𝑛𝜆2
𝜌𝛽𝜌𝑑

2
𝜌+𝒩

(︃
0,
∑︁
𝜌

2𝑛𝜆2
𝜌𝛽𝜌𝑑

2
𝜌

)︃
.

Using the Gaussian tail bound P[𝒩 (0, 𝜎2) ≥ 𝑡] ≤ exp
(︁

−𝑡2

2𝜎2

)︁
, we have that under the spiked

model,

𝑃𝑛

[︃
𝑇 ≤

∑︁
𝜌

𝑛𝜆2
𝜌𝛽𝜌𝑑

2
𝜌 −

√︀
𝑛 log 𝑛

]︃
≤ exp

⎛⎝−𝑛 log 𝑛

2

(︃∑︁
𝜌

2𝑛𝜆2
𝜌𝛽𝜌𝑑

2
𝜌

)︃−1
⎞⎠ = 𝑜(1).

Taking a union bound over all 𝐿𝑛 choices for 𝑔 ∈ 𝐺𝑛, we have that under the unspiked

model,

𝑄𝑛

[︃
𝑇 ≥

∑︁
𝜌

𝑛𝜆2
𝜌𝛽𝜌𝑑

2
𝜌 −

√︀
𝑛 log 𝑛

]︃
≤ 𝐿𝑛 exp

⎛⎝−1

2

(︃∑︁
𝜌

𝑛𝜆2
𝜌𝛽𝜌𝑑

2
𝜌 −

√︀
𝑛 log 𝑛

)︃2(︃∑︁
𝜌

2𝑛𝜆2
𝜌𝛽𝜌𝑑

2
𝜌

)︃−1
⎞⎠

= exp

(︃
𝑛 log𝐿− 1

4

∑︁
𝜌

𝑛𝜆2
𝜌𝛽𝜌𝑑

2
𝜌 +𝒪(

√︀
𝑛 log 𝑛)

)︃

which is 𝑜(1) provided
∑︀

𝜌 𝜆
2
𝜌𝛽𝜌𝑑

2
𝜌 > 4 log𝐿.

We can simplify the statement of the theorem in the case where all frequencies are present.
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We note that if Ψall is the list of all frequencies then

∑︁
𝜌∈Ψall

𝛽𝜌𝑑
2
𝜌 = 𝐿− 1.

This follows from the “sum-of-squares” formula from the representation theory of finite

groups. (The extra 1 comes from the fact that we don’t use the trivial representation in

our list. The factor of 𝛽 = 2 for complex-type representations accounts for the fact that we

only use one representation per conjugate pair. The factor of 𝛽 = 4 for quaternionic-type

representations accounts for the fact that the complex dimension is twice the quaternionic

dimension.) We therefore have the following corollary.

Corollary 3.4.17. Let 𝐺 be a finite group of order 𝐿 ≥ 2 and let Ψall be the list of all

frequencies (excluding the trivial one and only taking one from each conjugate pair). If

𝜆 >

√︂
4 log𝐿

𝐿− 1

then an inefficient algorithm can distinguish the spiked and unspiked models, and so GSynch(𝜆,𝐺,Ψall)

is not contiguous to GSynch(0, 𝐺,Ψall).

Note that for large 𝐿 this differs from the lower bound of Theorem 3.4.14 by a factor of
√
2. As for the truth-or-Haar model, we expect that the upper bound is asymptotically tight

and that the lower bound can be improved by a factor of
√
2 (asymptotically) using a more

sophisticated conditioning method of the author and others [119]; here the event conditioned

on depends not only on the signal but also on the noise.

Also note that the right-hand side matches Theorem 3.3.3 (upper bound for the truth-or-

Harr model); interestingly, both our lower and upper bounds indicate that the all-frequencies

Gaussian model behaves like the truth-or-Haar model with 𝜆 in place of 𝑝. In particular, we

again see that an inefficient algorithm can beat the spectral threshold once 𝐿 ≥ 11.
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Chapter 4

Orbit recovery: statistical limits

This chapter is adapted from joint work with Afonso Bandeira, Ben Blum-Smith, Amelia

Perry, and Jonathan Weed [15]. An upcoming expanded version of [15] will include Joe

Kileel as an additional author.

4.1 Introduction

Many computational problems throughout the sciences exhibit rich symmetry and geometry,

especially in fields such as signal and image processing, computer vision, and microscopy.

This is exemplified in cryo-electron microscopy (cryo-EM) [5, 142, 115], an imaging technique

in structural biology that was recently awarded the 2017 Nobel Prize in Chemistry. This

technique seeks to estimate the structure of a large biological molecule, such as a protein, from

many noisy tomographic projections (2-dimensional images) of the molecule from random

unknown directions in 3-dimensional space.

In cryo-EM, our signal of interest is the density 𝜃 of the molecule, considered as an element

of the vector space of functions on R3. We have access to observations of the following form:

our microscopy sample contains many rotated copies 𝑅𝑖𝜃 of the molecule, where 𝑅𝑖 ∈ SO(3)

are random, unknown 3D rotations, and we observe the noisy projections Π(𝑅𝑖𝜃)+ 𝜉𝑖, where

Π denotes tomographic projection (in a fixed direction) and 𝜉𝑖 is a large noise contribution,
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perhaps Gaussian. This specific problem motivates the following general abstraction.

Fix a compact group 𝐺 acting (by orthogonal transformations) on a vector space 𝑉 .

Throughout, the vector space will be taken to be R𝑝 and the group can be thought of as a

subgroup of O(𝑝), the orthogonal group1. Let 𝜃 ∈ 𝑉 be the signal we want to estimate. We

receive noisy measurements of its orbit as follows: for 𝑖 = 1, . . . , 𝑛 we observe a sample of

the form

𝑦𝑖 = 𝑔𝑖 · 𝜃 + 𝜉𝑖

where 𝑔𝑖 is drawn randomly (in Haar measure2) from 𝐺 and 𝜉𝑖 ∼ 𝒩 (0, 𝜎2𝐼) is noise. The

goal is to recover the orbit of 𝜃 under the action of 𝐺. We refer to this task as the orbit

recovery problem.

This abstraction, already a rich object of study, neglects the tomographic projection in

cryo-EM; we will also study a generalization of the problem which allows such a projection.

We will also consider the additional extension of heterogeneity [83, 93, 94, 35], where mixtures

of signals are allowed: we have 𝐾 signals 𝜃1, . . . , 𝜃𝐾 , and each sample 𝑦𝑖 = 𝑔𝑖 · 𝜃𝑘𝑖 + 𝜉𝑖

comes from a random choice 1 ≤ 𝑘𝑖 ≤ 𝐾 of which signal is observed. This extension is of

paramount importance for cryo-EM in practice, since the laboratory samples often contain

one protein in multiple conformations, and understanding the range of conformations is key

to understanding the function of the protein.

4.1.1 Prior work

Several special cases of the orbit recovery problem have been studied for their theoretical

and practical interest. Besides cryo-EM, another such problem is multi-reference alignment

(MRA) [17, 13, 118], a problem from signal processing [155, 123] with further relevance to

1We alert the reader to the fact that we will use O(𝑝) to refer to the group of orthogonal matrices in
dimension 𝑝 and 𝑂(𝑔(𝑛)) as the standard big-O notation: 𝑓(𝑛) = 𝑂(𝑔(𝑛)) if and only if there exists a
constant 𝐶 such that 𝑓(𝑛) ≤ 𝐶𝑔(𝑛) for all 𝑛 sufficiently large. It will be clear from context which one is
meant.

2We note that any distribution of 𝑔𝑖 can be reduced to Haar by left multiplying 𝑦𝑖 by a Haar-distributed
group element. However, as illustrated in [3], it is sometimes possible to exploit deviations from Haar
measure.
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structural biology [60, 144]. In this problem, one observes noisy copies of a signal 𝜃 ∈ R𝑝,

each with its coordinates permuted by a random cyclic shift. This is an example of the orbit

recovery problem when 𝐺 is taken to be the cyclic group Z/𝑝 acting by cyclic permutations

of the coordinates. Since the cyclic group Z/𝑝 is simpler than SO(3), understanding MRA

has been seen as a useful stepping stone towards a full statistical analysis of cryo-EM.

Many prior methods for orbit recovery problems employ the so-called synchronization

approach where the unknown group elements 𝑔𝑖 are estimated based on pairwise compar-

ison of the samples 𝑦𝑖. If the samples were noiseless, one would have 𝑔𝑖𝑔
−1
𝑗 𝑦𝑗 = 𝑦𝑖; thus

noisy samples still give some weak information about 𝑔𝑖𝑔
−1
𝑗 . Synchronization is the prob-

lem of using such pairwise information to recover all the group elements 𝑔𝑖 (up to a global

right-multiplication by some group element). Once the group elements 𝑔𝑖 are known, the

underlying signal can often be easily recovered.

The synchronization approach has proven to be effective both in theory and practice when

the noise is sufficiently small. However, once the noise level is large, no consistent estimation

of the group elements 𝑔𝑖 is possible [7]. Moreover, it is the high-noise regime that is the

practically relevant one for many applications, including cryo-EM, where the presence of

large noise is a primary obstruction to current techniques [140]. As a result, recent work has

focused on approaches to cryo-EM and MRA which provably succeed even in the large-noise

limit. One striking finding of this line of work is that the sample complexity of the statistical

estimation problem increases drastically as the noise level increases. For instance, for the

multi-reference alignment problem with noise variance 𝜎2, consistent estimation of typical

signals requires Ω(𝜎6) samples [13, 4], with significantly worse rates for atypical signals.

By contrast, when 𝜎2 is smaller than some threshold, only 𝑂(𝜎2) samples are required.

Moreover, in contrast with the 𝑂(𝜎2) rate—which would hold even in the absence of a group

action—the Ω(𝜎6) bound obtained in previous works depends on particular properties of the

cyclic group. In this work, we significantly extend this prior work by determining the sample

complexity of the estimation problem in the high-noise regime for general groups.

The leading theoretical framework for the high-noise regime is the invariant features
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approach [13, 26, 118, 35, 98]. This approach has a long history in the signal process-

ing literature [86, 133, 134] and is analogous to the well known “method of moments” in

statistics [148]. In brief, the invariant features approach bypasses entirely the problem of

estimating the group elements and focuses instead on estimating features of the signal which

are preserved by the action of the group. So long as these invariant features uniquely specify

the orbit of the original signal, the invariants are sufficient statistics for the problem of re-

covering the orbit of the original signal. This simple approach yields optimal dependence of

the sample complexity on the noise level for the multi-reference alignment problem [13, 118].

The application of invariant features to cryo-EM dates back to 1980 with the work of

Kam [86], who partially solved cryo-EM by means of degree-2 invariant features, reducing

the unknown molecule structure to a collection of unknown orthogonal matrices. Subsequent

work has explored methods to estimate these orthogonal matrices [29], including recent

work showing how two noiseless tomographic projections suffice to recover these orthogonal

matrices [98]. Our work can be viewed as a degree-3 extension of Kam’s method that fully

solves cryo-EM while circumventing the orthogonal retrieval issue, and without requiring

any noiseless projections. Our approach is ab initio, i.e. it does not require an initial guess of

what the molecule looks like and thus cannot suffer from model bias, which is a documented

phenomenon [42] where the initial guess can have a significant effect on the result. Ab initio

estimates are particularly useful to serve as a model-free starting point for popular iterative

refinement algorithms such as RELION [136].

Throughout, we focus on the case where the group elements are Haar-distributed. In the

basic orbit recovery problem (projection), any distribution of 𝑔𝑖 can be reduced to Haar by

left-multiplying each sample 𝑦𝑖 by a Haar-distributed group element. However, as illustrated

in [3], it is sometimes possible to exploit deviations from Haar measure. The situation is

different when we add projection to the problem setup, as is the case with Cryo-EM; if the

viewing direction is not distributed uniformly then there may exist parts of the molecule

that are systematically imaged less than others, which can cause serious difficulties in recon-

struction.
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The present paper connects the orbit recovery problem to the invariant theory of groups,

a classical and well-developed branch of algebra (see for example [84, 61, 143, 55]). Invariant

theory’s traditional goal is to describe the ring of all polynomial functions on a vector space

that are invariant under the action of a group – the invariant algebra. Since the 19th

century, culminating in the pioneering work of David Hilbert [76, 77], it has been known that

the invariant algebra is finitely generated in many cases of interest, and so a fundamental

problem has been to bound the degrees of the generators. In 2002, Derksen and Kemper

[55] introduced the notion of a separating algebra – a subring of the invariant algebra that

separates all orbits of the group action which are separated by the full invariant algebra.

Our connection to orbit recovery motivates the question of bounding the degree required to

generate a separating algebra (see Section 4.3.4), a problem which has been recently studied

[88, 62]. Our work also motivates the question of bounding the degree at which the field of

invariant rational functions is generated as a field (see Section 4.3.3), which does not appear

to have been the focus of research attention before.

4.1.2 Our contributions

In this chapter we extend the results of [13] and show that the method of moments yields

optimal sample complexity for orbit recovery problems over any compact group. Specifically,

we show that optimal sample complexity is achieved by an algorithm that estimates the

moments from the samples and then solves a polynomial system of equations in order to

find a signal 𝜃 that would produce such moments. As the sample complexity depends on

the number of moments used, this gives rise to the algebraic question of how many moments

suffice to determine the orbit of 𝜃. Using tools from invariant theory and algebraic geometry,

we investigate this question for various success criteria and obtain sharp results in a number

of settings. Our main focus is on the case where the signal is assumed to be generic and

the goal is to output a finite list of signals, one of which is the truth. In this case we give

a simple efficient algorithm for determining the number of moments required for any given

orbit recovery problem. The main step of the algorithm is to compute the rank of a particular
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Jacobian matrix.

We note that ours is an information-theoretic result rather than a computational one be-

cause even with knowledge of the number of moments required, estimating the original signal

still requires solving a particular polynomial system of equations and we do not attempt to

give a computationally-efficient method for this. There are fast non-convex heuristic methods

to solve these systems in practice [35] but we leave for future work the question of analyzing

such methods rigorously and exploring whether or not they reach the information-theoretic

limits determined in this paper. For the case of finite groups, another efficient method for

solving the polynomial system is via tensor decomposition, which has been analyzed for

MRA [118].

Concrete results for problems such as MRA and cryo-EM are in Section 4.4.

4.1.3 Motivating examples

In addition to the examples of MRA and cryo-EM, it is helpful to have the following moti-

vating examples in mind:

1. Learning a “bag of numbers”: let 𝐺 be the symmetric group 𝑆𝑝, acting on 𝑉 = R𝑝

by permutation matrices. Thus we observe random rearrangements of the entries of a

vector, plus noise.

2. Learning a rigid body: let 𝐺 be the rotation group SO(𝑝), acting on the matrix space

𝑉 = R𝑝×𝑚 by left-multiplication. We imagine the columns of our matrix as vertices

defining a rigid body; thus we observe random rotations of this rigid body (with vertices

labeled) plus noise.

3. 𝑆2 registration: Let 𝑆2 ⊆ R3 be the unit sphere. Let 𝑉 be the finite-dimensional

vector space of functions on 𝑆2 → R that are band-limited, i.e. linear combinations of

spherical harmonics up to some fixed degree (spherical harmonics are the appropriate

“Fourier basis” for functions on the sphere); let 𝜃 ∈ 𝑉 be such a function 𝑆2 → R. Let

𝐺 = SO(3), acting on the sphere by 3-dimensional rotation; this induces an action on
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𝑉 via (𝑔 · 𝜃)(𝑥) = 𝜃(𝑔−1 · 𝑥). Thus we observe many noisy copies of a fixed function on

the sphere, each rotated randomly.

4.1.4 Problem statement

Throughout, we consider a compact (topological) group 𝐺 acting linearly, continuously, and

orthogonally on a finite-dimensional real vector space 𝑉 = R𝑝. In other words, 𝐺 acts on 𝑉

via a linear representation 𝜌 : 𝐺 → O(𝑉 ), and 𝜌 itself is a continuous function. Here O(𝑉 )

denotes the space of real orthogonal 𝑝× 𝑝 matrices. Let Haar(𝐺) denote Haar measure (i.e.,

the “uniform distribution”) on 𝐺. We define the orbit recovery problem as follows.

Problem 4.1.1 (orbit recovery). Let 𝑉 = R𝑝 and let 𝜃 ∈ 𝑉 be the unknown signal. Let 𝐺

be a compact group that acts linearly, continuously, and orthogonally on 𝑉 . For 𝑖 ∈ [𝑛] =

{1, 2, . . . , 𝑛} we observe

𝑦𝑖 = 𝑔𝑖 · 𝜃 + 𝜉𝑖

where 𝑔𝑖 ∼ Haar(𝐺) and 𝜉𝑖 ∼ 𝒩 (0, 𝜎2𝐼𝑝×𝑝), all independently. The goal is to estimate 𝜃.

Note that we can only hope to recover 𝜃 up to action by 𝐺; thus we aim to recover the orbit

{𝑔 · 𝜃 : 𝑔 ∈ 𝐺} of 𝜃.

In practical applications, 𝜎 is often known in advance and, when it is not, it can generally

be estimated accurately on the basis of the samples. We therefore assume throughout that

𝜎 is known and do not pursue the question of its estimation in this work.

Our primary goal is to study the sample complexity of the problem: how must the

number of samples 𝑛 scale with the noise level 𝜎 (as 𝜎 → ∞ with 𝐺 and 𝑉 fixed) in order

for orbit recovery to be statistically possible? All of our results will furthermore apply to a

generalized orbit recovery problem (Problem 4.2.3) allowing for projection and heterogeneity

(see Section 4.1.6).

Our work reveals that it is natural to consider several different settings in which to state

the orbit recovery problem. We consider the following two decisions:
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1. Do we assume that 𝜃 is a generic signal, or do we allow for a worst-case signal? (Here

generic means that there is a measure-zero set of disallowed signals.)

2. Do we want to output a 𝜃′ such that 𝜃′ (approximately) lies in the orbit of 𝜃 (unique

recovery), or simply a finite list 𝜃1, . . . , 𝜃𝑠 of candidates such that one of them (approx-

imately) lies in the orbit of 𝜃 (list recovery)?

The terminology “list recovery” is borrowed from the idea of list decoding in the theory

of error-correcting codes [67]. By taking all combinations of the two options above, there

are four different recovery criteria. Strikingly, these different recovery criteria can be very

different in terms of sample complexity, as the following examples show (see Section 4.4 for

more details):

1. Multi-reference alignment (MRA): Recall that this is the case 𝐺 = Z/𝑝 acting on

𝑉 = R𝑝 by cyclic shifts. It is known [118] that if 𝜃 is generic then unique recovery

is possible with 𝑂(𝜎6) samples. However, for a worst-case 𝜃, many more samples

are required (even for list recovery); as shown in [13], there are some very particular

infinite families of signals that cannot be distinguished without Ω(𝜎2𝑝) samples. This

illustrates a large gap in difficulty between the generic and worst-case problems.

2. Learning a rigid body : Let 𝐺 be the rotation group SO(𝑝) acting on the matrix space

R𝑝×𝑚 by left multiplication. We imagine the columns of our matrix as vertices defining

a rigid body; thus we observe random rotations of this rigid body (with vertices labeled)

plus noise. With 𝑂(𝜎4) samples it is possible to recover the rigid body up to reflection,

so that list recovery (with a list of size 2) is possible. However, unique recovery (even

for a generic signal) requires drastically more samples: Ω(𝜎2𝑝).

We will address all four recovery criteria but our main focus will be on the case of generic

list recovery, as it is algebraically the most tractable to analyze. For the following reasons

we also argue that it is perhaps the most practically relevant case. Clearly real-world signals

are generic. Also, unique recovery is actually impossible in some practical applications; for
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instance, in cryo-EM it is impossible to determine the chirality of the molecule. (However, we

can hope for unique recovery if we work over the group O(3) instead of SO(3).) Furthermore,

one could hope to use application-specific clues to pick the true signal out from a finite list;

for instance, in cryo-EM we might hope that the spurious solutions in our finite list do not

look like “reasonable” molecules and can be thrown out.

4.1.5 Method of moments

Our techniques rely on estimation of the following moments:

Definition 4.1.2 (moment tensor). The order-𝑑 moment tensor is 𝑇𝑑(𝜃) , E𝑔[(𝑔 · 𝜃)⊗𝑑]

where 𝑔 ∼ Haar(𝐺).

We can estimate 𝑇𝑑(𝜃) from the samples by computing 1
𝑛

∑︀𝑛
𝑖=1 𝑦

⊗𝑑
𝑖 plus a correction term

to cancel bias from the noise terms (see the full paper [15] for details). The moments 𝑇𝑑(𝜃)

are related to polynomials that are invariant under the group action, which brings us to the

fundamental object in invariant theory:

Definition 4.1.3 (invariant ring). Let x = (𝑥1, . . . , 𝑥𝑝) be a set of coordinate functions on

𝑉 = R𝑝, i.e. a basis for the dual 𝑉 *, so that R[x] , R[𝑥1, . . . , 𝑥𝑝] is the ring of polynomial

functions 𝑉 → R. We have an action of 𝐺 on R[x] given by (𝑔 · 𝑓)(·) = 𝑓(𝑔−1(·)). (If we fix

a basis for 𝑉 , we can think of x as indeterminate variables corresponding to the entries of

𝜃 ∈ 𝑉 .) The invariant ring R[x]𝐺 ⊆ R[x] is the ring consisting of polynomials 𝑓 that satisfy

𝑔 ·𝑓 = 𝑓 for all 𝑔 ∈ 𝐺. An element of the invariant ring is called an invariant polynomial (or

simply an invariant). Invariant polynomials can be equivalently characterized as polynomials

of the form E𝑔[𝑔 · 𝑓 ] where 𝑓 ∈ R[x] is any polynomial and 𝑔 ∼ Haar(𝐺).

The two objects above are equivalent in the following sense. The moment tensor 𝑇𝑑(𝜃)

contains the same information as the set of evaluations 𝑓(𝜃) for all 𝑓 ∈ R[x]𝐺 that are homo-

geneous of degree 𝑑. In particular, for any such polynomial 𝑓 , 𝑓(𝜃) is a linear combination

of the entries of 𝑇𝑑(𝜃).
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The following algebraic question will be of central importance: when do the values of

invariant polynomials (of degree ≤ 𝑑) of 𝜃 determine the orbit of 𝜃 (in the appropriate

sense)? As we see below, the sample complexity of the statistical problem is completely

characterized by the answer to this question.

Warm up: hypothesis testing

Consider for now the simple problem of distinguishing between two fixed hypotheses 𝜃 = 𝜏1

and 𝜃 = 𝜏2, where 𝜏1 and 𝜏2 are two fixed vectors in 𝑉 . One method is to find an invariant

polynomial 𝑓 for which 𝑓(𝜏1) ̸= 𝑓(𝜏2) and to estimate 𝑓(𝜃) using the samples. The sample

complexity of this procedure depends on the degree of 𝑓 because if 𝑓 has degree 𝑑, we need

𝑂(𝜎2𝑑) samples to accurately estimate 𝑓(𝜃). We have the following (see the full paper [15]

for the proof).

Theorem 4.1.4 (distinguishing upper bound). Fix 𝜏1, 𝜏2 ∈ 𝑉 . If there exists a degree-𝑑

invariant polynomial 𝑓 ∈ R[x]𝐺 with 𝑓(𝜏1) ̸= 𝑓(𝜏2) then, using 𝑂(𝜎2𝑑) samples, it is possible

to distinguish between 𝜃 = 𝜏1 and 𝜃 = 𝜏2 with type-I and type-II error probabilities each at

most 1/3.

Here, 𝑂(𝜎2𝑑) hides factors that depend on 𝐺 (and its action on 𝑉 ), 𝜏1, and 𝜏2, but not 𝜎; we

are most interested in how the sample complexity scales as 𝜎 becomes large (with everything

else held fixed). The error probability 1/3 is arbitrary and can be boosted by taking more

samples.

Furthermore, we have a matching lower bound to show that the method of moments is

optimal: the sample complexity is driven by the minimum degree of an invariant polynomial

that separates 𝜏1 and 𝜏2.

Theorem 4.1.5 (distinguishing lower bound). Fix 𝜏1, 𝜏2 ∈ 𝑉 . Let 𝑑* be the smallest positive

integer 𝑑 for which 𝑇𝑑(𝜏1) ̸= 𝑇𝑑(𝜏2). Then Ω(𝜎2𝑑*) samples are required to distinguish between

𝜃 = 𝜏1 and 𝜃 = 𝜏2 with type-I and type-II error probabilities each at most 1/3.

See the full paper [15] for the proof.
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Recovery

We now address the problem of recovering the signal 𝜃 from the samples. Our goal is to

recover the orbit of 𝜃, defined as follows.

Definition 4.1.6. For 𝜃1, 𝜃2 ∈ 𝑉 , define an equivalence relation 𝐺∼ by letting 𝜃1
𝐺∼ 𝜃2 if there

exists 𝑔 ∈ 𝐺 such that 𝑔 · 𝜃1 = 𝜃2. The orbit of 𝜃 (under the action of 𝐺) is the equivalence

class of 𝜃 under 𝐺∼, i.e. the set {𝑔 · 𝜃 : 𝑔 ∈ 𝐺}. Denote by 𝑉/𝐺 the set of orbits of 𝑉 , that

is, the equivalence classes of 𝑉 modulo the relation 𝐺∼.

We need the following definitions to capture the notion of approximately recovering the

orbit of 𝜃.

Definition 4.1.7. For 𝜃1, 𝜃2 ∈ 𝑉 , let

𝑑𝐺(𝜃1, 𝜃2) = min
𝑔∈𝐺
‖𝜃1 − 𝑔 · 𝜃2‖2.

This pseudometric induces a metric on the quotient space 𝑉/𝐺 in the obvious way, so we

can write 𝑑𝐺(o1, o2) for o1, o2 ∈ 𝑉/𝐺. By slight abuse of notation, we write 𝑑𝐺(𝜃1, o2) for

𝑑𝐺(o1, o2), where o1 is the orbit of 𝜃1.

Theorem 4.1.5 already shows that if the orbit of 𝜃 is not determined by knowledge of the

first 𝑑− 1 moment tensors, then at least Ω(𝜎2𝑑) samples are required to recover the orbit of

𝜃. We are now ready to (informally) state our main result on recovery (see the full paper

[15] for the proof), which provides a matching upper bound.

Theorem 4.1.8 (recovery upper bound, informal). If the moments 𝑇1(𝜃), · · · , 𝑇𝑑(𝜃) uniquely

determine the orbit of 𝜃, then using 𝑂(𝜎2𝑑) samples, we can produce an estimator ̂︀𝜃 such

that 𝑑𝐺(𝜃, ̂︀𝜃) ≤ 𝜀 with high probability.

The recovery procedure is based on estimating the moments 𝑇1(𝜃), . . . , 𝑇𝑑(𝜃) and solving

a system of polynomial equations to recover a 𝜃 that is (approximately) consistent with

those moments. The analogous result holds for list recovery (see the full paper [15]): if the
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moments determine a finite number 𝑠 of possibilities for the orbit of 𝜃 then we can output a

list of 𝑠 estimators, one of which is close to the orbit of 𝜃.

We note again that 𝑂(𝜎2𝑑) only captures the dependence on 𝜎 in the limit 𝜎 →∞ with

other parameters (such as 𝜃 and 𝜀) held fixed.

Thus, we have reduced to the algebraic question of determining how many moments are

necessary to determine the orbit of 𝜃 (either uniquely or in the sense of list recovery). In

Section 4.3 we will use tools from invariant theory and algebraic geometry in order to address

these questions.

4.1.6 Extensions: projection and heterogeneity

We now consider some extensions to the basic orbit recovery problem (Problem 4.1.1), mo-

tivated by the application of cryo-EM:

1. Projection: In cryo-EM, we do not observe a noisy 3-dimensional model of the ro-

tated molecule; we only observe a 2-dimensional projection of it. We will model this

projection by a linear map Π : R𝑝 → R𝑞 that maps a 3-dimensional model to its 2-

dimensional projection (from a fixed viewing direction). The samples are then given

by 𝑦𝑖 = Π(𝑔𝑖 · 𝜃) + 𝜉𝑖 where 𝜉𝑖 ∼ 𝒩 (0, 𝜎2𝐼).

2. Heterogeneity: In cryo-EM we observe images of many different copies of the same

molecule, each rotated differently. However, if our sample is not pure, we may have

a mixture of different molecules and want to recover the structure of all of them. We

will model this by taking 𝐾 different unknown signals 𝜃1, . . . , 𝜃𝐾 along with positive

mixing weights 𝑤1, . . . , 𝑤𝐾 which sum to 1. Each sample takes the form 𝑦𝑖 = 𝑔𝑖 ·𝜃𝑘𝑖 +𝜉𝑖

where 𝑘𝑖 is chosen at random according to the mixing weights.

In Section 4.2 we will formally define a generalization of the orbit recovery problem that

allows for either (or both) of the above extensions. All of our methods will apply to this

general case.
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4.1.7 Outline of remainder of chapter

In Section 4.2, we define a generalization of Problem 4.1.1 which encompasses projection

and heterogeneity, and specify the basic algebraic objects which relate to our generalized

problem. In Section 4.3, we establish our basic algebraic results and specify the algebraic

criteria that correspond to the different recovery criteria defined in Section 4.1.4. We also

give an efficient algorithm to decide the algebraic criterion corresponding to generic list

recovery. Finally, in Section 4.4, we apply our work to several examples of the orbit recovery

problem, including MRA and cryo-EM. We conclude in Section 4.5 with questions for future

work.

Sections 4.6 and 4.7 contain proofs of results from preceding sections. Appendix C.1

contains an account of the invariant theory of SO(3).

4.2 General problem statement

Our results will apply not only to the basic orbit recovery problem (Problem 4.1.1) but to a

generalization (Problem 4.2.3 below) that captures the projection and heterogeneity exten-

sions discussed in Section 4.1.6. We first define mixing weights for heterogeneous problems.

Definition 4.2.1 (mixing weights). Let 𝑤 = (𝑤1, . . . , 𝑤𝐾) ∈ Δ𝐾 , {(𝑧1, . . . , 𝑧𝐾) : 𝑧𝑘 ≥

0 ∀𝑘,
∑︀𝐾

𝑘=1 𝑧𝑘 = 1}. Let 𝑘
𝑤∼ [𝐾] indicate that 𝑘 is sampled from [𝐾] = {1, . . . , 𝐾} such

that 𝑘 = ℓ with probability 𝑤ℓ. We will sometimes instead parametrize the mixing weights

by 𝑤𝑘 = 𝑤𝑘 − 1/𝐾 so that 𝑤 lies in the vector space Δ , {(𝑧1, . . . , 𝑧𝐾) :
∑︀𝐾

𝑘=1 𝑧𝑘 = 0}.

In a heterogeneous problem with 𝐾 different signals, we can only hope to recover the signals

up to permutation. To formalize this, our compound signal will lie in a larger vector space

𝑉 and we will seek to recover its orbit under a larger group 𝐺.

Definition 4.2.2 (setup for heterogeneity). Let 𝐺̃ be a compact group acting linearly,

continuously, and orthogonally on 𝑉 = R𝑝. Let 𝑉 = 𝑉 ⊕𝐾 ⊕ Δ𝐾 , so that 𝜃 ∈ 𝑉 encodes

𝐾 different signals along with mixing weights: 𝜃 = (𝜃1, . . . , 𝜃𝐾 , 𝑤). We let an element
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(𝑔1, . . . , 𝑔𝐾 , 𝜋) of the Cartesian product set 𝐺̃𝐾 × 𝑆𝐾 act on 𝑉 as follows: first, each 𝑔𝑘 acts

on the corresponding 𝜃𝑘, and then 𝜋 permutes the 𝜃𝑘 and the coordinates of 𝑤. Note that

this action is linear and orthogonal (where Δ uses the usual inner product inherited from

R𝐾). There is a natural group structure 𝐺 on the set 𝐺̃𝐾 × 𝑆𝐾 such that the action just

described is actually a group action by 𝐺: the semidirect product 𝐺 = 𝐺̃𝐾 o𝜙 𝑆𝐾 , where

𝜙 denotes the action of 𝑆𝐾 on 𝐺̃𝐾 by permutations of the factors. This is also called the

wreath product of 𝐺̃ by 𝑆𝐾 and written 𝐺̃ ≀ 𝑆𝐾 . The product topology on 𝐺̃𝐾 × 𝑆𝐾 makes

𝐺 a topological group; it is compact with respect to this topology since all the factors are

compact, and the action described above is continuous.

Of course, by taking 𝐾 = 1 we recover the basic setup (without heterogeneity) as a special

case. We are now ready to give the general problem statement.

Problem 4.2.3 (generalized orbit recovery). Let 𝑉 = R𝑝 and 𝑊 = R𝑞. Let 𝐺̃ be a compact

group acting linearly, continuously, and orthogonally on 𝑉 . Let Π : 𝑉 → 𝑊 be a linear

map. Let 𝜃 = (𝜃1, . . . , 𝜃𝐾 , 𝑤) ∈ 𝑉 , 𝑉 ⊕𝐾 ⊕Δ𝐾 be an unknown collection of 𝐾 signals with

mixing weights 𝑤 ∈ Δ𝐾 . For 𝑖 ∈ [𝑛] = {1, 2, . . . , 𝑛} we observe

𝑦𝑖 = Π(𝑔𝑖 · 𝜃𝑘𝑖) + 𝜉𝑖

where 𝑔𝑖 ∼ Haar(𝐺̃), 𝑘𝑖
𝑤∼ [𝐾], 𝜉𝑖 ∼ 𝒩 (0, 𝜎2𝐼𝑞×𝑞), all independently. The goal is to estimate

the orbit of 𝜃 under 𝐺 , 𝐺̃𝐾 o 𝑆𝐾 .

Note that this serves as a reduction from the heterogeneous setup to the basic setup in the

sense that we are still only concerned with recovering the orbit of a vector 𝜃 under the action

of some compact group.

As discussed previously, we apply the method of moments. The moments are now defined

as follows.

Definition 4.2.4 (moment tensor). For the generalized orbit recovery problem (Prob-

lem 4.2.3), the order-𝑑 moment tensor is 𝑇𝑑(𝜃) , E𝑔,𝑘[(Π(𝑔 · 𝜃𝑘))⊗𝑑] where 𝑔 ∼ Haar(𝐺̃)

and 𝑘
𝑤∼ [𝐾]. Equivalently, 𝑇𝑑(𝜃) =

∑︀𝐾
𝑘=1𝑤𝑘 E𝑔[(Π(𝑔 · 𝜃𝑘))⊗𝑑].
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The invariant ring is defined as in Definition 4.1.3 but now for the larger group 𝐺 acting on

the larger 𝑉 :

Definition 4.2.5 (invariant ring). Note that dim(𝑉 ) = 𝐾𝑝+𝐾−1 and let x = (𝑥1, . . . , 𝑥dim(𝑉 ))

be a basis for 𝑉 *; here the last 𝐾 − 1 variables correspond to Δ, e.g. they can correspond to

𝑤1, . . . , 𝑤𝐾−1. We then let R[x]𝐺 ⊆ R[x] be the polynomials in x that are invariant under

the action of 𝐺 (as in Definition 4.1.3).

Recall that in the basic orbit recovery problem, 𝑇𝑑(𝜃) corresponds precisely to the ho-

mogeneous invariant polynomials of degree 𝑑; now 𝑇𝑑(𝜃) corresponds to a subspace of the

homogeneous invariant polynomials of degree 𝑑. Specifically, the method of moments gives

us access to the following polynomials (evaluated at 𝜃):

Definition 4.2.6. Let 𝑈𝑇
𝑑 be the subspace (over R) of the invariant ring R[x]𝐺 consisting

of all R-linear combinations of entries of 𝑇𝑑(x). Let 𝑈𝑇
≤𝑑 = 𝑈𝑇

1 ⊕ · · · ⊕ 𝑈𝑇
𝑑 ⊆ R[x]𝐺. Here

we write 𝑇𝑑(x) for the collection of polynomials (one for each entry of 𝑇𝑑(𝜃)) that map 𝜃 to

𝑇𝑑(𝜃).

We will be interested in whether the subspace 𝑈𝑇
≤𝑑 contains enough information to

uniquely determine the orbit of 𝜃 (or determine a finite list of possible orbits) in the fol-

lowing sense.

Definition 4.2.7. A subspace 𝑈 ⊆ R[x]𝐺 resolves 𝜃 ∈ 𝑉 if there exists a unique o ∈ 𝑉/𝐺

such that 𝑓(𝜃) = 𝑓(o) for all 𝑓 ∈ 𝑈 . Similarly, 𝑈 list-resolves 𝜃 if there are only finitely

many orbits o1, . . . , o𝑠 such that 𝑓(𝜃) = 𝑓(o𝑖) for all 𝑓 ∈ 𝑈 .

Here we have abused notation by writing 𝑓(o) to denote the (constant) value that 𝑓 takes

on every 𝜃 ∈ o. The following question is of central importance.

Question 4.2.8. Fix 𝜃 ∈ 𝑉 . How large must 𝑑 be in order for 𝑈𝑇
≤𝑑 to uniquely resolve 𝜃?

How large must 𝑑 be in order for 𝑈𝑇
≤𝑑 to list-resolve 𝜃?

The answer depends on 𝐺 and 𝑉 but also on whether 𝜃 is a generic or worst-case signal,

and whether we ask for unique recovery or list recovery. As discussed previously (see Sec-

tion 4.1.5), the sample complexity of the generalized orbit recovery problem is Θ(𝜎2𝑑) where
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𝑑 is the minimal 𝑑 from Question 4.2.8. Our algebraic results in Section 4.3 will give general

methods to answer Question 4.2.8 for any 𝐺 and 𝑉 .

4.3 Algebraic results

In this section, we will consider the four recovery criteria defined in Section 4.1.4, and give

algebraic characterizations of each case. As discussed previously (Question 4.2.8) it suffices

to focus our attention on deciding when a subspace 𝑈 resolves (or list-resolves) a parameter

𝜃. We show below how to answer this question by purely algebraic means. Moreover,

for generic list recovery, we show how this question can be answered algorithmically in

polynomial time. For generic and worst-case unique recovery, we also give algorithms to

decide the corresponding algebraic condition; however, these algorithms are not efficient.

Throughout, we assume the setup defined in Section 4.2 for the generalized orbit recovery

problem. In particular, 𝐺 is a compact group acting linearly and continuously on a finite-

dimensional real vector space 𝑉 (although we do not require in this section that the action

be orthogonal). We have the invariant ring R[x]𝐺 corresponding to the action of 𝐺 on 𝑉 ,

and a subspace 𝑈 ⊆ R[x]𝐺 (e.g. 𝑈𝑇
≤𝑑) of invariants that we have access to. We are interested

in whether the values 𝑓(𝜃) for 𝑓 ∈ 𝑈 determine the orbit of 𝜃 ∈ 𝑉 under 𝐺. The specific

structure of 𝐺 and 𝑈𝑇
≤𝑑 (as defined in Section 4.2) will be largely unimportant and can be

abstracted away.

4.3.1 Invariant theory basics

We will often need the following basic operator that averages a polynomial over the group

𝐺.

Definition 4.3.1 (Reynolds operator). The Reynolds operator ℛ : R[x]→ R[x]𝐺 is defined

by

ℛ(𝑓) = E
𝑔∼Haar(𝐺)

[𝑔 · 𝑓 ].
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Note that the Reynolds operator is a linear projection from R[x] to R[x]𝐺 that preserves the

degree of homogeneous polynomials (i.e. a homogeneous polynomial of degree 𝑑 gets mapped

either to a homogeneous polynomial of degree 𝑑 or to zero).

Observation 4.3.2. Let R[x]𝐺𝑑 denote the vector space consisting of homogeneous invariants

of degree 𝑑. We can obtain a basis for R[x]𝐺𝑑 by applying ℛ to each monomial in R[x] of

degree 𝑑. (This yields a spanning set which can be pruned to a basis if desired.)

In our setting, we have the following basic fact from invariant theory.

Theorem 4.3.3 (e.g. [84] Theorem 4.1-3). The invariant ring R[x]𝐺 is finitely gener-

ated as an R-algebra. In other words, there exist generators 𝑓1, . . . , 𝑓𝑚 ∈ R[x]𝐺 such that

R[𝑓1, . . . , 𝑓𝑚] = R[x]𝐺.

Furthermore, there is an algorithm to find a generating set; see Section 4.6.1. Another basic

fact from invariant theory implies that the entire invariant ring is sufficient to determine the

orbit of 𝜃. (This is not always true for non-compact groups; see Example 2.3.1 in [55].)

Theorem 4.3.4 ([84] Theorem 6-2.2). The full invariant ring R[x]𝐺 resolves every 𝜃 ∈ 𝑉 .

Proof. Let o1, o2 ∈ 𝑉/𝐺 be distinct (and therefore disjoint) orbits. Since 𝐺 is compact and

acts continuously, o1 and o2 are compact subsets of 𝑉 . Thus by Urysohn’s lemma there

exists a continuous function 𝑓 : 𝑉 → R such that 𝑓(𝜏) = 0 ∀𝜏 ∈ o1 and 𝑓(𝜏) = 1 ∀𝜏 ∈ o2.

The Stone–Weierstrass theorem states that a continuous function on a compact domain can

be uniformly approximated to arbitrary accuracy by a polynomial. This means there is a

polynomial 𝑓 ∈ R[x] with 𝑓(𝜏) ≤ 1/3 ∀𝜏 ∈ o1 and 𝑓(𝜏) ≥ 2/3 ∀𝜏 ∈ o2. It follows

that ℎ = ℛ(𝑓) is an invariant polynomial that separates the two orbits: ℎ(o1) ≤ 1/3 and

ℎ(o2) ≥ 2/3.

Thus, in order to determine the orbit of 𝜃 it is sufficient to determine the values of all

invariant polynomials. (This condition is clearly also necessary in the sense that if the orbit

is uniquely determined then so are the values of all invariants.)
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Remark 4.3.5. In what follows we will be discussing algorithms that take the problem

setup as input (including 𝐺̃ and its action on 𝑉 , along with Π, 𝐾) and decide whether or

not 𝑈𝑇
≤𝑑 (for some given 𝑑) is capable of a particular recovery task (e.g. list recovery of a

generic 𝜃 ∈ 𝑉 ). We will always assume that these algorithms have a procedure to compute

a basis for 𝑈𝑇
𝑑 (for any 𝑑) in exact symbolic arithmetic. This is non-trivial in some cases

because 𝑇𝑑(x) (and thus 𝑈𝑇
𝑑 ) involves integration over the group (and may involve irrational

values), but we will not worry about these details here. For the important case of SO(3), it

is possible to write down a basis for the invariants in closed form (see Appendix C.1).

Remark 4.3.6. We will draw from various references for algorithmic aspects of invariant

theory. The case of finite groups is treated by [143]. Although the invariant ring is sometimes

taken to be C[x]𝐺 instead of R[x]𝐺, this is unimportant in our setting because the two are

essentially the same: since our group action is real, a basis for R[x]𝐺 (over R) is a basis for

C[x]𝐺 (over C). The case of infinite groups is covered by [55]. Here the group is assumed to be

a reductive group over C (or another algebraically-closed field). This means in particular that

the group is a subset of complex-valued matrices that is defined by polynomial constraints.

Although compact groups such as SO(3) do not satisfy this, the key property of a reductive

group is the existence of a Reynolds operator satisfying certain properties; since this exists

for compact groups (Definition 4.3.1), some (but not all) results still hold in our setting.

4.3.2 Generic list recovery

We will see that the case of list recovery of a generic signal is governed by the notion of

algebraic independence.

Definition 4.3.7. Polynomials 𝑓1, . . . , 𝑓𝑚 ∈ R[x] are algebraically dependent if there exists a

nonzero polynomial 𝑃 ∈ R[𝑦1, . . . , 𝑦𝑚] such that 𝑃 (𝑓1, . . . , 𝑓𝑚) = 0 (i.e. 𝑃 (𝑓1(x), . . . , 𝑓𝑚(x))

is equal to the zero polynomial). Otherwise, they are algebraically independent.

Definition 4.3.8. The transcendence degree of a subspace 𝑈 ⊆ R[x], denoted trdeg(𝑈) is

the maximum value of 𝑚 for which there exist algebraically independent 𝑓1, . . . , 𝑓𝑚 ∈ 𝑈 . A

set of trdeg(𝑈) such polynomials is called a transcendence basis of 𝑈 .
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We now present our algebraic characterization of the generic list recovery problem.

Theorem 4.3.9 (generic list recovery). Let 𝑈 ⊆ R[x]𝐺 be a finite-dimensional subspace. If

trdeg(𝑈) = trdeg(R[x]𝐺) then there exists a set 𝑆 ⊆ 𝑉 of full measure such that if 𝜃 ∈ 𝑆

then 𝑈 list-resolves 𝜃. Conversely, if trdeg(𝑈) < trdeg(R[x]𝐺) then there exists a set 𝑆 ⊆ 𝑉

of full measure such that if 𝜃 ∈ 𝑆 then 𝑈 does not list-resolve 𝜃.

The proof is deferred to Sections 4.6.2 and 4.6.3. A set has full measure if its complement

has measure zero. The intuition behind Theorem 4.3.9 is that trdeg(R[x]𝐺) is the number

of degrees of freedom that need to be pinned down in order to learn the orbit of 𝜃, and so

we need this many algebraically independent constraints (invariant polynomials). Note that

we have not yet given any bound on how large the finite list might be; we will address this

in Section 4.3.3.

In order for Theorem 4.3.9 to be useful, we need a way to compute the transcendence

degree of both R[x]𝐺 and 𝑈 . In what follows, we will discuss methods for both of these:

in Section 4.3.2 we show how to compute trdeg(R[x]𝐺) analytically, and in Section 4.3.2 we

give an efficient algorithm to compute trdeg(𝑈) for a subspace 𝑈 . By taking 𝑈 = 𝑈𝑇
≤𝑑 this

yields an efficient algorithm to determine the smallest degree 𝑑 at which 𝑈𝑇
≤𝑑 list-resolves a

generic 𝜃 (thereby answering Question 4.2.8 for the case of generic list recovery).

Computing the transcendence degree of R[x]𝐺.

Intuitively, the transcendence degree of R[x]𝐺 is the number of parameters required to de-

scribe an orbit of 𝐺. For finite groups, this is simply the dimension of 𝑉 :

Proposition 4.3.10 ([143] Proposition 2.1.1). If 𝐺 is a finite group, trdeg(R[x]𝐺) = dim(𝑉 ).

For infinite groups, the situation may be slightly different. For instance, if SO(3) acts on

𝑉 = R3 in the standard way (rotations in 3 dimensions), then a generic orbit is a sphere, with

dimension two. This means there is only one parameter to learn, namely the 2-norm, and

we expect R[x]𝐺 to have transcendence degree 1 accordingly. On the other hand, if SO(3)

acts on a rich class of functions 𝑆2 → R (as in the 𝑆2 registration problem; see Section 4.4.4)
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then each orbit resembles a copy of SO(3) which has dimension 3. This is formalized in the

following.

Proposition 4.3.11 ([61] Corollary 6.2). If 𝐺 is an algebraic group, then

trdeg(R[x]𝐺) = dim(𝑉 )− dim(𝐺) + min
𝑣∈𝑉

dim(𝐺𝑣),

where 𝐺𝑣 is the stabilizer at 𝑣 of the action of 𝐺 (that is, the subgroup of all 𝑔 ∈ 𝐺 fixing 𝑣).

An alternate approach to the transcendence degree of R[x]𝐺 uses a central object in

invariant theory: the Hilbert series (see e.g. [55]).

Definition 4.3.12. Let R[x]𝐺𝑑 be the subspace (over R) of R[x]𝐺 consisting of homogeneous

invariants of degree 𝑑. The Hilbert series of R[x]𝐺 is the formal power series

𝐻(𝑡) ,
∞∑︁
𝑑=0

dim(R[x]𝐺𝑑 ) 𝑡𝑑.

For a given 𝐺 acting on 𝑉 , there is an explicit formula (Molien’s formula) for the Hilbert

series:

Proposition 4.3.13 ([84] Remark 3-1.8). Let 𝜌 : 𝐺→ GL(𝑉 ) be the representation by which

𝐺 acts on 𝑉 . Then for |𝑡| < 1, 𝐻(𝑡) converges and we have

𝐻(𝑡) = E
𝑔∼Haar(𝐺)

det(𝐼 − 𝑡 𝜌(𝑔))−1.

This formula is tractable to compute, even for complicated groups; see Section 4.4.4 for details

in the case of SO(3). Once we have the Hilbert series, it is easy to extract trdeg(R[x]𝐺) as

follows.

Proposition 4.3.14. The order of the pole at 𝑡 = 1 of 𝐻(𝑡) is equal to trdeg(R[x]𝐺).

The proof comes from [55]; see Section 4.6.4 for more details.

For heterogeneous problems (𝐾 > 1), the transcendence degree can be computed easily

from the transcendence degree of the corresponding homogeneous (𝐾 = 1) problem.
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Proposition 4.3.15. Let 𝐺̃ be a compact group acting linearly and continuously on 𝑉 , and

let 𝐺 = 𝐺̃𝐾o𝑆𝐾 act on 𝑉 = 𝑉 ⊕𝐾⊕Δ𝐾 as in Definition 4.2.2. Let R[x]𝐺 be the invariant ring

corresponding to the action of 𝐺 on 𝑉 , and let R[x̃]𝐺̃ be the invariant ring corresponding to

the action of 𝐺̃ on 𝑉 (i.e. the 𝐾 = 1 problem). Then trdeg(R[x]𝐺) = 𝐾 ·trdeg(R[x̃]𝐺̃)+𝐾−1.

The proof can be found in Section 4.6.5. Note, however, that the result is intuitively reason-

able by counting parameters. We know trdeg(R[x̃]𝐺̃) is the number of parameters required to

describe an orbit of 𝐺̃ acting on 𝑉 . Thus, in the heterogeneity problem we have trdeg(R[x̃]𝐺̃)

parameters for each of the 𝐾 signals, plus an additional 𝐾 − 1 parameters for the 𝐾 mixing

weights (since they sum to 1).

Algorithm for transcendence basis of 𝑈 .

In this section we prove the following.

Theorem 4.3.16. There is an efficient algorithm to perform the following task. Given a

basis {𝑢1, . . . , 𝑢𝑠} for a finite-dimensional subspace 𝑈 ⊆ R[x], output a transcendence basis

for 𝑈 .

Our first ingredient is the following simple classical test for algebraic independence (see,

e.g., [66, 24] for a proof).

Definition 4.3.17 (Jacobian). Given polynomials 𝑓1, . . . , 𝑓𝑚 ∈ R[x] = R[𝑥1, . . . , 𝑥𝑝], we

define the Jacobian matrix 𝐽x(𝑓1, . . . , 𝑓𝑚) ∈ (R[x])𝑚×𝑝 by (𝐽x(𝑓1, . . . , 𝑓𝑚))𝑖𝑗 = 𝜕𝑥𝑗
𝑓𝑖 where

𝜕𝑥𝑗
denotes formal partial derivative with respect to 𝑥𝑗.

Proposition 4.3.18 (Jacobian criterion for algebraic independence). Polynomials f =

(𝑓1, . . . , 𝑓𝑚) are algebraically independent if and only if the Jacobian matrix 𝐽x(f) has full

row rank (over the field R(x)).

It suffices to test the rank of the Jacobian at a generic point x.

Corollary 4.3.19. Fix f = (𝑓1, . . . , 𝑓𝑚). Let 𝑧 ∼ 𝒩 (0, 𝐼𝑝×𝑝). If f is algebraically dependent

then 𝐽x(f)|x=𝑧 does not have full row rank. If f is algebraically independent then 𝐽x(f)|x=𝑧

has full row rank with probability 1.
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Proof. An 𝑚× 𝑝 matrix has deficient row rank if and only if either 𝑚 > 𝑝 or every maximal

square submatrix has determinant zero. Every such determinant of 𝐽x(f) is a polynomial

in x; if this polynomial is not identically zero then plugging in generic values for x will not

cause it to vanish.

Remark 4.3.20. In practice we may choose to plug in random rational values for x so that

the rank computation can be done in exact symbolic arithmetic. The Jacobian test will

still succeed with overwhelming probability (provided we use a fine enough mesh of rational

numbers). Also note that if we find any value of x for which the Jacobian has full row rank,

this constitutes a proof of algebraic independence.

Remark 4.3.21. In some cases (e.g. if the polynomials involve irrational values) it may

be slow to compute the Jacobian rank in exact symbolic arithmetic. We can alternatively

compute the singular values numerically and count how many are reasonably far from zero.

This method works reliably in practice (i.e., it is extremely clear how to separate the zero and

nonzero singular values) but does not constitute a rigorous proof of algebraic independence.

Curiously, although the Jacobian criterion gives an efficient test for algebraic dependence,

it is much harder (#𝑃 -hard) to actually find the algebraic dependence (i.e., the polynomial

relation) when one exists [87].

The Jacobian criterion implies the well-known fact that the collection of algebraically

independent subsets of R[x] form a matroid ; this is called an algebraic matroid (see e.g.

[137]). In particular, we have the following exchange property:

Proposition 4.3.22. Let 𝐼, 𝐽 be finite subsets of R[x], each algebraically independent. If

|𝐼| < |𝐽 | then there exists 𝑓 ∈ 𝐽 r 𝐼 such that 𝐼 ∪ {𝑓} is algebraically independent.

We next note that in the task from Theorem 4.3.16, a transcendence basis can always be

taken from the basis {𝑢1, . . . , 𝑢𝑠} itself.

Lemma 4.3.23. Let 𝑈 be a finite-dimensional subspace of R[x] with basis 𝐵 = {𝑢1, . . . , 𝑢𝑠}.

If 𝑈 contains 𝑟 algebraically independent elements, then so does 𝐵.
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Proof. Let 𝐵′ ⊆ 𝐵 be a maximal set of algebraically independent elements of 𝐵. If |𝐵| < 𝑟

then by the exchange property (Proposition 4.3.22) there exists 𝑣 ∈ 𝑈r𝐵′ such that 𝐵′∪{𝑣}

is algebraically independent. Write 𝑣 =
∑︀𝑠

𝑖=1 𝛼𝑖𝑢𝑖. Since 𝐵′ is maximal, we have from the

Jacobian criterion (Proposition 4.3.18) that for all 1 ≤ 𝑖 ≤ 𝑠, the row vector 𝐽x(𝑢𝑖) lies

in the R(x)-span of ℬ , {𝐽x(𝑏)}𝑏∈𝐵′ . But this means that 𝐽x(𝑣) =
∑︀𝑠

𝑖=1 𝛼𝑖𝐽x(𝑢𝑖) lies in

the R(x)-span of ℬ. By the Jacobian criterion this contradicts the fact that 𝐵′ ∪ {𝑣} is

algebraically independent.

Proof of Theorem 4.3.16.

Let {𝑢1, . . . , 𝑢𝑠} be a basis (or spanning set) for 𝑈 . From above we have that the tran-

scendence degree of 𝑈 is the row rank of the Jacobian 𝐽x(𝑢1, . . . , 𝑢𝑠) evaluated at a generic

point x. A transcendence basis for 𝑈 is the set of 𝑢𝑖 corresponding to a maximal linearly

independent set of rows

We can use the following simple greedy algorithm to construct a transcendence basis.

As input, receive a list of polynomials {𝑢1, . . . , 𝑢𝑠}. Initialize 𝐼 = ∅. For 𝑖 = 1, . . . , 𝑠, add

{𝑢𝑖} to 𝐼 if 𝐼 ∪ {𝑢𝑖} is algebraically independent, and do nothing otherwise. (Note that this

condition can be efficiently tested by Corollary 4.3.19.) Output the resulting set 𝐼.

We now show correctness. Let 𝐼𝑖 be the set after item 𝑢𝑖 has been considered (and

possibly added), and set 𝐼0 = ∅. It suffices to show that for each 𝑖 ∈ {0, . . . , 𝑠}, 𝐼𝑖 is

a maximal independent subset of {𝑢1, . . . , 𝑢𝑖}. We proceed by induction. The claim is

vacuously true when 𝑖 = 0. Assume it holds for 𝑖 − 1. If 𝐼𝑖 is not a maximal independent

subset of {𝑢1, . . . , 𝑢𝑖}, then there exists an independent set 𝐽 ⊆ {𝑢1, . . . , 𝑢𝑖} with |𝐽 | > |𝐼|,

so by the exchange property (Proposition 4.3.22) there exists a 𝑢𝑗 with 𝑗 ≤ 𝑖 such that

𝑢𝑗 /∈ 𝐼𝑖 and 𝐼𝑖 ∪ {𝑢𝑗} is independent. In particular, the subset 𝐼𝑗−1 ∪ {𝑢𝑗} of 𝐼𝑖 ∪ {𝑢𝑗} is

independent. But the fact that 𝑢𝑗 was not added at the (𝑗−1)th step implies that 𝐼𝑗−1∪{𝑢𝑗}

is not independent, a contradiction. So 𝐼𝑖 is indeed maximal.

We obtain that 𝐼 = 𝐼𝑠 is a maximal independent subset of {𝑢1, . . . , 𝑢𝑠}, and hence by

Lemma 4.3.23 a transcendence basis of 𝑈 .
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4.3.3 Generic unique recovery

For list recovery problems, the following gives an explicit upper bound on the size of the list.

Theorem 4.3.24. Let 𝑈 be a subspace of the invariant ring R[x]𝐺. Let 𝐹𝐺 be the field of

fractions of R[x]𝐺. If [𝐹𝐺 : R(𝑈)] = 𝐷 < ∞ then there exists a set 𝑆 ⊆ 𝑉 of full measure

such that for any 𝜃 ∈ 𝑆, 𝑈 list-resolves 𝜃 with a list of size ≤ 𝐷.

The proof is deferred to Section 4.6.2. Here R(𝑈) is the smallest subfield of 𝐹𝐺 containing

both R and 𝑈 , and [𝐹𝐺 : R(𝑈)] denotes the degree of a field extension; see Section 4.6.2

for more details. Since [𝐹𝐺 : R(𝑈)] = 1 is equivalent to R(𝑈) = 𝐹𝐺, we have the following

criterion for unique recovery.

Corollary 4.3.25 (generic unique recovery). If R(𝑈) = 𝐹𝐺 then there exists a set 𝑆 ⊆ 𝑉

of full measure such that if 𝜃 ∈ 𝑆 then 𝑈 resolves 𝜃.

The intuition here is that we want to be able to learn every invariant polynomial by adding,

multiplying, and dividing polynomials from 𝑈 (and scalars from R). We need 𝜃 to be generic

so that we never divide by zero in the process.

Theorem 4.3.26. For a finite-dimensional subspace 𝑈 ⊆ R[x]𝐺, there is an algorithm to

compute the degree of the field extension from Theorem 4.3.24. As input, the algorithm

requires a basis for 𝑈 and the ability to compute the Reynolds operator (Definition 4.3.1).

We give the algorithm and the proof in Section 4.6.6. The algorithm uses Gröbner bases and

is unfortunately inefficient to run in practice.

4.3.4 Worst-case unique recovery

We give a sufficient algebraic condition for worst-case unique recovery:

Theorem 4.3.27 (worst-case unique recovery). Let 𝑈 ⊆ R[x]𝐺 be a finite-dimensional

subspace with basis {𝑓1, . . . , 𝑓𝑚}. If 𝑈 generates R[x]𝐺 as an R-algebra (i.e. R[𝑓1, . . . , 𝑓𝑚] =

R[x]𝐺) then 𝑈 resolves every 𝜃 ∈ 𝑉 .
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Proof. Every element of R[x]𝐺 can be written as a polynomial in the 𝑓𝑖 (with coefficients

in R). This means the values 𝑓1(𝜃), . . . , 𝑓𝑚(𝜃) uniquely determine all the values 𝑓(𝜃) for

𝑓 ∈ R[x]𝐺 and so the result follows because R[x]𝐺 resolves every 𝜃 ∈ 𝑉 (Theorem 4.3.4).

Theorem 4.3.28. There is an algorithm to test whether or not 𝑈 generates R[x]𝐺 as an

R-algebra. As input, the algorithm requires a basis for 𝑈 and the ability to compute the

Reynolds operator (Definition 4.3.1).

We give the algorithm and the proof in Section 4.6.6. The algorithm uses Gröbner bases and

is unfortunately inefficient to run in practice.

If 𝐺 is a finite group, it is known that R[x]𝐺 has a generating set for which all elements

have degree at most |𝐺| (this is Noether’s degree bound ; see Theorem 2.1.4 in [143]). It

follows that R[x]𝐺≤|𝐺| resolves every 𝜃 ∈ 𝑉 . Recall (from Section 4.1.4) that this is tight for

MRA: degree |𝐺| is necessary for worst-case signals.

A precise characterization of when 𝑈 resolves every 𝜃 ∈ 𝑉 is (by definition) that 𝑈

should be a separating set or (equivalently) should generate a separating algebra (see [55]

Section 2.4). The notions of generating and separating sets do not always coincide, as

illustrated by Example 2.4.2 in [55]. Furthermore, generating sets may require strictly higher

maximum degree [62].

4.3.5 Worst-case list recovery

We give a sufficient algebraic condition for worst-case list recovery:

Theorem 4.3.29 (worst-case list recovery). Let 𝑈 ⊆ R[x]𝐺 be a subspace with finite basis

{𝑓1, . . . , 𝑓𝑚}. If R[x]𝐺 is finitely generated as a R[𝑓1, . . . , 𝑓𝑚]-module, then 𝑈 list-resolves

every 𝜃 ∈ 𝑉 .

In other words, this condition says that there exists a basis 𝑔1, . . . , 𝑔𝑠 ∈ R[x]𝐺 such that every

element of R[x]𝐺 can be written as a linear combination of 𝑔1, . . . , 𝑔𝑠 with coefficients from

R[𝑓1, . . . , 𝑓𝑚]. It is sufficient to take 𝑈 to be a set of primary invariants from a Hironaka

decomposition (see Section 4.6.4).
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Proof. Since R[x]𝐺 finitely generated as an R-algebra (Theorem 4.3.3), if R[x]𝐺 is finitely

generated as a R[𝑓1, . . . , 𝑓𝑚]-module then it follows that (see [139] Section 5.3) every ℎ ∈

R[x]𝐺 satisfies a monic polynomial

ℎ𝑘 + 𝑐𝑘−1ℎ
𝑘−1 + · · ·+ 𝑐1ℎ+ 𝑐0 = 0

with 𝑐𝑖 ∈ R[𝑓1, . . . , 𝑓𝑚]. Letting ℎ1, . . . , ℎ𝑠 be generators for R[x]𝐺 (as an R-algebra), we have

that the values 𝑓1(𝜃), . . . , 𝑓𝑚(𝜃) determine a finite set of possible values for ℎ1(𝜃), . . . , ℎ𝑠(𝜃),

each of which determines (at most) one orbit for 𝜃.

4.4 Examples

In this section we work out some specific examples, determining the degree at which generic

list recovery is possible using the methods of Section 4.3.2. (We focus on generic list recovery

because our algorithms for the other recovery criteria are unfortunately too slow even for

quite small examples.) We obtain several recovery theorems for problems such as MRA and

cryo-EM within finite ranges of parameters where we have verified the Jacobian criterion

using a computer, and beyond these parameter ranges, we state conjectural patterns.

The following themes emerge in the examples studied in this section. First, we see that

many problems are possible at degree 3, which is promising from a practical standpoint.

Second, we do not encounter any unexpected algebraic dependencies, and so we are able

to show that heuristic parameter-counting arguments are correct. In particular, we see

that if there are enough linearly independent invariants, there are also enough algebraically

independent invariants.

4.4.1 Learning a bag of numbers

Let 𝐺 be the symmetric group 𝑆𝑝 acting on 𝑉 = R𝑝 by permutation matrices. The invariant

ring consists of the symmetric polynomials, which are generated by the elementary symmetric

polynomials 𝑒1, . . . , 𝑒𝑝 where 𝑒𝑖 has degree 𝑖. Worst-case unique recovery is possible at degree
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𝑝 since R[x]𝐺≤𝑝 generates the full invariant ring. Furthermore, degree 𝑝 is actually required,

even for generic list recovery. This is because any invariant of degree ≤ 𝑝−1 can be expressed

as a polynomial in 𝑒1, . . . , 𝑒𝑝−1 and thus trdeg(R[x]𝐺≤𝑝−1) = 𝑝 − 1. So this problem has a

steep sample complexity of order 𝜎2𝑝.

4.4.2 Learning a rigid body

Let 𝐺 be the rotation group SO(𝑝) acting on the matrix space R𝑝×𝑚 by left multiplication.

We imagine the columns of our matrix as vertices defining a rigid body; thus we observe

random rotations of this rigid body (with vertices labeled) plus noise. Let 𝑈 ∈ R𝑝×𝑚 be

such a matrix signal. With 𝑂(𝜎4) samples, we can estimate the degree-2 Gram matrix 𝑈⊤𝑈 ;

taking a Cholesky factorization, we recover 𝑈 up to left action by an element of the larger

group O(𝑝). Thus we recover the rigid body up to a reflection ambiguity, demonstrating list

recovery (with a list of size 2). Surprisingly, assuming 𝑚 ≥ 𝑝, we do not uniquely resolve a

generic signal until degree 𝑝, where with 𝑂(𝜎2𝑝) samples we can estimate a 𝑝 × 𝑝 minor of

𝑈 , which is a degree-𝑝 invariant that changes sign under reflection.

The impossibility of unique recovery until degree 𝑝 is a consequence of the “first funda-

mental theorem” for the special orthogonal group SO(𝑝), which asserts that the invariant

ring is generated by the entries of the Gram matrix 𝑈⊤𝑈 together with the 𝑝× 𝑝 minors of

𝑈 (see for instance [84]); thus the invariants of degree 3, . . . , 𝑝 − 1 carry no information in

addition to the degree-2 invariants.

4.4.3 Multi-reference alignment (MRA)

Recall that this is the case of 𝐺 = Z/𝑝 acting on 𝑉 = R𝑝 by cyclic shifts. It is already

known that for the basic MRA problem (without projection or heterogeneity), generic unique

recovery is possible at degree 3 for any 𝑝 [13]. The methods of Section 4.3.2 confirm the

weaker result that generic list recovery is possible at degree 3 (at least for the values of 𝑝

that we tested). Note the stark contrast in difficulty from the case of the full symmetric

group 𝐺 = 𝑆𝑝 above.
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Remark 4.4.1. This result for MRA is actually a special case of a more general phenomenon.

Let 𝐺 be any finite group and let 𝑉 be the regular representation i.e. the space of functions

𝑓 : 𝐺 → R with the action (𝑔 · 𝑓)(ℎ) = 𝑓(𝑔−1ℎ). (Note that for 𝐺 = Z/𝑝 this is precisely

the MRA problem.) It is known [85] that for this setup, the degree-3 invariants (the triple

correlation) are sufficient to resolve a generic signal, and thus generic unique recovery is

possible at degree 3.

We can also verify that for MRA with 𝑝 ≥ 3, generic list recovery is impossible at degree 2.

This follows from Theorem 4.3.9 because trdeg(R[x]𝐺) = 𝑝 (since 𝐺 is finite) but the number

of algebraically independent invariants of degree ≤ 2 is at most ⌊𝑝/2⌋+1. We can see this as

follows. A basis for the invariants of degree≤ 2 is {ℛ(𝑥1),ℛ(𝑥2
1),ℛ(𝑥1𝑥2),ℛ(𝑥1𝑥3), . . . ,ℛ(𝑥1𝑥𝑠)}

with 𝑠 = ⌊𝑝/2⌋+1. Here ℛ denotes the Reynolds operator, which averages over cyclic shifts

of the variables. For instance, ℛ(𝑥1𝑥2) =
1
𝑝
(𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥3𝑥4 + · · ·+ 𝑥𝑝𝑥1). Note that the

basis above has size ⌊𝑝/2⌋+2 but there is an algebraic dependence within it because ℛ(𝑥1)
2

can be written in terms of the other basis elements. The claim now follows.

Generic list recovery is possible at degree 1 for 𝑝 = 1 and at degree 2 for 𝑝 = 2. (This is

true even for worst-case unique recovery; recall from Section 4.3.4 that degree |𝐺| is always

sufficient for this.)

We now move on to variants of the MRA problem.

MRA with projection

We now consider MRA with a projection step. We imagine that the coordinates of the signal

are arranged in a circle so that 𝐺 acts by rotating the signal around the circle. We then

observe a projection of the circle onto a line so that each observation is the sum of the two

entries lying “above” it on the circle. This is intended to resemble the tomographic projection

in cryo-EM. We formally define the setup as follows.

Problem 4.4.2 (MRA with projection). Let 𝑝 ≥ 3 be odd. Let 𝑉 = R𝑝 and 𝐺 = Z/𝑝 acting
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on 𝑉 by cyclic shifts. Let 𝑞 = (𝑝− 1)/2 and 𝑊 = R𝑞. Let Π : 𝑉 → 𝑊 be defined by

Π(𝑣1, . . . , 𝑣𝑝) = (𝑣1 + 𝑣𝑝, 𝑣2 + 𝑣𝑝−1, . . . , 𝑣(𝑝−1)/2 + 𝑣(𝑝+3)/2).

We call the associated generalized orbit recovery problem (Problem 4.2.3) MRA with pro-

jection. (We consider the homogeneous case 𝐾 = 1.)

Note that since 𝑝 is odd, there is one entry 𝑣(𝑝+1)/2 which is discarded by Π. The reason

we consider the odd-𝑝 case rather than the seemingly more elegant even-𝑝 case is because

generic list recovery is actually impossible in the even-𝑝 case. This is because the signals 𝜃

and 𝜃+(𝑐,−𝑐, 𝑐,−𝑐, . . .) cannot be distinguished from the samples, even if there is no noise.

Restricting now to odd 𝑝, note that we cannot hope for generic unique recovery because

it is impossible to tell whether the signal is wrapped clockwise or counterclockwise around

the circle. In other words, reversing the signal via (𝜃1, . . . , 𝜃𝑝) ↦→ (𝜃𝑝, . . . , 𝜃1) does not

change the distribution of samples. We can still hope for generic list recovery, hopefully

with a list of size exactly 2. This degeneracy is analogous to the chirality issue in cryo-EM:

it is impossible to determine the chirality of the molecule (i.e. if the molecule is reflected

about some 2-dimensional plane through the origin, this does not change the distribution of

samples).

It appears that, as in the basic MRA problem, generic list recovery is possible at degree

3. We proved this for 𝑝 up to 21 by checking the Jacobian criterion (see Section 4.3.2) on a

computer, and we conjecture that this trend continues.

Conjecture 4.4.3. For MRA with projection, for any odd 𝑝 ≥ 3, generic list recovery is

possible at degree 3.

Note that generic list recovery is impossible at degree 2 because the addition of the projection

step to basic MRA can only make it harder for 𝑈𝑇
≤𝑑 to list-resolve 𝜃.
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Heterogeneous MRA

We now consider heterogeneous MRA, i.e. the generalized orbit recovery problem (Prob-

lem 4.2.3) with 𝐺̃ = Z/𝑝 acting on 𝑉 = R𝑝 by cyclic shifts, 𝐾 ≥ 2 heterogeneous compo-

nents, and no projection (i.e., Π is the identity).

We will see that generic list recovery is possible at degree 3 provided that 𝑝 is large

enough compared to 𝐾. First note that the number of degrees of freedom to be recovered

is trdeg(R[x]𝐺) = 𝐾𝑝 + 𝐾 − 1 (see Propositions 4.3.10 and 4.3.15). Let us now count

the number of distinct entries of 𝑇𝑑(x) for 𝑑 ≤ 3. Note that 𝑇𝑑(x) is symmetric (under

permutations of indices) but we also have additional symmetries given by cyclic shifts, e.g.

(𝑇3(x))𝑖,𝑗,𝑘 = (𝑇3(x))𝑖+𝑐,𝑗+𝑐,𝑘+𝑐 where 𝑐 is an integer and the sums 𝑖 + 𝑐, 𝑗 + 𝑐, 𝑘 + 𝑐 are

computed modulo 𝑝. One can compute that 𝑇1(x) has 1 distinct entry, 𝑇2(x) has ⌊𝑝/2⌋+ 1

distinct entries, and 𝑇3(x) has 𝑝 + ⌈(𝑝 − 1)(𝑝 − 2)/6⌉ distinct entries. The total number of

distinct entries is

𝒰 , 𝑝+ 2 + ⌊𝑝/2⌋+ ⌈(𝑝− 1)(𝑝− 2)/6⌉.

By Theorem 4.3.9, list recovery is impossible when 𝒰 < 𝐾𝑝+𝐾−1. By testing the Jacobian

condition, we observe that the converse also appears to hold. We tested this up to 𝐾 = 15

and up to the corresponding critical 𝑝 value.

Conjecture 4.4.4. For heterogeneous (𝐾 ≥ 2) MRA, generic list recovery is possible at

degree 3 precisely if 𝒰 ≥ 𝐾𝑝 +𝐾 − 1. This condition on 𝒰 can be stated more explicitly as

follows:

∙ 𝐾 = 2 requires 𝑝 ≥ 1.

∙ 𝐾 = 3 requires 𝑝 ≥ 12.

∙ 𝐾 = 4 requires 𝑝 ≥ 18.

∙ Each 𝐾 ≥ 5 requires 𝑝 ≥ 6𝐾 − 5.

Recent work [35] also studies the heterogeneous MRA problem. Similarly to the present

work, they apply the method of moments and solve a polynomial system of equations in

138



order to recover the signals. To solve the system they use an efficient heuristic method that

has no provable guarantees but appears to work well in practice. Their experiments suggest

that if the signals have i.i.d. Gaussian entries, this method succeeds only when (roughly)

𝐾 ≤ √𝑝 instead of the condition (roughly) 𝐾 ≤ 𝑝/6 that we see above (and that [35] also

identified based on parameter-counting). In Chapter 5, we prove that indeed polynomial-time

recovery is possible when 𝐾 ≤ Ω̃(
√
𝑝). We expect that this is a statistical-to-computational

gap whereby it becomes computationally hard to efficiently solve the polynomial system once

𝐾 exceeds √𝑝.

4.4.4 𝑆2 registration

Recall that this is the case where the signal 𝜃 is a real-valued function defined on the unit

sphere 𝑆2 in R3. The formal setup is as follows.

Let 𝐺 = SO(3). For each ℓ = 0, 1, 2, . . . there is an irreducible representation 𝑉ℓ of SO(3)

of dimension 2ℓ+1. These representations are of real type, i.e. they can be defined over the

real numbers so that 𝑉ℓ = R2ℓ+1. Let ℱ be a finite subset of {0, 1, 2, . . .} and consider the

orbit recovery problem in which 𝐺 acts on 𝑉 = ⊕ℓ∈ℱ𝑉ℓ.

As intuition for the above setup, 𝑉ℓ is a basis for the degree-ℓ spherical harmonic functions

𝑆2 → R defined on the surface of the unit sphere 𝑆2 ⊆ R3. The spherical harmonics are a

complete set of orthogonal functions on the sphere and can be used (like a “Fourier series”)

to represent a function 𝑆2 → R. Thus the signal 𝜃 ∈ 𝑉 can be thought of as a function on

the sphere, with SO(3) acting on it by rotating the sphere. See Appendix C.1 for details on

spherical harmonics.

The primary case of interest is ℱ = {1, . . . , 𝐹} for some 𝐹 (the number of “frequencies”).

We will see that generic list recovery is possible at degree 3 so long as 𝐹 ≥ 10. We will see that

it is convenient to not include 0 ∈ ℱ , but we now justify why this is without loss of generality.

𝑉0 is the trivial representation, i.e. the 1-dimensional representation on which every group

element acts as the identity. In the interpretation of spherical harmonics, the 𝑉0-component

is the mean value of the function over the sphere. We claim that the 𝑆2 registration problem
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with 0 ∈ ℱ can be easily reduced to the problem with ℱ ′ = ℱ r {0}. This is because the

𝑉0-component is itself a degree-1 invariant; given the value of this invariant, one can subtract

it off and reduce to the case without a 𝑉0-component (i.e. the case where the function on

the sphere is zero-mean). Thus we have that e.g. generic list recovery is possible (at a given

degree) for ℱ if and only if it is possible for ℱ ′.

Using Proposition 4.3.11 we compute that trdeg(R[x]𝐺) = 𝑝− 𝑝′, where

𝑝 = dim(𝑉 ) =
∑︁
ℓ∈ℱ

(2ℓ+ 1)

and

𝑝′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ℓmax = 0

2 ℓmax = 1

3 ℓmax ≥ 2

where ℓmax = max
ℓ∈ℱ

ℓ.

After all, 𝑉0 is the trivial representation on the 1-dimensional vector space, with 3-dimensional

stabilizer SO(3), and 𝑉1 is the standard 3-dimension representation of SO(3) on R3 by rota-

tions, which yields a one-dimensional SO(2) stabilizer at each nonzero point. When ℓmax ≥ 2,

the representation 𝑉 is known to have zero-dimensional stabilizer at some points (see e.g.

[68]).

In the following we restrict to the case 0 /∈ ℱ for simplicity (but recall that this is

without loss of generality). There are therefore no degree-1 invariants, i.e. R[x]𝐺1 is empty.

By Theorem 4.3.9, if dim(R[x]𝐺2 ) + dim(R[x]𝐺3 ) < trdeg(R[x]𝐺) then generic list recovery is

impossible at degree 3; this rules out generic list recovery for ℱ = {1, 2, . . . , 𝐹} when 𝐹 ≤ 9.

(We will see below how to compute dim(R[x]𝐺𝑑 ).) Beyond this threshold, the situation is

more hopeful:

Theorem 4.4.5. If ℱ = {1, 2, . . . , 𝐹} and 10 ≤ 𝐹 ≤ 16 then the degree-3 method of

moments achieves generic list recovery.

This theorem is based on computer verification of the Jacobian criterion for 10 ≤ 𝐹 ≤ 16

using exact arithmetic in a finite extension of Q. This result lends credence to the following
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conjecture.

Conjecture 4.4.6. Consider the 𝑆2 registration problem with 0 /∈ ℱ . We conjecture the

following.

∙ Generic list recovery is possible at degree 3 if and only if dim(R[x]𝐺2 ) + dim(R[x]𝐺3 ) ≥

trdeg(R[x]𝐺) (where trdeg(R[x]𝐺) is computed above and dim(R[x]𝐺𝑑 ) can be computed

from Proposition 4.4.7 below).

∙ In particular, if ℱ = {1, 2, . . . , 𝐹} then generic list recovery is possible at degree 3 if

and only if 𝐹 ≥ 10.

The reason it is convenient to exclude the trivial representation is because it simplifies the

parameter-counting: if we use the trivial representation then we have a degree-1 invariant

𝑓 and so there is an algebraic relation between the degree-2 invariant 𝑓 2 and the degree-3

invariant 𝑓 3.

We now discuss how to compute dim(R[x]𝐺𝑑 ). Using the methods in Section 4.6 of [55],

we can give a formula for the Hilbert series of R[x]𝐺; see Section 4.7.1. However, if one wants

to extract a specific coefficient dim(R[x]𝐺𝑑 ) of the Hilbert series, we give an alternative (and

somewhat simpler) formula:

Proposition 4.4.7. Consider 𝑆2 registration with frequencies ℱ . Let 𝜒𝑑(𝜑) : R → R be

defined recursively by

𝜒0(𝜑) = 1,

𝜒1(𝜑) =
∑︁
ℓ∈ℱ

[︃
1 + 2

ℓ∑︁
𝑚=1

cos(𝑚𝜑)

]︃
, and

𝜒𝑑(𝜑) =
1

𝑑

𝑑∑︁
𝑖=1

𝜒1(𝑖𝜑)𝜒𝑑−𝑖(𝜑).

Then we have

dim(R[x]𝐺𝑑 ) =
1

𝜋

∫︁ 𝜋

0

(1− cos𝜑)𝜒𝑑(𝜑) d𝜑.
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We give the proof in Section 4.7.2. Additionally, in Appendix C.1.6 we give explicit formulas

for the invariants (up to degree 3), which yields a combinatorial analogue of Proposition 4.4.7

(up to degree 3).

4.4.5 Cryo-EM

We adapt the following simple model for the cryo-EM reconstruction problem. We will use

properties of the 3-dimensional Fourier transform, including the projection-slice theorem;

see e.g. [116] for a reference.

The signal is a 3-dimensional molecule, which we can think of as encoded by a density

function 𝑓 : R3 → R. The 3-dimensional Fourier transform of 𝑓 is ̂︀𝑓 : R3 → C given by

̂︀𝑓(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) = ∫︁ ∞

−∞

∫︁ ∞

−∞

∫︁ ∞

−∞
𝑒−2𝜋𝑖(𝑥𝑘𝑥+𝑦𝑘𝑦+𝑧𝑘𝑧)𝑓(𝑥, 𝑦, 𝑧) d𝑥 d𝑦 d𝑧. (4.1)

It is sufficient to learn ̂︀𝑓 because we can then recover 𝑓 using the inverse Fourier transform.

SO(3) acts on the molecule by rotating it in 3-dimensional space (keeping the origin fixed).

When 𝑓 is rotated in (𝑥, 𝑦, 𝑧) coordinates, ̂︀𝑓 is also rotated in (𝑘𝑥, 𝑘𝑦, 𝑘𝑧)-coordinates by the

same rotation. Each observation is a 2-dimensional image obtained by first rotating 𝑓 by

a random element of SO(3) and then projecting 𝑓 parallel to the 𝑧 axis. Specifically, the

projection of 𝑓 is 𝑓proj : R2 → R given by

𝑓proj(𝑥, 𝑦) =

∫︁ ∞

−∞
𝑓(𝑥, 𝑦, 𝑧) d𝑧.

By the projection-slice theorem, the 2-dimensional Fourier transform of 𝑓proj is equal to the

slice ̂︀𝑓slice : R2 → C given by

̂︀𝑓slice(𝑘𝑥, 𝑘𝑦) = ̂︀𝑓(𝑘𝑥, 𝑘𝑦, 0).
Thus we think of ̂︀𝑓 as our unknown signal with SO(3) acting by rotation, and with post-

projection which reveals only the slice of ̂︀𝑓 lying in the plane 𝑘𝑧 = 0.
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This does not yet conform to our definition of a (generalized) orbit recovery problem

because the signal needs to lie in a finite-dimensional real vector space. Instead of thinking

of ̂︀𝑓 as a function on R3, we fix a finite number 𝑆 of nested spherical shells in R3, each of

different radius and all centered at the origin. We consider only the restriction of ̂︀𝑓 to these

shells. We fix a finite number 𝐹 of frequencies and on each shell we expand ̂︀𝑓 (restricted

to that shell) in the basis of spherical harmonics, truncated to 1 ≤ ℓ ≤ 𝐹 . (As in 𝑆2

registration, we can discard the trivial representation ℓ = 0 without loss of generality, and

it is convenient to do so.) Being the Fourier transform of a real-valued function, ̂︀𝑓 satisfies

̂︀𝑓(−𝑘𝑥,−𝑘𝑦,−𝑘𝑧) = ̂︀𝑓(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) (4.2)

(see (4.1)) and so we can use a particular basis 𝐻ℓ𝑚 of spherical harmonics for which the

expansion coefficients are real; see Appendix C.1. We have now parametrized our signal by a

finite number of real values 𝜃𝑠ℓ𝑚 with 1 ≤ 𝑠 ≤ 𝑆, 1 ≤ ℓ ≤ 𝐹 , and −ℓ ≤ 𝑚 ≤ ℓ. In particular,

the restriction of ̂︀𝑓 to shell 𝑠 has expansion

∑︁
1≤ℓ≤𝐹

∑︁
−ℓ≤𝑚≤ℓ

𝜃𝑠ℓ𝑚𝐻ℓ𝑚.

SO(3) acts on each shell by 3-dimensional rotation; see Section C.1 for the details of how

SO(3) acts on spherical harmonics. The projection Π reveals only the values on the equator

𝑧 = 0 (or in spherical coordinates, 𝜃 = 𝜋/2) of each shell. Using again the property (4.2),

the output of Π on each shell has an expansion with real coefficients in a particular finite

basis ℎ𝑚; see Section C.1.4.

Remark 4.4.8. There are various other choices one could make for the basis in which to

represent the (Fourier transform of the) molecule. Each of our basis functions is the product

of a spherical harmonic and a radial delta function (i.e. a delta function applied to the radius,

resulting in a spherical shell). Another common basis is the Fourier–Bessel basis (used in

e.g. [98]) where each basis function is the product of a spherical harmonic and a radial Bessel

function. More generally we can take the product of spherical harmonics with any set of
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radial basis function. It turns out that the choice of radial basis is unimportant because the

resulting problem will be isomorphic to our case (spherical shells) and so the same results

hold.

We now present our results on the above cryo-EM model. We focus on identifying the

regime of parameters for which generic list recovery is possible at degree 3. Again using

Proposition 4.3.11, we have for 𝐹 ≥ 2:

trdeg(R[x]𝐺) = dim(𝑉 )− 3 = 𝑆

𝐹∑︁
ℓ=1

(2ℓ+ 1)− 3 = 𝑆(𝐹 2 + 2𝐹 )− 3 (4.3)

where again we have a zero-dimensional stabilizer.

In Appendix C.1 we give an explicit construction of the invariant polynomials in 𝑈𝑇
≤3.

By testing the Jacobian criterion in exact arithmetic on small examples, we arrive at the

following theorem:

Theorem 4.4.9. Consider the homogeneous (𝐾 = 1) cryo-EM problem with 𝑆 shells and 𝐹

frequencies.

∙ If 𝑆 = 1 then for any 𝐹 ≥ 2, generic list recovery is impossible at degree 3.

∙ If 2 ≤ 𝑆 ≤ 4 and 2 ≤ 𝐹 ≤ 6, the degree-3 method of moments achieves generic list

recovery.

The first assertion results from a simple counting argument: there are fewer invariants at

degree ≤ 3 than degrees of freedom. The second part is by confirming that the Jacobian of

the invariants has rank equal to trdeg(R[x]𝐺), through computer-assisted exact arithmetic

over an appropriate finite extension of Q.

In floating-point arithmetic, we have further verified that the Jacobian appears to have

appropriate rank for 2 ≤ 𝑆 ≤ 10 and 2 ≤ 𝐹 ≤ 10, leading us to conjecture the following:

Conjecture 4.4.10. If 𝑆 ≥ 2 then the degree-3 method of moments achieves generic list

recovery (regardless of 𝐹 ).
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Intuitively, when there is a single shell (𝑆 = 1) there are simply not enough invariants

in 𝑈𝑇
≤3. However, when 𝑆 ≥ 2, the number of invariants increases dramatically due to

cross-terms that involve multiple shells.

Heterogeneous cryo-EM

We now consider heterogeneous cryo-EM (𝐾 ≥ 2). By combining (4.3) with Proposi-

tion 4.3.15 we can compute trdeg(R[x]𝐺). Based on testing the Jacobian criterion on small

examples, we conjecture that the degree-3 method of moments achieves generic list recovery

if and only if dim(𝑈𝑇
2 )+dim(𝑈𝑇

3 ) ≥ trdeg(R[x]𝐺). In other words, we expect no unexpected

algebraic dependencies among 𝑈𝑇
≤3. (Recall that there are no degree-1 invariants since we

are not using the trivial representation ℓ = 0).

In Section C.1.6 we give a conjectured formula for the exact value of dim(𝑈𝑇
2 )+dim(𝑈𝑇

3 )

for all 𝑆 ≥ 1, 𝐹 ≥ 2. As a result we can determine for any given 𝑆 ≥ 1 and 𝐹 ≥ 2, the exact

condition on 𝐾 for which we believe generic list recovery is possible. For 𝑆 and 𝐹 large, this

condition is approximately 𝐾 ≤ 𝑆2/4.

4.5 Open questions

We leave the following as directions for future work.

1. Our methods require testing the rank of the Jacobian on a computer for each problem

size. It would be desirable to have analytic results for e.g. (variants of) MRA in any

dimension 𝑝.

2. We have given an efficient test for whether generic list recovery is possible, but have

not given a similarly efficient test for generic unique recovery. In cases where unique

recovery is impossible, it would be nice to give a tight bound on the size of the list;

for instance, for MRA with projection, we conjecture that the list has size exactly 2

(due to “chirality”), but we lack a proof for this fact. Our algorithms for testing generic

unique recovery are based on Gröbner bases, the calculation of which is known to be
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computationally hard in the worst case [79]. Unfortunately, the algorithms we have

proposed are also extremely slow in practice, though a faster implementation may be

possible.

3. Our procedure for recovering 𝜃 from the samples involves solving a polynomial system

of equations. While solving polynomial systems is NP-hard in general, the fact that the

polynomials used in the orbit recovery problem have special structure leaves open the

possibility of finding an efficient (polynomial time) method with rigorous guarantees.

This is especially promising under additional assumptions such as random 𝜃. Possible

methods include tensor decomposition [118] and non-convex optimization [35]. We

discuss this further in Chapter 5.

4. We have addressed the statistical limits of orbit recovery problems. However, the pre-

vious chapters of this thesis have indicated the presence of statistical-to-computational

gaps in related synchronization problems, and we expect such gaps to appear in or-

bit recovery problems too. As discussed in Section 4.4.3, the results of [35] suggest a

possible gap of this kind for heterogeneous MRA. We discuss this further in Chapter 5.

4.6 Proofs for Section 4.3: algebraic results

4.6.1 Algorithm for generators of R[x]𝐺

We know that R[x]𝐺 is finitely generated as an R-algebra (Theorem 4.3.3). There are various

algorithms to compute a finite set of generators for R[x]𝐺 [143, 55]. However, some require

the group to be finite or to be reductive over an algebraically-closed field. One algorithm

that certainly works in our context (compact groups) is Algorithm 2.2.5 in [143]. As input

it requires the Hilbert series of R[x]𝐺 (which can be computed by Proposition 4.3.13) and a

procedure to compute a basis for R[x]𝐺𝑑 (which can be done with the Reynolds operator by

Observation 4.3.2). The idea is as follows. We keep a set of proposed generators 𝑓1, . . . , 𝑓𝑚.

At each step we compare the Hilbert series of R[x]𝐺 with the Hilbert series of R[𝑓1, . . . , 𝑓𝑚]
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(which can be computed using Gröbner bases). If these series differ at the 𝑡𝑑 term, this

means we are missing an invariant at degree 𝑑. To remedy this, we create a new homoge-

neous invariant of degree 𝑑 using the Reynolds operator, and add it to our set of proposed

generators. We repeat until the Hilbert series match.

4.6.2 Bounding the list size for generic signals

In this section we prove Theorem 4.3.24 and the first part of Theorem 4.3.9 (see Section 4.6.3

for the second part). Recall the following basic definitions and facts from field theory.

Definition 4.6.1. If 𝐹2 is a subfield of 𝐹1, we write 𝐹1/𝐹2 and call this a field extension.

The degree of the extension, denoted [𝐹1 : 𝐹2], is the dimension of 𝐹1 as a vector space over

𝐹2.

Proposition 4.6.2. Let R ⊆ 𝐹2 ⊆ 𝐹1 with 𝐹1 finitely generated (as a field) over R. Let 𝑟 be

the transcendence degree of 𝐹1 (over R). The field extension 𝐹1/𝐹2 has finite degree if and

only if 𝐹1 contains 𝑟 algebraically independent elements.

Proof. This is a basic fact of field theory. If 𝐹1 contains 𝑟 algebraically independent elements

then the extension 𝐹1/𝐹2 is algebraic and finitely generated, and therefore has finite degree.

Otherwise, the extension is transcendental and has infinite degree.

In light of the above (and using the fact that R[x]𝐺 is finitely generated), Theorem 4.3.24

implies the first part of Theorem 4.3.9 and so it remains to prove Theorem 4.3.24 (i.e. list

size is bounded by 𝐷 , [𝐹𝐺 : R(𝑈)]).

Proof of Theorem 4.3.24.

Write 𝐹𝑈 , R(𝑈). In characteristic zero, every algebraic extension is separable, so by the

primitive element theorem, 𝐹𝐺 = 𝐹𝑈(𝛼) for some 𝛼 ∈ 𝐹𝐺. Since 𝛼 generates a degree-𝐷

extension, 𝛼 is the root of a degree-𝐷 polynomial

𝛼𝐷 + 𝑏𝐷−1𝛼
𝐷−1 + · · ·+ 𝑏1𝛼 + 𝑏0 (4.4)
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with coefficients 𝑏𝑖 ∈ 𝐹𝑈 . Furthermore, every element of 𝐹𝐺 can be expressed as

𝑐0 + 𝑐1𝛼 + · · ·+ 𝑐𝐷−1𝛼
𝐷−1

with 𝑐𝑖 ∈ 𝐹𝑈 . In particular, let 𝑔1, . . . , 𝑔𝑘 be generators for R[x]𝐺 (as an R-algebra) and

write

𝑔𝑖 = 𝑐
(𝑖)
0 + 𝑐

(𝑖)
1 𝛼 + · · ·+ 𝑐

(𝑖)
𝐷−1𝛼

𝐷−1. (4.5)

Let 𝑆 ⊆ 𝑉 be the subset for which 𝛼 and all the (finitely-many) coefficients 𝑏𝑖, 𝑐
(𝑖)
𝑗 have

nonzero denominators; 𝑆 is a non-empty Zariski-open set and thus has full measure. Now

fix 𝜃 ∈ 𝑆. Given the values 𝑓(𝜃) for all 𝑓 ∈ 𝑈 , each 𝑏𝑖 takes a well-defined value in R and

so from (4.4) there are at most 𝐷 possible values that 𝛼(𝜃) can take. From (4.5), each value

of 𝛼(𝜃) uniquely determines all the values 𝑔𝑖(𝜃) and thus uniquely determines all the values

𝑓(𝜃) for 𝑓 ∈ R[x]𝐺. Since R[x]𝐺 resolves 𝜃 (Theorem 4.3.4), this completes the proof.

4.6.3 Generic list recovery converse

In this section we prove the second part of Theorem 4.3.9 (the converse).

Let 𝑝 = dim(𝑉 ), trdeg(𝑈) = 𝑞, and trdeg(R[x]𝐺) = 𝑟 so that 𝑞 < 𝑟 ≤ 𝑝. Let f =

{𝑓1, . . . , 𝑓𝑚} be a basis for 𝑈 , and let g = {𝑔1, . . . , 𝑔𝑟} be a transcendence basis for R[x]𝐺.

Let 𝑆 ⊆ 𝑉 be the set of points 𝜃 for which the Jacobian 𝐽x(f)|x=𝜃 has row rank 𝑞 and the

Jacobian 𝐽x(g)|x=𝜃 has row rank 𝑟; by the Jacobian criterion (see Corollary 4.3.19), 𝑆 is a

non-empty Zariski-open set and thus has full measure.

Fix 𝜃 ∈ 𝑆. For a sufficiently small open neighborhood 𝑋 ⊆ 𝑆 containing 𝜃 we have

the following. The Jacobian criterion on f implies that {𝜏 ∈ 𝑋 : f(𝜏) = f(𝜃)} has

dimension 𝑝 − 𝑞. The Jacobian criterion on g implies that every 𝑧 ∈ g(𝑋) has a preimage

g−1(𝑧) , {𝜏 ∈ 𝑋 : g(𝜏) = 𝑧} of dimension 𝑝− 𝑟. Since 𝑝− 𝑞 > 𝑝− 𝑟 it follows that there

are infinitely many 𝜃1, 𝜃2, . . . ∈ 𝑋 such that f(𝜃𝑖) = f(𝜃) but the values g(𝜃1),g(𝜃2), . . . are

all distinct (and thus the 𝜃𝑖 belong to distinct orbits). Therefore 𝑈 does not list-resolve 𝜃.
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4.6.4 Hilbert series and Hironaka decomposition

In this section we prove Proposition 4.3.14 on extracting the transcendence degree from

the Hilbert series (as the pole order at 𝑡 = 1). While this is a general property of finitely

generated algebras over a field, there is an easy proof for invariant rings stemming from

a key structural property of such rings called the Cohen-Macaulay property or Hironaka

decomposition.

Theorem 4.6.3 ([55] Section 2.6). The invariant ring R[x]𝐺 has the following structure.

There exist homogeneous primary invariants 𝑓1, . . . , 𝑓𝑟 ∈ R[x]𝐺 and homogeneous secondary

invariants 𝑔1, . . . , 𝑔𝑠 ∈ R[x]𝐺 such that

∙ {𝑓1, . . . , 𝑓𝑟} are algebraically independent, and

∙ any element of R[x]𝐺 can be written uniquely as a linear combination of 𝑔1, . . . , 𝑔𝑠 with

coefficients from R[𝑓1, . . . , 𝑓𝑟].

The proof can be found in Section 2.6 of [55]; note that the only property of the group that

is used is the existence of a Reynolds operator (and so the proof is valid for compact groups).

Proof of Proposition 4.3.14.

The Hironaka decomposition above implies that the Hilbert series takes the form

∑︀𝑠
𝑗=1 𝑡

deg(𝑔𝑗)∏︀𝑟
𝑖=1(1− 𝑡deg(𝑓𝑖))

(this is equation (2.7.3) in [55]). It is now clear that the order of the pole at 𝑡 = 1 is

precisely 𝑟. But we can see as follows that 𝑓1, . . . , 𝑓𝑟 is a transcendence basis for R[x]𝐺 and

so 𝑟 = trdeg(R[x]𝐺). As in the proof of Theorem 4.3.29, since R[x]𝐺 is a finitely generated

R[𝑓1, . . . , 𝑓𝑟]-module, every ℎ ∈ R[x]𝐺 satisfies a polynomial with coefficients in R[𝑓1, . . . , 𝑓𝑟],

which is an algebraic dependence among {𝑓1, . . . , 𝑓𝑟, ℎ}.
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4.6.5 Transcendence degree for heterogeneity

In this section we prove Proposition 4.3.15. To recall the setup, we have 𝐺̃ acting on 𝑉

with associated variables x̃. We also have 𝐺 = 𝐺̃𝐾 o 𝑆𝐾 acting on 𝑉 = 𝑉 ⊕𝐾 ⊕ Δ𝐾 with

associated variables x. Let us also introduce an intermediate group: 𝐺′ = 𝐺̃𝐾 , acting on 𝑉

(with associated variables x).

Partition the variables x as follows. For 𝑘 = 1, . . . , 𝐾, let x(𝑘) = (𝑥
(𝑘)
1 , . . . , 𝑥

(𝑘)
𝑝 ) be the

variables corresponding to signal 𝑘. Let z = (𝑧1, . . . , 𝑧𝐾−1) be the variables corresponding

to the mixing weights 𝑤1, . . . , 𝑤𝐾−1. Whenever we refer to 𝑧𝐾 , this is just shorthand for

−
∑︀𝐾−1

𝑘=1 𝑧𝑘.

We first prove a simpler version of the result without the action of 𝑆𝐾 .

Lemma 4.6.4. Let 𝑟 = trdeg(R[x̃]𝐺̃) and let 𝑟 = 𝐾𝑟 +𝐾 − 1. Then

trdeg(R[x]𝐺′
) = 𝑟.

Proof. To show ‘≥’ we need to exhibit 𝑟 algebraically independent elements of R[x]𝐺′ . Letting

𝑓1, . . . , 𝑓𝑟 be a transcendence basis for R[x̃]𝐺̃, it suffices to take

𝐼 , {𝑓𝑖(x(𝑘))}1≤𝑖≤𝑟,1≤𝑘≤𝐾 ∪ {𝑧1, . . . , 𝑧𝐾−1}.

To show ‘≤’ we first recall that we can obtain a spanning set for the subspace R[x]𝐺′

𝑑 by

applying the Reynolds operator ℛ (for 𝐺′) to each degree-𝑑 monomial (in the variables x).

Such a monomial takes the form

𝑚(x) = 𝑀(z)
𝐾∏︁
𝑘=1

𝑚𝑘(x
(𝑘))

where 𝑀,𝑚𝑘 are monomials. Applying the Reynolds operator yields

ℛ(𝑚(x)) = E
𝑔1,...,𝑔𝑘∼𝐺̃

𝑀(z)
𝐾∏︁
𝑘=1

𝑚𝑘(𝑔𝑘 · x(𝑘)) = 𝑀(z)
𝐾∏︁
𝑘=1

E
𝑔𝑘∼𝐺̃

𝑚𝑘(𝑔𝑘 · x(𝑘)).
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Note that ℛ(𝑚(x)) is the product of pure invariants, i.e. invariants that only involve vari-

ables from a single one of the blocks x(1), . . . ,x(𝐾), z. It is clear that 𝐼 (from above) is a

maximal set of algebraically independent pure invariants. It is now easy to show using the

Jacobian criterion (Proposition 4.3.18) that if any ℛ(𝑚(x)) is added to 𝐼, it will no longer

be algebraically independent. The result now follows using basic properties of algebraic

independence (Proposition 4.3.22 and Lemma 4.3.23).

Proof of Proposition 4.3.15.

Since R[x]𝐺 ⊆ R[x]𝐺′ , it is clear (in light of the above) that trdeg(R[x]𝐺) ≤ 𝑟. Thus we need

only to show trdeg(R[x]𝐺) ≥ 𝑟 by demonstrating 𝑟 algebraically independent invariants. Let

𝑒1, . . . , 𝑒𝐾 be the elementary symmetric functions in 𝐾 variables. With 𝑓𝑖 as above, we take

the invariants

{𝑒𝑘(𝑓𝑖(x(1)), . . . , 𝑓𝑖(x
(𝐾)))}1≤𝑖≤𝑟,1≤𝑘≤𝐾 ∪ {𝑒2(𝑧1, . . . , 𝑧𝐾), . . . , 𝑒𝐾(𝑧1, . . . , 𝑧𝐾)}.

Note that 𝑒1(𝑧1, . . . , 𝑧𝐾) is not included because it is equal to 0. The fact that 𝑒𝑘(𝑓𝑖(x(1)), . . . , 𝑓𝑖(x
(𝐾)))

are algebraically independent can be seen because {𝑒1, . . . , 𝑒𝐾} is algebraically independent

and {𝑓𝑖(x(𝑘))}𝑖,𝑘 is algebraically independent. We can see that {𝑒𝑘(𝑧1, . . . , 𝑧𝐾)}𝑘≥2 are alge-

braically independent as follows. An algebraic dependence would be a polynomial 𝑃 such

that 𝑃 (𝑒2(𝑧2, . . . , 𝑧𝐾), . . . , 𝑒𝐾(𝑧1, . . . , 𝑧𝐾)) (now treating 𝑧𝐾 as a separate variable) has a root

𝑧𝐾 = −
∑︀𝐾−1

𝑘=1 𝑧𝑘 and thus has 𝑒1(𝑧1, . . . , 𝑧𝐾) as factor. But this contradicts the fact that

any symmetric polynomial has a unique representation in terms of the elementary symmetric

polynomials.

4.6.6 Gröbner bases

In this section we show how to use Gröbner bases to test various algebraic conditions. In

particular, we prove Theorems 4.3.26 and 4.3.28. The ideas from this section are mostly

standard in the theory of Gröbner bases; see e.g. [50] for a reference.

Definition 4.6.5. A monomial order on R[x] is a well-ordering on the setℳ of all (monic)
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monomials, satisfying 𝑀 ≤ 𝑁 ⇔ 𝑀𝑃 ≤ 𝑁𝑃 for all 𝑀,𝑁,𝑃 ∈ ℳ. We will say that

a monomial order favors a variable 𝑥𝑖 if the monomial 𝑥𝑖 is larger (with respect to the

monomial order) than any monomial not involving 𝑥𝑖. We write LM(𝑓) to denote the leading

monomial of a polynomial 𝑓 , i.e. the monomial occurring in 𝑓 that is largest (with respect

to the monomial order); LM(𝑓) does not include the coefficient.

Definition 4.6.6. A Gröbner basis of an ideal 𝐼 ⊆ R[x] is a finite subset 𝐵 ⊆ 𝐼 such that

for every 𝑓 ∈ 𝐼 there exists 𝑏 ∈ 𝐵 such that LM(𝑓) is a multiple of LM(𝑏). We call 𝐵 a

reduced Gröbner basis if all its elements are monic and it has the additional property that

for every pair of distinct 𝑏, 𝑏′ ∈ 𝐵, no monomial occurring in 𝑏 is a multiple of LM(𝑏′).

The following basic facts about Gröbner bases are proved in [50]. A Gröbner basis is indeed

a basis, in that it generates the ideal. Every ideal 𝐼 ⊆ R[x] has a Gröbner basis, and has

a unique reduced Gröbner basis. Buchberger’s algorithm computes the reduced Gröbner

basis of an ideal 𝐼 = ⟨𝑓1, . . . , 𝑓𝑚⟩, given a list of generators 𝑓𝑖. (It is not a polynomial-time

algorithm, however.)

Suppose we are interested in the relations between polynomials 𝑓1, . . . , 𝑓𝑚 ∈ R[x]. Intro-

duce additional variables t = (𝑡1, . . . , 𝑡𝑚) and consider the ideal 𝐼 , ⟨𝑓1(x)− 𝑡1, . . . , 𝑓𝑚(x)−

𝑡𝑚⟩ ⊆ R[x, t]. Given 𝑓1, . . . , 𝑓𝑚 there is an algorithm to compute a Gröbner basis for the

elimination ideal

𝐽 , ⟨𝑓1(x)− 𝑡1, . . . , 𝑓𝑚(x)− 𝑡𝑚⟩ ∩ R[t].

In fact, the algorithm is simply to compute a Gröbner basis for 𝐼 using a particular monomial

order and then keep only the elements that depend only on t (see Chapter 3 of [50]). The

elimination ideal consists precisely of the polynomial relations among 𝑓1, . . . , 𝑓𝑚:

Lemma 4.6.7. For any polynomial 𝑃 ∈ R[t] we have: 𝑃 ∈ 𝐽 if and only if 𝑃 (𝑓1(x), . . . , 𝑓𝑚(x)) ≡

0.

Proof. The direction ‘⇒’ is clear because if we let 𝑡𝑖 = 𝑓𝑖(x) for all 𝑖 then the generators of

𝐼 vanish and so every element of 𝐼 vanishes. To show the converse, it suffices to show that
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for any polynomial 𝑃 ∈ R[t], 𝑃 (𝑓1(x), . . . , 𝑓𝑚(x)) − 𝑃 (𝑡1, . . . , 𝑡𝑚) ∈ 𝐼. This can be shown

inductively using the following key idea:

𝑥1𝑥2 − 𝑡1𝑡2 =
1

2
(𝑥1 − 𝑡1)(𝑥2 + 𝑡2) +

1

2
(𝑥2 − 𝑡2)(𝑥1 + 𝑡1)

and so 𝑥1𝑥2 − 𝑡1𝑡2 ∈ ⟨𝑥1 − 𝑡1, 𝑥2 − 𝑡2⟩.

Generation as an R-algebra. Suppose we want to know whether 𝑓𝑚 ∈ R[𝑓1, . . . , 𝑓𝑚−1].

This is equivalent to asking whether there exists 𝑃 ∈ 𝐽 of the form

𝑃 (t) = 𝑡𝑚 −𝑄(𝑡1, . . . , 𝑡𝑚−1) (4.6)

for some 𝑄 ∈ R[𝑡1, . . . , 𝑡𝑚−1]. Suppose that 𝐽 contains an element 𝑃 of the form (4.6).

Compute a Gröbner basis 𝐵 for 𝐽 with respect to a monomial order that favors 𝑡𝑚. The

leading monomial of 𝑃 is 𝑡𝑚 so by the definition of a Gröbner basis there must be an element

𝑏 ∈ 𝐵 whose leading monomial divides 𝑡𝑚. Since 1 /∈ 𝐽 (by Lemma 4.6.7), the leading

monomial of 𝑏 is exactly 𝑡𝑚 and so 𝑏 takes the form (4.6). Therefore, 𝑓𝑚 ∈ R[𝑓1, . . . , 𝑓𝑚−1]

if and only if 𝐵 contains an element of the form (4.6).

We can now prove Theorem 4.3.28: to test whether R[𝑓1, . . . , 𝑓𝑚] = R[x]𝐺, compute

generators 𝑔1, . . . , 𝑔𝑠 for R[x]𝐺 (see Section 4.6.1) and use the above to test whether each 𝑔𝑖

is in R[𝑓1, . . . , 𝑓𝑚].

Generation as a field. Suppose we want to know whether 𝑓𝑚 ∈ R(𝑓1, . . . , 𝑓𝑚−1). This

is equivalent to asking whether 𝑓𝑚 can be expressed as a rational function of 𝑓1, . . . , 𝑓𝑚−1

(with coefficients in R), which is equivalent (by multiplying through by the denominator) to

asking whether there exists 𝑃 ∈ 𝐽 of the form

𝑃 (t) = 𝑡𝑚𝑄1(𝑡1, . . . , 𝑡𝑚−1)−𝑄2(𝑡1, . . . , 𝑡𝑚−1) with 𝑄1 /∈ 𝐽. (4.7)
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Suppose that 𝐽 contains an element 𝑃 of the form (4.7). Compute a reduced Gröbner basis

𝐵 for 𝐽 with respect to a monomial order that favors 𝑡𝑚. It is a basic property of Gröbner

bases that 𝑃 can be written as

𝑃 (t) =
∑︁
𝑖

𝑝𝑖(t)𝑏𝑖(t)

where 𝑝𝑖 ∈ R[t] and 𝑏𝑖 ∈ 𝐵 with LM(𝑝𝑖) ≤ LM(𝑃 ) and LM(𝑏𝑖) ≤ LM(𝑃 ). If no 𝑏𝑖 involves

the variable 𝑡𝑚 then 𝑄1 ∈ 𝐽 , a contradiction. Therefore some 𝑏𝑗 must have degree 1 in 𝑡𝑚.

Since 𝐵 is a reduced Gröbner basis it cannot contain any element of the form (4.7) with

𝑄1 ∈ 𝐽 . This completes the proof that 𝑓𝑚 ∈ R(𝑓1, . . . , 𝑓𝑚−1) if and only if 𝐵 contains an

element of the form (4.7).

Degree of field extension. Consider the setup from Theorem 4.3.24: given a finite set

𝑈 = {𝑓1, . . . , 𝑓𝑚} ⊆ R[x]𝐺, we want to compute [𝐹𝐺 : 𝐹𝑈 ] where 𝐹𝑈 = R(𝑈) and 𝐹𝐺 is the

field of fractions of R[x]𝐺. We can assume [𝐹𝐺 : 𝐹𝑈 ] is finite (since we can efficiently test

whether this is the case using Proposition 4.6.2 and the methods of Section 4.3.2). Let 𝑑

be such that R[x]𝐺≤𝑑 generates 𝐹𝐺 as a field (over R). (It is sufficient for R[x]𝐺≤𝑑 to generate

R[x]𝐺 as an R-algebra; such a 𝑑 can be computed via Section 4.6.1. If 𝐺 is finite then 𝑑 = |𝐺|

is sufficient; see Section 4.3.4.) A generic element of R[x]𝐺≤𝑑 will generate the field extension:

Lemma 4.6.8. For all but a measure-zero set of 𝛼 ∈ R[x]𝐺≤𝑑, 𝐹𝐺 = 𝐹𝑈(𝛼).

This fact is related to the primitive element theorem. We include a proof for completeness.

Proof. The field extension 𝐹𝐺/𝐹𝑈 is finite and separable (since we’re in characteristic zero),

so by the fundamental theorem of Galois theory, there are only finitely many intermediate

fields. (Take the normal closure of 𝐹𝐺/𝐹𝑈 ; then the intermediate fields are in bijection with

a finite group, and only some of them lie inside 𝐹𝐺.) Let ℒ be the collection of intermediate

fields of 𝐹𝐺/𝐹𝑈 that are proper subfields of 𝐹𝐺. We know R[x]𝐺≤𝑑 is a subspace of 𝐹𝐺 that

generates 𝐹𝐺 and therefore is not contained by any field in ℒ. This means each field 𝐿 ∈ ℒ

intersects R[x]𝐺≤𝑑 at a proper subspace 𝑉𝐿 of R[x]𝐺≤𝑑. The finite union ∪𝐿∈ℒ𝑉𝐿 is a measure-

zero subset of R[x]𝐺≤𝑑, and any 𝛼 outside of it satisfies 𝐹𝐺 = 𝐹𝑈(𝛼).
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Let 𝛼 be a generic element of R[x]𝐺≤𝑑. In light of the above, [𝐹𝐺 : 𝐹𝑈 ] is equal to the

smallest positive integer 𝐷 for which there exists a relation

𝑄𝐷(𝑓1, . . . , 𝑓𝑚)𝛼
𝐷 + · · ·+𝑄1(𝑓1, . . . , 𝑓𝑚)𝛼 +𝑄0(𝑓1, . . . , 𝑓𝑚) ≡ 0

for polynomials 𝑄𝑖 with 𝑄𝐷(𝑓1, . . . , 𝑓𝑚) ̸≡ 0. This can be tested similarly to field generation.

Compute a reduced Gröbner basis 𝐵 for the elimination ideal 𝐽 ⊆ R[𝑡1, . . . , 𝑡𝑚, 𝜏 ] consisting

of the relations among 𝑓1, . . . , 𝑓𝑚, 𝛼; use a monomial order that favors 𝜏 . Then [𝐹𝐺 : 𝐹𝑈 ] is

equal to the smallest positive integer 𝐷 for which 𝐵 contains an element of degree 𝐷 in 𝜏

(or ∞ if 𝐵 contains no element that involves 𝜏). This proves Theorem 4.3.26.

Remark 4.6.9. An alternative to using Gröbner bases for the above tasks is to solve a (very

large) linear system in order to find the minimal relation among a set of polynomials. There

are bounds on the maximum possible degree of such a relation (if one exists) [87].

4.7 Proofs for 𝑆2 registration

4.7.1 Formula for Hilbert series of R[x]𝐺

We can derive the Hilbert series of R[x]𝐺 for 𝑆2 registration using the methods in Section 4.6

of [55].

Proposition 4.7.1. Consider 𝑆2 registration with frequencies ℱ . For |𝑡| < 1, the Hilbert

series of R[x]𝐺 is given by

𝐻(𝑡) =
∑︁
𝑧∈𝒫

Res(𝑓, 𝑧)

where

𝑓(𝑧) =
1− 1

2
(𝑧 + 1/𝑧)

𝑧
∏︀

ℓ∈ℱ
∏︀ℓ

𝑚=−ℓ(1− 𝑡𝑧𝑚)
=

−𝑧𝑁−2(1− 𝑧)2

2
∏︀

ℓ∈ℱ

[︁∏︀ℓ
𝑚=1(𝑧

𝑚 − 𝑡)
∏︀ℓ

𝑚=0(1− 𝑡𝑧𝑚)
]︁

with 𝑁 = 1
2

∑︀
ℓ∈ℱ ℓ(ℓ + 1). Here Res(𝑓, 𝑧) denotes the residue (from complex analysis)
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of the function 𝑓 at the point 𝑧, and 𝒫 is the set of poles of 𝑓(𝑧) inside the unit circle

(in C). Namely, 𝒫 contains 𝑡1/𝑚𝑒2𝜋𝑖𝑘/𝑚 for all 𝑚 ∈ {1, 2, . . . ,maxℓ∈ℱ ℓ} and for all 𝑘 ∈

{0, 1, . . . ,𝑚− 1}. If 𝑁 ≤ 1, 𝒫 also contains 0.

Proof. Recall Molien’s formula (Proposition 4.3.13):

𝐻(𝑡) = E
𝑔∼Haar(𝐺)

det(𝐼 − 𝑡 𝜌(𝑔))−1.

Note that det(𝐼−𝑡 𝜌(𝑔)) depends only on the conjugacy class of 𝑔. In SO(3), two elements are

conjugate if and only if they rotate by the same angle 𝜑. When 𝑔 ∼ Haar(SO(3)), the angle

𝜑 = 𝜑(𝑔) is distributed with density function 1
𝜋
(1− cos𝜑) on [0, 𝜋] (see e.g. [135]). If 𝑔 has

angle 𝜑, the matrix 𝜌ℓ(𝑔) by which it acts on the irreducible representation 𝑉ℓ has eigenvalues

𝑒−𝑖ℓ𝜑, 𝑒−𝑖(ℓ−1)𝜑, . . . , 𝑒𝑖ℓ𝜑 (see e.g. [151]). The matrix 𝜌(𝑔) by which 𝑔 acts on 𝑉 = ⊕ℓ∈ℱ𝑉ℓ is

block diagonal with blocks 𝜌ℓ(𝑔). Using the above we write an expression for the Hilbert

series:

𝐻(𝑡) =
1

𝜋

∫︁ 𝜋

0

1− cos𝜑∏︀
ℓ∈ℱ
∏︀ℓ

𝑚=−ℓ(1− 𝑡𝑒𝑖𝑚𝜑)
d𝜑 =

1

2𝜋

∫︁ 2𝜋

0

1− 1
2
(𝑒𝑖𝜑 + 𝑒−𝑖𝜑)∏︀

ℓ∈ℱ
∏︀ℓ

𝑚=−ℓ(1− 𝑡𝑒𝑖𝑚𝜑)
d𝜑.

Now write this as a complex contour integral around the unit circle in C and apply the

residue theorem from complex analysis to arrive at the result.

4.7.2 Formula for dimension of R[x]𝐺𝑑

The dimension of R[x]𝐺 can be extracted as the coefficient of 𝑡𝑑 in the Hilbert series from

the previous section, but here we give a different formula based on character theory from

representation theory. The character of a representation 𝜌 : 𝐺→ GL(𝑉 ) (where 𝑉 is a finite-

dimensional real vector space) is the function 𝜒𝑉 : 𝐺→ R defined by 𝜒𝑉 (𝑔) = tr(𝜌(𝑔)).

In our case, using the eigenvalues of 𝜌ℓ(𝑔) from the previous section, we have

𝜒𝑉ℓ
(𝑔) = 1 + 2

ℓ∑︁
𝑚=1

cos(𝑚𝜑(𝑔))
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where 𝜑(𝑔) is the angle of rotation of 𝑔. For 𝑉 = ⊕ℓ∈ℱ𝑉ℓ we then have 𝜒𝑉 (𝑔) =
∑︀

ℓ∈ℱ 𝜒𝑉ℓ
(𝑔).

As a representation of 𝐺 = SO(3), R[x]𝑑 is (isomorphic to) the 𝑑th symmetric power

of 𝑉 , denoted 𝑆𝑑(𝑉 ). (This is using the fact that a real representation is isomorphic to its

dual.) There is a recursive formula for the character of 𝑆𝑑(𝑉 ):

𝜒𝑆𝑑(𝑉 )(𝑔) =
1

𝑑

𝑑∑︁
𝑖=1

𝜒𝑉 (𝑔
𝑖)𝜒𝑆𝑑−𝑖(𝑉 )(𝑔).

This comes from the Newton–Girard formula for expressing complete homogeneous symmet-

ric polynomials in terms of power sum polynomials.

The representation R[x]𝑑 = 𝑆𝑑(𝑉 ) decomposes as the direct sum of irreducible represen-

tations 𝑉ℓ. The subspace of R[x]𝑑 consisting of all copies of the trivial representation 𝑉0 (the

1-dimensional representation on which every group element acts as the identity) is precisely

R[x]𝐺𝑑 . Thus, dim(R[x]𝐺𝑑 ) is the number of copies of the trivial representation in the decom-

position of R[x]𝑑. This can be computed using characters: dim(R[x]𝐺𝑑 ) = ⟨𝜒𝑆𝑑(𝑉 ), 𝜒𝑉0⟩ =

⟨𝜒𝑆𝑑(𝑉 ), 1⟩ where ⟨𝑓1, 𝑓2⟩ , E𝑔∼Haar(𝐺)[𝑓1(𝑔)𝑓2(𝑔)]. Since characters are class functions (i.e.

they are constant on conjugacy classes), we can compute this inner product by integrating

over the angle 𝜑 (as in the previous section). This yields the formula stated in Proposi-

tion 4.4.7.
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Chapter 5

Orbit recovery: computational limits

This chapter is based on joint work with Ankur Moitra.

5.1 Introduction

We refer the reader to Chapter 4 for the definitions and basic notions for the orbit recovery

problem. While Chapter 4 studied the statistical limits of orbit recovery, here we discuss

the problem of giving an efficient (polynomial time) and provably-correct algorithm for orbit

recovery. In Section 5.2 we survey prior work, which has focused on the special case of multi-

reference alignment (MRA). This work solves MRA by casting it as a tensor decomposition

problem. In Section 5.3 we give heuristic predictions for the conditions under which general

orbit recovery is solvable efficiently. These heuristics are based on analogy to the tensor

completion problem. Finally, in Section 5.4 we prove a result regarding efficient solvability

of heterogeneous MRA in the case where the signals are random. In particular, we show that

recovery from the third moment tensor is efficiently possible so long as 𝐾 ≤ √𝑝/polylog(𝑝)

(where 𝐾 is the number of heterogeneous components and 𝑝 is the dimension). Up to log

factors, this matches the conjectured threshold of [35].
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5.2 Prior work: MRA

Prior work [118] has shown how to provably and efficiently solve the multi-reference alignment

(MRA) problem. In this section we restrict to the setting of MRA, although many of the

ideas are applicable to other finite groups.

Recall that in the MRA problem we consider the cyclic group 𝐺 = Z/𝑝 acting on R𝑝 via

cyclic shifts. As discussed in Chapter 4, with 𝑂(𝜎2𝑑) samples we can accurately estimate the

𝑑th moment tensor

𝑇𝑑 = E
𝑔
(𝑔 · 𝜃)⊗𝑑 =

1

𝑝

∑︁
𝑔∈𝐺

(𝑔 · 𝜃)⊗𝑑.

We will attempt reconstruction from just a single 𝑇𝑑 (usually 𝑑 = 3). (It appears that there

is not much to be gained by combining moments of different orders, since e.g. the third

moment contains a lot more information than the second moment.)

The above is a special case of the tensor decomposition problem, which can be stated

as follows. We are given (exactly or approximately) a low-rank tensor
∑︀𝑚

𝑖=1 𝑎
⊗𝑑
𝑖 for some

vectors 𝑎1, . . . , 𝑎𝑚 ∈ R𝑝, and the goal is to recover the components {𝑎𝑖}. (If 𝑑 is even, we

can only hope to recover the 𝑎𝑖 up to sign, but this sign ambiguity can be resolved using

lower-order moments.)

If the components {𝑎𝑖} are linearly independent then Jennrich’s algorithm (see e.g. [107])

can decompose the third moment, i.e. take
∑︀

𝑖 𝑎
⊗3
𝑖 as input and output the list of {𝑎𝑖}. This

algorithm is also robust to a certain amount of noise in the input [73]. Building on these

results, [118] give an algorithm for MRA (with a generic signal) that decomposes the third

moment tensor 𝑇3, recovering the list of all shifts of the signal: {𝑔 · 𝜃}𝑔∈𝐺. Note, however,

that this method is limited to finite groups with |𝐺| ≤ 𝑝, because otherwise the components

{𝑔 · 𝜃}𝑔∈𝐺 cannot be linearly independent (since there are too many of them).

Recall now the heterogeneous MRA problem in which the samples come from a mixture

of 𝐾 different signals 𝜃1, . . . , 𝜃𝐾 . For simplicity suppose the mixing weights are all equal. In
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this case, the 𝑑th moment tensor takes the form

𝑇𝑑 =
1

𝐾𝑝

𝐾∑︁
𝑘=1

∑︁
𝑔∈𝐺

(𝑔 · 𝜃𝑘)⊗𝑑.

It is shown in [118] that provided 𝐾 ≤ 𝑝/2, Jennrich’s algorithm can be used to decompose

the fifth order moment tensor and recover the list of all shifts of all signals: {𝑔 · 𝜃𝑘}𝑘∈[𝐾],𝑔∈𝐺.

However, since this method uses the fifth moment, its sample complexity is 𝑂(𝜎10). Ideally

we would use only the third moment, requiring only 𝑂(𝜎6) samples.

We saw in Chapter 4 that generic list recovery for heterogeneous MRA is statistically

possible with 𝑂(𝜎6) samples (i.e. using only the third moment and lower) provided roughly

𝐾 ≤ 𝑝/6. However, based on numerical simulations with a non-convex solver, it is con-

jectured by [35] that (in the case where the signals are i.i.d. Gaussian) efficient recovery

requires roughly 𝐾 ≤ √𝑝. In Section 5.3 we will see an alternative method for arriving at

this conjecture.

In Section 5.4 we prove one side of the above conjecture (up to log factors). Specifically, we

show that when the signals are i.i.d. Gaussian, heterogeneous MRA can be solved efficiently

from the third moment so long as 𝐾 ≤ 𝑝/polylog(𝑝). This result builds on prior work on

random overcomplete 3-tensor decomposition [70, 78, 100], i.e. the problem of recovering

{𝑎𝑖} from
∑︀𝑚

𝑖=1 𝑎
⊗3
𝑖 in the case where the 𝑎𝑖 are drawn independently from 𝒩 (0, 𝐼/𝑝). It

is known that random overcomplete 3-tensor decomposition can be solved in polynomial

time (using the sum-of-squares hierarchy) when roughly 𝑚 ≤ 𝑝3/2 [100]. Note that the

MRA third moment has 𝑚 = 𝐾𝑝 components (all 𝑝 shifts of all 𝐾 signals) and so the

condition 𝑚 ≤ 𝑝3/2 is equivalent to the conjectured threshold 𝐾 ≤ √𝑝. Intuitively, our

result in Section 5.4 shows that when the components {𝑎𝑖} of a 3-tensor are taken to be all

𝑝 shifts of 𝐾 different random signals, these are “random enough” to behave as if all the

𝑎𝑖’s were independently drawn from 𝒩 (0, 𝐼/𝑝). Formally, this amounts to showing certain

concentration results for matrices involving shifts of random signals (specifically, equation

(5.4) and Proposition 5.4.10).
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5.3 Conjectures based on tensor completion

In this section we point out an analogy between general orbit recovery problems and ten-

sor completion. Due to known results on tensor completion, this allows us to predict the

computational limits of orbit recovery in high generality.

Consider a generalized orbit recovery problem, allowing for both projection and hetero-

geneity:

𝑦𝑖 = Π(𝑔 · 𝜃𝑘𝑖) + 𝜉𝑖

with noise 𝜉𝑖 ∼ 𝒩 (0, 𝜎2𝐼), signals 𝜃1, . . . , 𝜃𝐾 ∈ R𝑝, and 𝑘𝑖 ∈ [𝐾] chosen randomly according

to mixing weights 𝑤1, . . . , 𝑤𝐾 . We will think of 𝑝 being large and will ask how 𝐾 should

scale in order for polynomial-time recovery to be possible. We will restrict our attention to

the common case where we hope to perform recovery given (an accurate estimate of) the

third moment tensor

𝑇3 =
𝐾∑︁
𝑘=1

𝑤𝑘 E
𝑔
(Π(𝑔 · 𝜃𝑘))⊗3.

We can rewrite this as

𝑇3 = Π⊗3 E
𝑔
[𝑔⊗3]

(︃
𝐾∑︁
𝑘=1

𝑤𝑘𝜃
⊗3
𝑘

)︃

where we are thinking of Π as a 𝑞 × 𝑝 matrix (so Π⊗3 is 𝑞3 × 𝑝3), 𝑔 as a 𝑝 × 𝑝 matrix (so

E𝑔[𝑔
⊗3] is 𝑝3× 𝑝3),

∑︀𝐾
𝑘=1𝑤𝑘𝜃

⊗3
𝑘 as a 𝑝3× 1 column vector, and 𝑇3 as a 𝑞3× 1 column vector.

In other words, we have a rank-𝐾 tensor
∑︀𝐾

𝑘=1 𝑤𝑘𝜃
⊗3
𝑘 and we observe linear measurements of

it. The number of “independent” measurements we get is the number of algebraically inde-

pendent degree-3 invariant polynomials that we have access to: trdeg(𝑈𝑇
3 ) (in the notation

of Definition 4.2.6).

The above setup is reminiscent of the tensor completion problem in which there is a

ground-truth 𝑝 × 𝑝 × 𝑝 tensor of rank 𝑟, and we observe 𝑚 randomly-chosen entries. The

goal is to recover the remaining hidden entries (using the fact that the tensor is guaranteed

to be low-rank). It is known that tensor completion is possible in polynomial time when

𝑚 ≥ 𝑂̃(𝑟𝑝3/2) (where 𝑂̃ hides log factors) [21, 124]. (Furthermore, there are matching
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sum-of-squares lower bounds suggesting that this is optimal [21].)

There are a few differences between orbit recovery and tensor completion. First, in

orbit recovery we observe linear measurements that are not simply individual elements (so

this is actually an instance of tensor sensing). Furthermore, the observed entries in tensor

completion are chosen at random, whereas the linear measurements in orbit recovery are

fixed. However, if we assume that the orbit recovery signal(s) are sufficiently random, we

might expect that the linear measurements act as if they were random. The analogy between

orbit recovery and tensor completion thus motivates the following informal conjecture.

Conjecture 5.3.1. Consider the generalized orbit recovery problem (with heterogeneity and

projection) with random signals. List recovery from the third moment is possible in polyno-

mial time provided that trdeg(𝑈𝑇
3 ) ≥ 𝑂̃(𝐾𝑝3/2).

For comparison, recall from Chapter 4 that statistically, recovery from the third moment

requires roughly trdeg(𝑈𝑇
3 ) ≥ 𝐾𝑝 (assuming 𝑝≫ dim(𝐺)). Note that list recovery is neces-

sary in some cases; for instance, in cryo-EM we can only hope to recover the molecule up to

chirality.

For example, in heterogeneous MRA we have trdeg(𝑈𝑇
3 ) = Θ(𝑝2), leading us to predict

the computational threshold 𝐾 ≤ Ω̃(
√
𝑝). This matches the conjecture of [35] discussed

above. For cryo-EM with 𝑆 shells and 𝐹 frequencies we have trdeg(𝑈𝑇
3 ) ∼ 𝑆3𝐹 2/4 and

𝑝 ∼ 𝑆𝐹 2 (see Appendix C.1.6) and so we expect efficient recovery when 𝐾 ≤ Ω̃(𝑆3/2/𝐹 ). In

particular, homogeneous (𝐾 = 1) cryo-EM should require 𝑆3/2 ≫ 𝐹 .

5.4 Heterogeneous MRA

In this section we prove the main result of this chapter: heterogeneous MRA with ran-

dom signals can be solved in polynomial time provided 𝐾 ≤ Ω̃(
√
𝑝). The algorithm uses

the sum-of-squares hierarchy and builds on previous sum-of-squares algorithms for random

overcomplete tensor decomposition [70, 100].
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5.4.1 Preliminaries

Notation

We will consider the group 𝐺 = Z/𝑝 acting on R𝑝 via cyclic shifts.

For finite sets 𝑋, 𝑌 ⊆ R𝑝, define the Hausdorff distance

𝑑𝐻(𝑋, 𝑌 ) = max{max
𝑥∈𝑋

min
𝑦∈𝑌
‖𝑥− 𝑦‖,max

𝑦∈𝑌
min
𝑥∈𝑋
‖𝑥− 𝑦‖}.

This will be used to measure the error of the algorithm’s output.

For a matrix 𝐴, ‖𝐴‖ denotes the spectral norm. For a 𝑑1 × 𝑑2 × 𝑑3 tensor 𝐸, we write

‖𝐸‖{1},{2,3} to denote the spectral norm of the matrix obtained by flattening 𝐸 to a 𝑑1×(𝑑2𝑑3)

matrix.

If 𝒜 and ℬ are systems of polynomial inequalities, we write 𝒜 ⊢ ℬ to denote that ℬ can

be derived from 𝒜 via a constant-degree sum-of-squares proof (see e.g. [100]).

In our asymptotic notation, 𝑜(1) refers to the limit 𝑝→∞ and 𝑂̃ hides factors of log(𝑝).

We say that an event occurs with high probability if it has probability 1− 𝑜(1) (as 𝑝→∞).

We say that an even occurs with overwhelming probability if it has probability 1− 𝑝−𝜔(1). If

we have a polynomial (in 𝑝) number of events that each occur with overwhelming probability,

their intersection occurs with high probability (by the union bound).

Concentration inequalities

Recall the following version of the matrix Chernoff bound (see e.g. [146]).

Theorem 5.4.1. Let {𝐵𝑘} be a finite sequence of fixed matrices of dimension 𝑑1 × 𝑑2, and

let {𝜉𝑖} be a sequence of either i.i.d. Rademacher (uniform ±1) or i.i.d. standard normal

random variables. Define the variance parameter

𝜎2 = max{‖
∑︁
𝑘

𝐵𝑘𝐵
⊤
𝑘 ‖, ‖

∑︁
𝑘

𝐵⊤
𝑘 𝐵𝑘‖}.
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Then for all 𝑡 > 0,

Pr

{︃⃦⃦⃦⃦
⃦∑︁

𝑘

𝜉𝑘𝐵𝑘

⃦⃦⃦⃦
⃦ ≥ 𝑡

}︃
≤ (𝑑1 + 𝑑2) · exp(−𝑡2/2𝜎2).

We will often use the basic variance bound

𝜎2 ≤
∑︁
𝑘

‖𝐵𝑘‖2. (5.1)

We will need the following decoupling result of [52].

Theorem 5.4.2 ([52] Theorem 1). Let {𝑋𝑖} be a sequence of independent random variables

in a measurable space (𝒮, 𝑆) and let {𝑋(𝑗)
𝑖 }, 𝑗 = 1, . . . , 𝑘 be 𝑘 independent copies of {𝑋𝑖}.

Let 𝑓𝑖1,...,𝑖𝑘 be a family of functions of 𝑘 variables taking (𝑆 × · · · × 𝑆) into a Banach space

(𝐵, ‖ · ‖). Then for all 𝑛 ≥ 𝑘 ≥ 2, 𝑡 > 0, there exist numerical constants 𝐶𝑘 depending only

on 𝑘 so that

Pr

(︃
‖

∑︁
1≤𝑖1 ̸=···̸=𝑖𝑘≤𝑛

𝑓𝑖1,...,𝑖𝑘(𝑋
(1)
𝑖1

, 𝑋
(1)
𝑖2

, . . . , 𝑋
(1)
𝑖𝑘

)‖ ≥ 𝑡

)︃

≤ 𝐶𝑘 Pr

(︃
‖

∑︁
1≤𝑖1 ̸=···̸=𝑖𝑘≤𝑛

𝑓𝑖1,...,𝑖𝑘(𝑋
(1)
𝑖1

, 𝑋
(2)
𝑖2

, . . . , 𝑋
(𝑘)
𝑖𝑘

)‖ ≥ 𝑡/𝐶𝑘

)︃

where the notation 1 ≤ 𝑖1 ̸= · · · ≠ 𝑖𝑘 ≤ 𝑛 denotes that 𝑖1, . . . , 𝑖𝑘 are distinct values in

{1, 2, . . . , 𝑛}.

The following concentration bound is a consequence of hypercontractivity (see e.g. The-

orem 1.10 of [138]).

Theorem 5.4.3. Consider a degree-𝑞 polynomial 𝑓(𝑌 ) = 𝑓(𝑌1, . . . , 𝑌𝑛) of independent cen-

tered Gaussian or Rademacher random variables 𝑌1, . . . , 𝑌𝑛. Let 𝜎2 be the variance of 𝑓(𝑌 ).

There exists an absolute constant 𝑅 > 0 such that

Pr [|𝑓(𝑌 )− E[𝑓(𝑌 )]| ≥ 𝑡] ≤ 𝑒2 · 𝑒−
(︁

𝑡2

𝑅𝜎2

)︁1/𝑞

.
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Fourier basis

It will help to pass to the Fourier basis of C𝑝. The basis vectors are {̂︀𝑒𝑘} for 𝑘 ∈ Z/𝑝 with

(̂︀𝑒𝑘)𝑗 = 1
√
𝑝
exp(−2𝜋i𝑗𝑘/𝑝)

where i is the imaginary unit. This basis is convenient because 𝑔 ∈ Z/𝑝 acts diagonally:

𝑔 · ̂︀𝑒𝑘 = 𝑔𝑘̂︀𝑒𝑘
where

𝑔𝑘 , exp(2𝜋i𝑔𝑘/𝑝).

In the standard real basis, we have 𝜃 ∼ 𝒩 (0, 𝐼/𝑝). In the Fourier basis, this corresponds to

𝜃 =
∑︀

𝑘
̂︀𝜃𝑘̂︀𝑒𝑘 with ̂︀𝜃0 ∼ 𝒩 (0, 1/𝑝), ̂︀𝜃𝑘 ∼ 𝒩 (0, 1/2𝑝) + i𝒩 (0, 1/2𝑝), all independent except

for the symmetry ̂︀𝜃−𝑘 = ̂︀𝜃𝑘 (complex conjugate). If 𝑝 is even, there is an additional special

case: ̂︀𝜃𝑝/2 ∼ 𝒩 (0, 1/𝑝).

5.4.2 Basic facts

Here we give a few basic facts about randomly-chosen MRA vectors that we will use through-

out. We consider vectors 𝜃1, . . . , 𝜃𝐾 ∈ R𝑝 drawn independently from 𝒩 (0, 𝐼/𝑝), with 𝐾 ≤
√
𝑝. Let 𝑚 = 𝐾𝑝 and let {𝑎1, . . . , 𝑎𝑚} = {𝑔 · 𝜃𝑘}𝑘∈[𝐾],𝑔∈Z/𝑝. First we show “incoherence” of

{𝑎𝑖}.

Lemma 5.4.4. Let 𝑎1, . . . , 𝑎𝑚 be drawn randomly as above. For each 𝑖,

⃒⃒
‖𝑎𝑖‖2 − 1

⃒⃒
≤ 𝑂̃(1/

√
𝑝)

with overwhelming probability. For each pair 𝑖 ̸= 𝑗,

|⟨𝑎𝑖, 𝑎𝑗⟩| ≤ 𝑂̃(1/
√
𝑝)
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with overwhelming probability.

Proof. The first statement follows from Bernstein’s inequality for subexponential random

variables (see e.g. [127]). When 𝑎𝑖 and 𝑎𝑗 are not shifts of the same signal 𝜃𝑘, the second

statement follows from the fact that if 𝑎𝑖 is fixed then over the randomness of 𝑎𝑗 we have

⟨𝑎𝑖, 𝑎𝑗⟩ ∼ 𝒩 (0, ‖𝑎𝑖‖2/𝑝). To bound |⟨𝑎𝑖, 𝑎𝑗⟩| when 𝑎𝑖 and 𝑎𝑗 are two shifts of the same signal

𝜃𝑘, apply the decoupling theorem (Theorem 5.4.2) to reduce to the case where 𝑎𝑖, 𝑎𝑗 are

drawn independently from 𝒩 (0, 𝐼/𝑝).

Lemma 5.4.5. Let 𝑎1, . . . , 𝑎𝑚 be drawn randomly as above and let 𝐴 be the 𝑝 ×𝑚 matrix

with columns {𝑎𝑖}. With high probability, ‖𝐴‖ ≤ 𝑂̃(
√
𝐾).

Proof. Write 𝐴 =
∑︀𝐾

𝑘=1

∑︀𝑝
𝑖=1 𝜃

𝑘
𝑖 𝐴

𝑘𝑖 for the appropriate choice of fixed matrices 𝐴𝑘𝑖. Note

that ‖𝐴𝑘𝑖‖ = 1 since 𝐴𝑘𝑖 has a single 1 per row (and all other entries zero). The result now

follows from the matrix Chernoff bound (Theorem 5.4.1) using the basic variance bound

(5.1).

5.4.3 Main result

The following is our main result.

Theorem 5.4.6. Let 𝐾 ≤ √𝑝 and let 𝜃1, . . . , 𝜃𝐾 be vectors in R𝑝 drawn independently from

𝒩 (0, 𝐼/𝑝). Let Θ = {𝑔 · 𝜃𝑘}𝑘∈[𝐾],𝑔∈Z/𝑝. There exists a polynomial-time algorithm that takes

as input 𝐾 and 𝜀 > 0 (with 𝜀 smaller than some constant) along with the 3-tensor

𝑇 =
𝐾∑︁
𝑘=1

∑︁
𝑔∈Z/𝑝

(𝑔 · 𝜃𝑘)⊗3 + 𝐸 with ‖𝐸‖{1},{2,3} ≤ 𝜀 (5.2)

and outputs ̂︀Θ = {̂︀𝜃1, . . . , ̂︀𝜃𝐾𝑝} such that 𝑑𝐻(̂︀Θ,Θ) ≤ 𝑂̃((𝐾/
√
𝑝)1/4) + 𝑂(𝜀1/4) with high

probability over the random choice of Θ.

Remark 5.4.7. The connection between 𝜀 and the number of MRA samples 𝑛 can be derived

from [15] (the full version of Chapter 4) as follows. By Proposition 7.6 in [15], there is an
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estimator that, with probability 1− 𝛿, outputs a tensor 𝑇 such that every entry of the error

𝐸 is 𝑂(𝜎3
√︀

log(𝑝/𝛿)/𝑛). Using the Frobenius norm bound ‖𝐸‖{1},{2,3} ≤ ‖𝐸‖𝐹 we see that

‖𝐸‖{1},{2,3} ≤ 𝜀 is achievable with 𝑛 = 𝑂(𝜎6𝑝3 log(𝑝/𝛿)/𝜀2).

We will use the tensor decomposition framework of [100], in particular their Theorem 5.2

which we restate here.

Theorem 5.4.8 ([100] Theorem 5.2). For every ℓ ∈ N, there exists an 𝑛𝑂(ℓ)-time algorithm

with the following property: Let 𝛾 > 0 be smaller than some constant. Let 𝑝, 𝑝′ ∈ N be

numbers. Let 𝑃 : R𝑝 → R𝑝′ be a polynomial with deg𝑃 ≤ ℓ. Let {𝑎1, . . . , 𝑎𝑚} ⊆ R𝑝

be a set of vectors such that 𝑏1 = 𝑃 (𝑎1), . . . , 𝑏𝑚 = 𝑃 (𝑎𝑚) ∈ R𝑝′ all have norm at least

1 − 𝛾 and ‖
∑︀𝑚

𝑖=1 𝑏𝑖𝑏
⊤
𝑖 ‖ ≤ 1 + 𝛾. Let 𝒜 be a system of polynomial inequalities in variables

𝑢 = (𝑢1, . . . , 𝑢𝑝) such that the vectors 𝑎1, . . . , 𝑎𝑚 satisfy 𝒜 and

𝒜 ⊢

{︃
𝑚∑︁
𝑖=1

⟨𝑏𝑖, 𝑃 (𝑢)⟩4 ≥ (1− 𝛾)‖𝑃 (𝑢)‖4
}︃
. (5.3)

Then, the algorithm on input 𝒜 and 𝑃 outputs a set of unit vectors {𝑏′1, . . . , 𝑏′𝑚} ⊆ R𝑝′ such

that

𝑑𝐻
(︀
{𝑏⊗2

1 , . . . , 𝑏⊗2
𝑚 }, {(𝑏′1)⊗2, . . . , (𝑏′𝑚)

⊗2}
)︀
≤ 𝑂(𝛾1/2).

In our to apply the above theorem to our setting, we need to check the following condi-

tions; this is the analogue of Proposition 7.1 in [100].

Proposition 5.4.9. Let 𝜃1, . . . , 𝜃𝐾 be drawn randomly as in Theorem 5.4.6 with 𝐾 ≤ √𝑝.

Let 𝑚 = 𝐾𝑝 and let {𝑎1, . . . , 𝑎𝑚} = {𝑔 · 𝜃𝑘}𝑘∈[𝐾],𝑔∈Z/𝑝. Let 𝑇 and 𝜀 be as in (5.2). Let

𝒜 = {⟨𝑇, 𝑢⊗3⟩ ≥ 1 − 𝜂, ‖𝑢‖2 = 1} for a particular 𝜂 = 𝜀 + 𝑂̃(𝐾/
√
𝑝). Let 𝑃 : R𝑝 → R𝑝2

be given by 𝑃 (𝑎) = 𝑎⊗2 − ‖𝑎‖2𝑝−1
∑︀𝑝

𝑖=1 𝑒
⊗2
𝑖 . For 𝑖 = 1, . . . ,𝑚, let 𝑏𝑖 = 𝑃 (𝑎𝑖). Then with

probability 1− 𝑜(1), ⃦⃦⃦⃦
⃦

𝑚∑︁
𝑖=1

𝑏𝑖𝑏
⊤
𝑖

⃦⃦⃦⃦
⃦ ≤ 1 + 𝑂̃(𝐾/

√
𝑝) (5.4)

and

𝒜 ⊢
𝑚∑︁
𝑖=1

⟨𝑏𝑖, 𝑃 (𝑢)⟩4 ≥ (1−𝑂(𝜀)− 𝑂̃(𝐾/
√
𝑝))‖𝑃 (𝑢)‖4. (5.5)
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Note that 𝑃 can be thought of as projecting a (vectorized) 𝑝×𝑝 matrix onto the subspace

of trace-zero matrices. This makes 𝑏𝑖 a mean-zero vector, without which (5.4) would not

hold. The proof of Proposition 5.4.9 will span Sections 5.4.4 and 5.4.5. Let us now see how

Proposition 5.4.9 implies Theorem 5.4.6.

Proof of Theorem 5.4.6. Let 𝛾 > 0, to be chosen later. Define 𝒜 and 𝑃 as in Proposi-

tion 5.4.9. We need to verify that the conditions of Theorem 5.4.8 hold with high proba-

bility. Using Lemma 5.4.4, the norm bound ‖𝑏𝑖‖ ≥ 1 − 𝛾 holds for all 𝑖 provided 𝛾 exceeds

𝑂̃(1/
√
𝑝). By Proposition 5.4.9, the spectral bound ‖

∑︀𝑚
𝑖=1 𝑏𝑖𝑏

⊤
𝑖 ‖ ≤ 1 + 𝛾 holds provided 𝛾

exceeds 𝑂̃(𝐾/
√
𝑝). To check that 𝑎1, . . . , 𝑎𝑚 satisfy 𝒜, write

⟨𝑇, 𝑎⊗3
𝑖 ⟩ = ‖𝑎𝑖‖6 +

∑︁
𝑗 ̸=𝑖

⟨𝑎𝑖, 𝑎𝑗⟩3 + ⟨𝐸, 𝑎⊗3
𝑖 ⟩

≥ 1− 𝑂̃(1/
√
𝑝)−𝐾𝑝 𝑂̃(1/𝑝3/2)− ‖𝐸‖{1},{2,3}‖𝑎𝑖‖3

≥ 1− 𝑂̃(𝐾/
√
𝑝)− 𝜀(1 + 𝑂̃(1/

√
𝑝))

≥ 1− 𝑂̃(𝐾/
√
𝑝)− 𝜀

where we have used Lemma 5.4.4 and the fact that 𝜀 is smaller than some constant. Thus we

can choose 𝜂 = 𝜀+ 𝑂̃(𝐾/
√
𝑝) such that 𝑎1, . . . , 𝑎𝑚 satisfy 𝒜. The sum-of-squares proof (5.3)

follows from Proposition 5.4.9 provided 𝛾 exceeds 𝑂(𝜀) + 𝑂̃(𝐾/
√
𝑝). We have now satisfied

the conditions of Theorem 5.4.8 with 𝛾 = 𝑂(𝜀) + 𝑂̃(𝐾/
√
𝑝).

It remains to show how to extract our estimate ̂︀Θ from the outputs 𝑏′𝑖 of Theorem 5.4.8.

The guarantee of Theorem 5.4.8 implies that under some re-ordering of {𝑏′𝑖} we have ‖𝑏𝑖 ±

𝑏′𝑖‖2 ≤ 𝑂(𝛾). Let 𝐵𝑖 and 𝐵′
𝑖 be (respectively) the flattenings of 𝑏𝑖 and 𝑏′𝑖 to 𝑝 × 𝑝 matrices.

Since ‖𝐵𝑖 − 𝑎𝑖𝑎
⊤
𝑖 ‖ ≤ 𝑂̃(1/

√
𝑝) and ‖𝐵𝑖 ±𝐵′

𝑖‖𝐹 ≤ 𝑂(
√
𝛾), we have ‖ ±𝐵′

𝑖 − 𝑎𝑖𝑎
⊤
𝑖 ‖ ≤ 𝑂(

√
𝛾).

This means ⟨𝑎𝑖, 𝑎′𝑖⟩2 ≥ 1− 𝑂̃(
√
𝛾) where 𝑎′𝑖 is the leading (unit-norm) eigenvector of 𝐵′

𝑖. Flip

the sign of 𝑎′𝑖 if necessary so that ⟨𝑇, (𝑎′𝑖)⊗3⟩ > 0. Now output {𝑎′𝑖} as the estimator for {𝑎𝑖},

and we have ‖𝑎𝑖 − 𝑎′𝑖‖ ≤ 𝑂̃(𝛾1/4) as desired.

The following matrix concentration result will be the key ingredient in the sum-of-squares
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proof (5.5). Its proof can be found in Section 5.4.4.

Proposition 5.4.10. With high probability, the matrix

∑︁
𝑖 ̸=𝑗

⟨𝑎𝑖, 𝑎𝑗⟩(𝑎𝑖 ⊗ 𝑎𝑗)(𝑎𝑖 ⊗ 𝑎𝑗)
⊤

(with 𝑖, 𝑗 ranging over [𝑚]) has spectral norm at most 𝑂̃(𝐾/
√
𝑝).

5.4.4 Spectral bounds

Proof of (5.4)

In this section we prove the first part of Proposition 5.4.9, namely (5.4).

Note that
∑︀𝑚

𝑖=1 𝑏𝑖𝑏
⊤
𝑖 = 𝐵𝐵⊤ where the columns of 𝐵 are the 𝑏𝑖’s. We would like to

bound ‖𝐵𝐵⊤‖, but this is difficult because 𝐵𝐵⊤ does not concentrate near its expectation.

Since 𝐵𝐵⊤ and 𝐵⊤𝐵 have the same nonzero singular values, it is sufficient to instead bound

‖𝐵⊤𝐵‖. This turns out to be much easier because the Gram matrix 𝐵⊤𝐵 concentrates near

the identity. Index the rows and columns of 𝐵⊤𝐵 by pairs (𝑘, 𝑔) with 1 ≤ 𝑘 ≤ 𝐾 and

𝑔 ∈ Z/𝑝. We have

(𝐵⊤𝐵)𝑘𝑔,ℓℎ = ⟨𝑃 (𝑔 · 𝜃𝑘), 𝑃 (ℎ · 𝜃ℓ)⟩

= ⟨𝑔 · 𝜃𝑘, ℎ · 𝜃ℓ⟩2 − ‖𝜃𝑘‖2‖𝜃ℓ‖2/𝑝.

Since
⃒⃒
‖𝜃𝑘‖2 − 1

⃒⃒
≤ 𝑂̃(1/

√
𝑝) by Lemma 5.4.4, we can replace the term ‖𝜃𝑘‖2‖𝜃ℓ‖2/𝑝 by

simply 1/𝑝 while incurring an error of size 𝑂̃(𝐾/
√
𝑝) in Frobenius norm (which is an upper

bound on spectral norm). Thus it is sufficient to show ‖𝐶‖ ≤ 1 + 𝑂̃(𝐾/
√
𝑝) where

𝐶𝑘𝑔,ℓℎ = ⟨𝑔 · 𝜃𝑘, ℎ · 𝜃ℓ⟩2 − 1/𝑝.

Fix 𝑘, ℓ and focus on the corresponding 𝑝 × 𝑝 block 𝐶𝑘ℓ of 𝐶: 𝐶𝑘ℓ
𝑔ℎ , 𝐶𝑘𝑔,ℓℎ. Expand in
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the Fourier basis:

𝐶𝑘ℓ
𝑔ℎ =

(︃∑︁
𝑎

𝑔𝑎̂︀𝜃𝑘𝑎ℎ𝑎
̂︀𝜃ℓ𝑎
)︃(︃∑︁

𝑏

𝑔𝑏̂︀𝜃𝑘𝑏ℎ𝑏
̂︀𝜃ℓ𝑏
)︃
− 1/𝑝 =

∑︁
𝑎𝑏

̂︀𝜃𝑘𝑎̂︀𝜃ℓ𝑎̂︀𝜃𝑘𝑏 ̂︀𝜃ℓ𝑏𝑔𝑎ℎ𝑎𝑔𝑏ℎ𝑏 − 1/𝑝

=
∑︁
𝑖

𝛼𝑘ℓ
𝑖 𝑔𝑖ℎ𝑖

where

𝛼𝑘ℓ
𝑖 ,

∑︁
𝑎−𝑏=𝑖

̂︀𝜃𝑘𝑎̂︀𝜃ℓ𝑎̂︀𝜃𝑘𝑏 ̂︀𝜃ℓ𝑏 − 1

𝑝
1𝑖=0

with 𝑎, 𝑏 ranging over Z/𝑝 (and subtraction 𝑎− 𝑏 performed mod 𝑝). Consider the quadratic

form of 𝐶𝑘ℓ against unit vectors 𝑢, 𝑣 written in the form 𝑢𝑔 =
∑︀

𝑖 𝛽𝑖𝑔𝑖/
√
𝑝 and 𝑣𝑔 =∑︀

𝑖 𝛾𝑖𝑔𝑖/
√
𝑝 with 𝛽𝑖, 𝛾𝑖 ∈ C such that

∑︀
𝑖 𝛽

2
𝑖 =

∑︀
𝑖 𝛾

2
𝑖 = 1:

𝑢*𝐶𝑘ℓ𝑣 = 𝑝2 E
𝑔ℎ
𝑢𝑔𝐶

𝑘ℓ
𝑔ℎ𝑣ℎ = 𝑝 E

𝑔ℎ

(︃∑︁
𝑖

𝛽𝑖𝑔𝑖

)︃(︃∑︁
𝑖

𝛼𝑘ℓ
𝑖 𝑔𝑖ℎ𝑖

)︃(︃∑︁
𝑖

𝛾𝑖ℎ𝑖

)︃
= 𝑝

∑︁
𝑖

𝛼𝑘ℓ
−𝑖𝛽𝑖𝛾𝑖

where the expectation is over Haar (uniform) measure on Z/𝑝. Thus we have ‖𝐶𝑘ℓ‖ =

max𝑖 𝑝𝛼
𝑘ℓ
𝑖 . The following two lemmas show that these values are tightly concentrated.

Lemma 5.4.11. With high probability we have that for all 𝑘, ‖𝐶𝑘𝑘‖ ≤ 1 + 𝑂̃(1/
√
𝑝).

Proof. When 𝑘 = ℓ we have

𝛼𝑘𝑘
𝑖 =

∑︁
𝑎−𝑏=𝑖

|̂︀𝜃𝑘𝑎|2|̂︀𝜃𝑘𝑏 |2 − 1

𝑝
1𝑖=0.

Note that

E[|̂︀𝜃𝑘𝑎|2|̂︀𝜃𝑘𝑏 |2] =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3/𝑝2 𝑎 = 𝑏 = 0,

3/𝑝2 𝑎 = 𝑏 = 𝑝/2,

2/𝑝2 𝑎 = ±𝑏 /∈ {0, 𝑝/2},

1/𝑝2 otherwise.

As a result we have E[𝑝𝛼𝑘𝑘
𝑖 ] = 1 ± 𝑂(1/𝑝). The variance is Var(𝑝𝛼𝑘𝑘

𝑖 ) ≤ 𝑂(1/𝑝). Note
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that 𝑝𝛼𝑘𝑘
𝑖 is a degree-4 polynomial of independent centered Gaussians (namely the real and

imaginary parts of the 𝜃𝑘𝑖 ). By hypercontractivity (Theorem 5.4.3) we have |𝑝𝛼𝑘𝑘
𝑖 − 1| ≤

𝑂̃(1/
√
𝑝) with overwhelming probability.

Lemma 5.4.12. With high probability we have that for all pairs 𝑘, ℓ with 𝑘 ̸= ℓ, ‖𝐶𝑘ℓ‖ ≤

𝑂̃(1/
√
𝑝).

Proof. When 𝑘 ̸= ℓ we have

E[̂︀𝜃𝑘𝑎̂︀𝜃ℓ𝑎̂︀𝜃𝑘𝑏 ̂︀𝜃ℓ𝑏] =
⎧⎨⎩ 1/𝑝2 𝑎 = 𝑏,

0 otherwise,

and so E[𝑝𝛼𝑘ℓ
𝑖 ] = 0. The real and imaginary parts of 𝑝𝛼𝑘ℓ

𝑖 each have variance 𝑂(1/𝑝)

and are each a degree-4 polynomial of independent centered Gaussians, so as above we can

apply hypercontractivity (Theorem 5.4.3) to conclude |𝑝𝛼𝑘ℓ
𝑖 | ≤ 𝑂̃(1/

√
𝑝) with overwhelming

probability.

It now follows from Lemmas 5.4.11 and 5.4.12 that ‖𝐶‖ ≤ 1 + 𝑂̃(𝐾/
√
𝑝) as desired. For

the off-diagonal blocks we have used the fact that if 𝑀 is 𝐾𝑝 ×𝐾𝑝 with each 𝑝 × 𝑝 block

having spectral norm ≤ 𝑠, then ‖𝑀‖ ≤ 𝐾𝑠. This completes the proof of (5.4).

For the sum-of-squares proof (5.5), we will also need the following corollary of the above.

Corollary 5.4.13. With high probability,

{‖𝑢‖2 = 1} ⊢
𝑚∑︁
𝑖=1

⟨𝑎𝑖, 𝑢⟩4 ≤ 𝑂(1) + 𝑂̃(𝐾/
√
𝑝).
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Proof. We have

∑︁
𝑖

⟨𝑎𝑖, 𝑢⟩4 =
∑︁
𝑖

⟨𝑎⊗2
𝑖 , 𝑢⊗2⟩2

=
∑︁
𝑖

⟨𝑎⊗2
𝑖 − ‖𝑎𝑖‖2𝑝−1

𝑝∑︁
𝑗=1

𝑒⊗2
𝑗 + ‖𝑎𝑖‖2𝑝−1

𝑝∑︁
𝑗=1

𝑒⊗2
𝑗 , 𝑢⊗2⟩2

=
∑︁
𝑖

(︀
⟨𝑏𝑖, 𝑢⊗2⟩+ ‖𝑎𝑖‖2‖𝑢‖2/𝑝

)︀2
≤ 4

∑︁
𝑖

⟨𝑏𝑖, 𝑢⊗2⟩2 + 4
∑︁
𝑖

(‖𝑎𝑖‖2/𝑝)2

≤ 4

⃦⃦⃦⃦
⃦∑︁

𝑖

𝑏𝑖𝑏
⊤
𝑖

⃦⃦⃦⃦
⃦+𝑂(𝐾/𝑝)

≤ 𝑂(1) + 𝑂̃(𝐾/
√
𝑝).

Proof of Proposition 5.4.10

Let 𝑀 =
∑︀

𝑖 ̸=𝑗⟨𝑎𝑖, 𝑎𝑗⟩(𝑎𝑖 ⊗ 𝑎𝑗)(𝑎𝑖 ⊗ 𝑎𝑗)
⊤, the matrix we want to bound. We can write

𝑀 = 𝑀 ′ −𝑀 ′′ where

𝑀 ′ =
∑︁
𝑘ℓ

∑︁
𝑔ℎ

⟨𝑔 · 𝜃𝑘, ℎ · 𝜃ℓ⟩(𝑔 · 𝜃𝑘 ⊗ ℎ · 𝜃ℓ)(𝑔 · 𝜃𝑘 ⊗ ℎ · 𝜃ℓ)⊤

and

𝑀 ′′ =
∑︁
𝑘

∑︁
𝑔

⟨𝑔 · 𝜃𝑘, 𝑔 · 𝜃𝑘⟩(𝑔 · 𝜃𝑘 ⊗ 𝑔 · 𝜃𝑘)(𝑔 · 𝜃𝑘 ⊗ 𝑔 · 𝜃𝑘)⊤

with 𝑘, ℓ ∈ [𝐾] and 𝑔, ℎ ∈ Z/𝑝. Change basis to the Fourier basis and write out the entries

of 𝑀 ′,𝑀 ′′:

𝑀 ′
𝑎𝑏,𝑐𝑑 =

∑︁
𝑘ℓ

𝑝2 E
𝑔ℎ

(︃
𝑝∑︁

𝑒=1

𝑔𝑒̂︀𝜃𝑘𝑒ℎ𝑒
̂︀𝜃ℓ𝑒
)︃
𝑔𝑎̂︀𝜃𝑘𝑎ℎ𝑏

̂︀𝜃ℓ𝑏𝑔𝑐̂︀𝜃𝑘𝑐ℎ𝑑
̂︀𝜃ℓ𝑑

=
∑︁
𝑘ℓ

𝑝21𝑎−𝑏=𝑐−𝑑,𝛿
̂︀𝜃𝑘𝑎−𝑐

̂︀𝜃ℓ𝑎−𝑐
̂︀𝜃𝑘𝑎̂︀𝜃ℓ𝑎−𝛿

̂︀𝜃𝑘𝑐 ̂︀𝜃ℓ𝑐−𝛿,
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𝑀 ′′
𝑎𝑏,𝑐𝑑 =

∑︁
𝑘

𝑝E
𝑔
‖𝜃𝑘‖2𝑔𝑎̂︀𝜃𝑘𝑎𝑔𝑏̂︀𝜃𝑘𝑏 𝑔𝑐̂︀𝜃𝑘𝑐 𝑔𝑑̂︀𝜃𝑘𝑑

=
∑︁
𝑘

𝑝‖𝜃𝑘‖21𝑎−𝑏=𝑐−𝑑,𝛿
̂︀𝜃𝑘𝑎̂︀𝜃𝑘𝑎−𝛿

̂︀𝜃𝑘𝑐 ̂︀𝜃𝑘𝑐−𝛿.

Note that (after permuting the rows/columns), 𝑀 is block-diagonal with one 𝑝× 𝑝 block for

each value of 𝛿 , 𝑎− 𝑏 = 𝑐− 𝑑. Let 𝑀 𝛿 denote this block, i.e. 𝑀 𝛿
𝑎𝑐 = 𝑀(𝑎)(𝑎−𝛿),(𝑐)(𝑐−𝛿).

Now focus on a particular block (i.e. fix 𝛿) and write 𝑀 𝛿 = 𝑃 𝛿 +𝑄𝛿 where

𝑃 𝛿
𝑎𝑐 =

∑︁
𝑘

(𝑝2|̂︀𝜃𝑘𝑎−𝑐|2 − 𝑝‖𝜃𝑘‖2)̂︀𝜃𝑘𝑎̂︀𝜃𝑘𝑎−𝛿
̂︀𝜃𝑘𝑐 ̂︀𝜃𝑘𝑐−𝛿

and

𝑄𝛿
𝑎𝑐 =

∑︁
𝑘 ̸=ℓ

𝑝2̂︀𝜃𝑘𝑎−𝑐
̂︀𝜃ℓ𝑎−𝑐

̂︀𝜃𝑘𝑎̂︀𝜃ℓ𝑎−𝛿
̂︀𝜃𝑘𝑐 ̂︀𝜃ℓ𝑐−𝛿.

To bound ‖𝑃 𝛿‖, write 𝑃 𝛿 = 𝑝
∑︀

𝑘 𝐷𝑘𝐶𝑘𝐷
*
𝑘 where 𝐷𝑘 = diag(̂︀𝜃𝑘𝑎̂︀𝜃𝑘𝑎−𝛿) and (𝐶𝑘)𝑎𝑐 =

𝑝|̂︀𝜃𝑘𝑎−𝑐|2 − ‖𝜃𝑘‖2. Each |̂︀𝜃𝑘𝑖 | is at most 𝑂̃(1/
√
𝑝) with overwhelming probability and so

‖𝐷𝑘‖ ≤ 𝑂̃(1/𝑝). 𝐶𝑘 is a circulant matrix and thus its eigenvalues can be written in closed

form:

𝜆𝑗 =

𝑝−1∑︁
𝑖=0

(𝑝|̂︀𝜃𝑘𝑖 |2 − ‖𝜃𝑘‖2)𝜔𝑖
𝑗 for 𝑗 = 0, 1, . . . , 𝑝− 1

where {𝜔𝑗} are the 𝑝th roots of unity 𝜔𝑗 = 2𝜋i𝑗/𝑝. Note that 𝜆0 = 0 and for 𝑗 ̸= 0, we have∑︀𝑝−1
𝑖=0 𝜔

𝑖
𝑗 = 0 and so

𝜆𝑗 =

𝑝−1∑︁
𝑖=0

𝑝|̂︀𝜃𝑘𝑖 |2𝜔𝑖
𝑗 =

𝑝−1∑︁
𝑖=0

(𝑝|̂︀𝜃𝑘𝑖 |2 − 1)𝜔𝑖
𝑗.

Note that 𝑝|̂︀𝜃𝑘𝑖 |2−1 is distributed either as 𝜒2
1−1 or 1

2
𝜒2
2−1 (depending on 𝑖) which in either

case is a (mean-zero) subexponential random variable. We have |̂︀𝜃𝑘𝑖 | = |̂︀𝜃𝑘−𝑖| but otherwise

these values are independent. By Bernstein’s inequality for subexponential random variables

(see [127]) we have |𝜆𝑗| ≤ 𝑂̃(
√
𝑝) for all 𝑗, and so ‖𝐶𝑘‖ ≤ 𝑂̃(

√
𝑝). Now

‖𝑃 𝛿‖ = ‖𝑝
∑︁
𝑘

𝐷𝑘𝐶𝑘𝐷
*
𝑘‖ ≤ 𝑝

∑︁
𝑘

‖𝐷𝑘‖2‖𝐶𝑘‖ ≤ 𝑂̃(𝐾/
√
𝑝).
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With high probability, this holds for all 𝛿.

To bound ‖𝑄𝛿‖, first apply a symmetrization trick: 𝜃𝑘 has the same distribution as

𝜎𝑘𝜃
𝑘 where 𝜎𝑘 is an independent Rademacher random variable. Now 𝑄𝛿 is distributed as

𝑝
∑︀

𝑘 ̸=ℓ 𝜎𝑘𝜎ℓ𝐷𝑘ℓ𝐶𝑘ℓ𝐷
*
𝑘ℓ with 𝐷𝑘ℓ = diag(̂︀𝜃𝑘𝑎̂︀𝜃ℓ𝑎−𝛿) and (𝐶𝑘ℓ)𝑎𝑐 = 𝑝 ̂︀𝜃𝑘𝑎−𝑐

̂︀𝜃ℓ𝑎−𝑐. As above, we have

‖𝐷𝑘ℓ‖ ≤ 𝑂̃(1/𝑝). Again, 𝐶𝑘ℓ is circulant with eigenvalues

𝜆𝑗 =

𝑝−1∑︁
𝑖=0

𝑝 ̂︀𝜃𝑘𝑖 ̂︀𝜃ℓ𝑖𝜔𝑖
𝑗 for 𝑗 = 0, 1, . . . , 𝑝− 1.

Combining terms 𝑖 and −𝑖 (modulo 𝑝),

𝑝 ̂︀𝜃𝑘𝑖 ̂︀𝜃ℓ𝑖𝜔𝑖
𝑗 + 𝑝 ̂︀𝜃𝑘−𝑖

̂︀𝜃ℓ−𝑖𝜔
−𝑖
𝑗 = 2𝑝Re(̂︀𝜃𝑘𝑖 ̂︀𝜃ℓ𝑖𝜔𝑖

𝑗)

= 2𝑝[(Re(̂︀𝜃𝑘𝑖 )Re(̂︀𝜃ℓ𝑖 ) + Im(̂︀𝜃𝑘𝑖 )Im(̂︀𝜃ℓ𝑖 )) cos(2𝜋𝑖𝑗/𝑝)
+ (−Re(̂︀𝜃𝑘𝑖 )Im(̂︀𝜃ℓ𝑖 ) + Im(̂︀𝜃𝑘𝑖 )Re(̂︀𝜃ℓ𝑖 )) sin(2𝜋𝑖𝑗/𝑝)].

Apply Bernstein separately to the cosine and sine terms, yielding |𝜆𝑗| ≤ 𝑂̃(
√
𝑝) and so

‖𝑝𝐷𝑘ℓ𝐶𝑘ℓ𝐷
*
𝑘ℓ‖ ≤ 𝑂̃(1/

√
𝑝). By decoupling (Theorem 5.4.2) we can replace 𝜎𝑘𝜎ℓ with inde-

pendent copies 𝜎(1)
𝑘 𝜎

(2)
ℓ . Now apply the matrix Chernoff bound twice (once over the random-

ness of 𝜎(2) and then again over the randomness of 𝜎(1)) using the basic variance bound (5.1)

to conclude:

for fixed 𝑘,

⃦⃦⃦⃦
⃦∑︁
ℓ̸=𝑘

𝜎
(2)
ℓ (𝑝𝐷𝑘ℓ𝐶𝑘ℓ𝐷

*
𝑘ℓ)

⃦⃦⃦⃦
⃦ ≤ 𝑂̃(

√︀
𝐾/𝑝),

⃦⃦⃦⃦
⃦∑︁

𝑘

𝜎
(1)
𝑘

(︃∑︁
ℓ̸=𝑘

𝜎
(2)
ℓ 𝑝𝐷𝑘ℓ𝐶𝑘ℓ𝐷

*
𝑘ℓ

)︃⃦⃦⃦⃦
⃦ ≤ 𝑂̃(𝐾/

√
𝑝).

Therefore with high probability we have ‖𝑄𝛿‖ ≤ 𝑂̃(𝐾/
√
𝑝) for all 𝛿.

5.4.5 SoS proof

In this section we prove (5.5), completing the proof of Proposition 5.4.9. The arguments

follow Proposition 7.1 of [100], which in turn is based on Theorem 4.2 of [70].
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Remark 5.4.14. The prior works [70] and [100] are written for the case where ‖𝑎𝑖‖ =

1, whereas this is only approximately true in our case. For this reason, we have some

extra factors of ‖𝑎𝑖‖2 below, which do not appear in prior work. However, since these are

1± 𝑂̃(1/
√
𝑝) they do not affect the result.

Recall𝒜 = {⟨𝑇, 𝑢⊗3⟩ ≥ 1−𝜂, ‖𝑢‖ = 1} where 𝜂 = 𝜀+𝑂̃(𝐾/
√
𝑝), 𝑇 = 𝑇+𝐸, 𝑇 =

∑︀𝑚
𝑖=1 𝑎

⊗3
𝑖

and ‖𝐸‖{1},{2,3} ≤ 𝜀. We immediately have

𝒜 ⊢ ⟨𝑇 , 𝑢⊗3⟩ ≥ 1− 𝜂 − 𝜀 = 1−𝑂(𝜀)− 𝑂̃(𝐾/
√
𝑝).

As in Claim 1 of [70] we can apply Cauchy-Schwarz to obtain

𝒜 ⊢ ⟨𝑇 , 𝑢⊗3⟩2 ≤
𝑚∑︁
𝑖=1

‖𝑎𝑖‖2⟨𝑎𝑖, 𝑢⟩4 +
∑︁
𝑖 ̸=𝑗

⟨𝑎𝑖, 𝑎𝑗⟩⟨𝑎𝑖, 𝑢⟩2⟨𝑎𝑗, 𝑢⟩2.

Similarly to Lemma 3 of [70], the matrix concentration result of Proposition 5.4.10 implies

that the last term above is 𝑂̃(𝐾/
√
𝑝) and thus we have

𝒜 ⊢
𝑚∑︁
𝑖=1

⟨𝑎𝑖, 𝑢⟩4 ≥ 1−𝑂(𝜀)− 𝑂̃(𝐾/
√
𝑝).

As in the proof of Lemma 2 of [70], apply Cauchy-Schwarz again to obtain

𝒜 ⊢

(︃
𝑚∑︁
𝑖=1

⟨𝑎𝑖, 𝑢⟩4
)︃2

≤
𝑚∑︁
𝑖=1

‖𝑎𝑖‖2⟨𝑎𝑖, 𝑢⟩6 +
∑︁
𝑖 ̸=𝑗

⟨𝑎𝑖, 𝑎𝑗⟩⟨𝑎𝑖, 𝑢⟩3⟨𝑎𝑗, 𝑢⟩3.

Following [70] (proof of Lemma 2), the last term above is 𝑂̃(𝐾/
√
𝑝). This uses the bounds

‖𝐴‖ ≤ 𝑂̃(
√
𝐾) (Lemma 5.4.5) and

∑︀𝑚
𝑖=1⟨𝑎𝑖, 𝑢⟩4 ≤ 𝑂(1) + 𝑂̃(𝐾/

√
𝑝) (Corollary 5.4.13). We

now have

𝒜 ⊢
𝑚∑︁
𝑖=1

⟨𝑎𝑖, 𝑢⟩6 ≥ 1−𝑂(𝜀)− 𝑂̃(𝐾/
√
𝑝).
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Again following [70] (proof of Lemma 2) we have

𝒜 ⊢
𝑚∑︁
𝑖=1

⟨𝑎𝑖, 𝑢⟩6 ≤ 1 + 𝑂̃(𝐾/
√
𝑝).

This only uses the incoherence of {𝑎𝑖} (Lemma 5.4.4). This implies

𝒜 ⊢
𝑚∑︁
𝑖=1

⟨𝑎𝑖, 𝑢⟩4 ≤ 1 + 𝑂̃(𝐾/
√
𝑝) (5.6)

which is analogous to Lemma 2 of [70].

Now following Lemma 7.2 of [100], apply Cauchy-Schwarz again:

𝒜 ⊢

(︃
𝑚∑︁
𝑖=1

⟨𝑎𝑖, 𝑢⟩6
)︃2

≤
𝑚∑︁
𝑖=1

‖𝑎𝑖‖2⟨𝑎𝑖, 𝑢⟩10 +

(︃
𝑚∑︁
𝑖=1

⟨𝑎𝑖, 𝑢⟩4
)︃2

max
𝑖 ̸=𝑗
|⟨𝑎𝑖, 𝑎𝑗⟩|.

By (5.6) and Lemma 5.4.4, the last term above is 𝑂̃(1/
√
𝑝) and so

𝒜 ⊢
𝑚∑︁
𝑖=1

⟨𝑎𝑖, 𝑢⟩10 ≥ 1−𝑂(𝜀)− 𝑂̃(𝐾/
√
𝑝).

Since ⟨𝑎𝑖, 𝑢⟩2 ≤ 1 we arrive at

𝒜 ⊢
𝑚∑︁
𝑖=1

⟨𝑎𝑖, 𝑢⟩8 ≥ 1−𝑂(𝜀)− 𝑂̃(𝐾/
√
𝑝)

which is analogous to Lemma 7.2 of [100]. Now the desired result (5.5) follows similarly

to the proof of Proposition 7.1 in [100]. All the steps we have used are captured by the

sum-of-squares proof system.
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Appendix A

Additional proofs for Chapter 2

A.1 Log-likelihood expansion for the Gaussian observa-

tion model

In this section we show how the Gaussian observation model fits into the graphical model

formulation by deriving the corresponding coefficient matrices 𝑌𝜌. In particular, we show

that 𝑌𝜌 = 𝑑𝜌𝜆𝜌𝑀𝜌, a scalar multiple of the observed Gaussian matrix.

We can write logℒ𝑢𝑣(𝑔𝑢, 𝑔𝑣) =
∑︀

𝜌 logℒ𝜌
𝑢𝑣(𝑔𝑢, 𝑔𝑣) and consider each representation sepa-

rately. There are three cases for the three types of representations (see Section 2.3.1).

For convenience we recall the Gaussian observation model:

𝑀𝜌 =
𝜆𝜌

𝑛
𝑋𝜌𝑋

*
𝜌 +

1√︀
𝑛𝑑𝜌

𝑊𝜌.

Restricting to the 𝑢, 𝑣 submatrix:

𝑀𝜌
𝑢𝑣 =

𝜆𝜌

𝑛
𝜌(𝑔𝑢𝑔

−1
𝑣 ) +

1√︀
𝑛𝑑𝜌

𝑊 𝜌
𝑢𝑣.
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Real type. Let 𝜌 be of real type. Recall that in this case, each entry of 𝑊 𝜌
𝑢𝑣 is 𝒩 (0, 1).

We have

logℒ𝜌
𝑢𝑣(𝑔𝑢, 𝑔𝑣) =

−𝑛𝑑𝜌
2

⃦⃦⃦⃦
𝑀𝜌

𝑢𝑣 −
𝜆𝜌

𝑛
𝜌(𝑔𝑢𝑔

−1
𝑣 )

⃦⃦⃦⃦2
𝐹

=
⟨︀
𝑑𝜌𝜆𝜌𝑀

𝜌
𝑢𝑣, 𝜌(𝑔𝑢𝑔

−1
𝑣 )
⟩︀
+ const.

Here ‖ · ‖𝐹 denotes the Frobenius norm. The additive constant in the last step depends

on 𝑀𝜌
𝑢𝑣 but not on 𝑔𝑢, 𝑔𝑣. Thus the log-likelihood coefficients are 𝑌 𝜌

𝑢𝑣 = 𝑑𝜌𝜆𝜌𝑀
𝜌
𝑢𝑣 and so

𝑌𝜌 = 𝑑𝜌𝜆𝜌𝑀𝜌.

Complex type. Now consider a representation 𝜌 of complex type, along with its conjugate

𝜌. Recall that in this case, each entry of 𝑊 𝜌
𝑢𝑣 has independent real and imaginary parts drawn

from 𝒩 (0, 1/2). We have

logℒ𝜌
𝑢𝑣(𝑔𝑢, 𝑔𝑣) = −𝑛𝑑𝜌

⃦⃦⃦⃦
𝑀𝜌

𝑢𝑣 −
𝜆𝜌

𝑛
𝜌(𝑔𝑢𝑔

−1
𝑣 )

⃦⃦⃦⃦2
𝐹

=
⟨︀
𝑑𝜌𝜆𝜌𝑀

𝜌
𝑢𝑣, 𝜌(𝑔𝑢𝑔

−1
𝑣 )
⟩︀
+
⟨
𝑑𝜌𝜆𝜌𝑀

𝜌
𝑢𝑣, 𝜌(𝑔𝑢𝑔−1

𝑣 )
⟩
+ const.

Therefore we have 𝑌𝜌 = 𝑑𝜌𝜆𝜌𝑀𝜌 and 𝑌𝜌 = 𝑑𝜌𝜆𝜌𝑀𝜌 = 𝑑𝜌𝜆𝜌𝑀𝜌.

Quaternionic type. Now consider a representation 𝜌 of quaternionic type. Recall that in

this case, 𝑊 𝜌
𝑢𝑣 is block-quaternion where each 2× 2 block encodes a quaternion value whose

4 entries are drawn independently from 𝒩 (0, 1/2). Note the following relation between the

norm of a quaternion and its corresponding 2× 2 matrix:

‖𝑎+ 𝑏𝑖+ 𝑐𝑗 + 𝑑𝑘‖2 ≡ 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 =
1

2

⃦⃦⃦⃦
⃦⃦ 𝑎+ 𝑏𝑖 𝑐+ 𝑑𝑖

−𝑐+ 𝑑𝑖 𝑎− 𝑏𝑖

⃦⃦⃦⃦
⃦⃦
2

𝐹

.
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We have

logℒ𝜌
𝑢𝑣(𝑔𝑢, 𝑔𝑣) = −𝑛𝑑𝜌 ·

1

2

⃦⃦⃦⃦
𝑀𝜌

𝑢𝑣 −
𝜆𝜌

𝑛
𝜌(𝑔𝑢𝑔

−1
𝑣 )

⃦⃦⃦⃦2
𝐹

= 𝑑𝜌𝜆𝜌Re
(︀⟨︀
𝑀𝜌

𝑢𝑣, 𝜌(𝑔𝑢𝑔
−1
𝑣 )
⟩︀)︀

+ const

= 𝑑𝜌𝜆𝜌

⟨︀
𝑀𝜌

𝑢𝑣, 𝜌(𝑔𝑢𝑔
−1
𝑣 )
⟩︀
+ const

where Re denotes real part. In the last step we used the fact that 𝑀𝜌
𝑢𝑣 and 𝜌(𝑔𝑢𝑔

−1
𝑣 ) are block-

quaternion and so their inner product is real (see Section 2.3.1). Therefore 𝑌𝜌 = 𝑑𝜌𝜆𝜌𝑀𝜌.

A.2 Proof of Lemma 2.6.1

To see that (i) and (ii) are equal, recall the interpretation of ℱ𝜌 as a conditional expectation:

ℱ𝜌(· · · ) = E[𝜌(𝑔)| · · · ] where · · · stands for
{︀
𝛾𝑡
𝑞𝑞(𝑔) +

√︀
𝛾𝑡
𝑞𝑧𝑞
}︀
𝑞
. (This is related to the

Nishimori identities in statistical physics.)

We have the following symmetry properties of ℱ𝜌.

Lemma A.2.1. (1) For any 𝛾𝑡
𝑞 ∈ R, 𝑧𝑞 ∈ C𝑑𝜌×𝑑𝜌, and 𝑔, ℎ ∈ 𝐺, we have

ℱ𝜌

(︂{︁
𝛾𝑡
𝑞𝑞(ℎ𝑔) +

√︁
𝛾𝑡
𝑞𝑧𝑞

}︁
𝑞

)︂
= 𝜌(ℎ)ℱ𝜌

(︂{︁
𝛾𝑡
𝑞𝑞(𝑔) +

√︁
𝛾𝑡
𝑞𝑞(ℎ

−1)𝑧𝑞

}︁
𝑞

)︂

and

ℱ𝜌

(︂{︁
𝛾𝑡
𝑞𝑞(𝑔ℎ) +

√︁
𝛾𝑡
𝑞𝑧𝑞

}︁
𝑞

)︂
= ℱ𝜌

(︂{︁
𝛾𝑡
𝑞𝑞(𝑔) +

√︁
𝛾𝑡
𝑞𝑧𝑞𝑞(ℎ

−1)
}︁

𝑞

)︂
𝜌(ℎ).

(2) Therefore, if we define

𝑓𝜌(𝑔) ≡ E𝑧𝑞ℱ𝜌

(︂{︁
𝛾𝑡
𝑞𝑞(𝑔) +

√︁
𝛾𝑡
𝑞𝑧𝑞

}︁
𝑞

)︂

we have 𝑓𝜌(ℎ𝑔) = 𝜌(ℎ)𝑓𝜌(𝑔) and 𝑓𝜌(𝑔ℎ) = 𝑓𝜌(𝑔)𝜌(ℎ).

Proof. Part (1) is a straightforward computation using the definition of ℱ𝜌. Part (2) follows

from part (1) because 𝑧𝑞 has the same distribution as 𝑞(ℎ−1)𝑧𝑞 and as 𝑧𝑞𝑞(ℎ
−1).
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We now return to the proof of Lemma 2.6.1. The equality of (i) and (iii) follows from

part (2) of Lemma A.2.1. The equality of (ii) and (iv) follows from part (1) of Lemma A.2.1.

Combining this with the equality of (i) and (ii) from above, we have now shown equality of

(i),(ii),(iii),(iv). It remains to show that 𝐴𝑡
𝜌 is a real multiple of the identity.

Letting 𝑒 ∈ 𝐺 be the identity, we have

𝑓𝜌(𝑒)𝜌(𝑔) = 𝑓𝜌(𝑒𝑔) = 𝑓𝜌(𝑔𝑒) = 𝜌(𝑔)𝑓𝜌(𝑒)

and so by Schur’s lemma, this means 𝑓𝜌(𝑒) is a (possibly complex) multiple of the identity.

But 𝑓𝜌(𝑒) is just (iii), so we are done. To see that the multiple 𝑎𝑡𝜌 is real, note that the trace

of (ii) is real.
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Appendix B

Additional proofs for Chapter 3

B.1 Proof of Proposition 3.3.5

In this section we prove Proposition 3.3.5, which we restate here for convenience.

Proposition B.1.1. For 𝐿 ≥ 2,

sup
𝛼

𝐿

2

(︀∑︀
ℎ∈𝐺 𝛼2

ℎ − 1
𝐿

)︀
𝐷(𝛼, 𝛼)

=
𝐿𝐶

2

where

𝐶 =
𝐿− 2

(𝐿− 1) log(𝐿− 1)
.

Here 𝛼 ranges over (vectorized) nonnegative 𝐿×𝐿 matrices with row- and column-sums equal

to 1
𝐿
. When 𝐿 = 2, we define 𝐶 = 1 (the limit value).

Recall 𝐺 is a finite group of order 𝐿, 𝛼 = 1
𝐿21𝐿2 and 𝛼ℎ =

∑︀
(𝑎,𝑏)∈𝑆ℎ

𝛼𝑎𝑏 where 𝑆ℎ =

{(𝑎, 𝑏) | 𝑎−1𝑏 = ℎ}. 𝐷 denotes the KL divergence, which in this case is

𝐷(𝛼, 𝛼) =
∑︁
𝑎𝑏

𝛼𝑎𝑏 log(𝐿
2𝛼𝑎𝑏) = 2 log𝐿+

∑︁
𝑎𝑏

𝛼𝑎𝑏 log(𝛼𝑎𝑏).

Although 𝛼 belongs to a compact domain, we write sup rather than max in the optimiza-

tion above. This is because when 𝛼 = 𝛼, the numerator and denominator of are both zero,
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so we are really optimizing over 𝛼 ̸= 𝛼.

A high-level sketch of the proof is as follows. First we observe that the optimal 𝛼 value

should be constant on each 𝑆ℎ, allowing us to reduce the problem to only the variables 𝛼ℎ.

By local optimality, we show further that the optimal 𝛼 should take a particular form where

𝛼ℎ = 𝑥 for 𝑘 out of the 𝐿 group elements ℎ, and 𝛼ℎ = 𝑦 for the remaining ones (where

𝑦 = 1−𝑘𝑥
𝐿−𝑘

so that
∑︀

ℎ 𝛼ℎ = 1 as required). This allows us to reduce the problem to only the

variables 𝑘 and 𝑥. We then show that for a fixed 𝑘, the optimum value is 𝐿𝐶𝑘

2
where

𝐶𝑘 =
𝐿− 2𝑘

𝑘(𝐿− 𝑘) log
(︀
𝐿−𝑘
𝑘

)︀
(defined to equal its limit value 2

𝐿
when 𝑘 = 𝐿/2). Finally, we show that 𝐶𝑘 is largest when

𝑘 = 1, in which case we have 𝐶1 = 𝐶 and the proof is complete.

Now we begin the proof in full detail. Note that the numerator of the optimization

problem depends only on the sums 𝛼ℎ and not the individual entries 𝛼𝑎𝑏. Furthermore,

once we have fixed the 𝛼ℎ’s, the denominator is minimized by setting all the 𝛼𝑎𝑏 values

equal within each 𝑆ℎ. (Think of the fact that the uniform distribution maximizes entropy.)

Therefore we only need to consider matrices 𝛼 that are constant on each 𝑆ℎ. Note that any

such matrix has row- and column-sums equal to 1/𝐿 (since each row or column contains

exactly one entry in each 𝑆ℎ), so we can drop this constraint. (Interestingly, the fact that

this constraint doesn’t help means that we do not actually benefit from conditioning away

from ‘bad’ events in this case.) The denominator becomes

𝐷(𝛼, 𝛼) = 2 log𝐿+
∑︁
ℎ

𝐿 · 𝛼ℎ

𝐿
log
(︁𝛼ℎ

𝐿

)︁
= log𝐿+

∑︁
ℎ∈𝐺

𝛼ℎ log(𝛼ℎ)

and so we have a new equivalent optimization problem:

sup
𝛼 ̸=𝛼

𝑀(𝛼)
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where

𝑀(𝛼) =
𝐿

2
·

∑︀
ℎ∈𝐺 𝛼2

ℎ − 1
𝐿

log𝐿+
∑︀

ℎ 𝛼ℎ log(𝛼ℎ)
.

Now 𝛼 is simply a vector of 𝛼ℎ values, with the constraints 𝛼ℎ ≥ 0 and
∑︀

ℎ 𝛼ℎ = 1. Accord-

ingly, 𝛼ℎ = 1
𝐿

for all ℎ.

We will show that the optimum value is 𝐿𝐶
2

. We first focus on showing one direction:

sup𝛼 ̸=𝛼 𝑀(𝛼) ≤ 𝐿𝐶
2

. By multiplying through by the denominator of 𝑀(𝛼) (which is positive

for all 𝛼 ̸= 𝛼 since it is the divergence), this is equivalent to

max
𝛼

𝑇 (𝛼) ≤ 0

where

𝑇 (𝛼) =
∑︁
ℎ

𝛼2
ℎ −

1

𝐿
− 𝐶

[︃
log𝐿+

∑︁
ℎ

𝛼ℎ log(𝛼ℎ)

]︃
.

Note that 𝛼 ̸= 𝛼 is no longer required (since 𝑇 (𝛼) = 0) and so we now have a maximization

problem over a compact domain. We will restrict to values of 𝛼 that are locally optimal for

𝑇 (𝛼). Compute partial derivatives:

𝜕𝑇

𝜕𝛼ℎ

= 2𝛼ℎ − 𝐶 [log(𝛼ℎ) + 1]

𝜕2𝑇

𝜕𝛼2
ℎ

= 2− 𝐶

𝛼ℎ

.

Note that 𝜕𝑇
𝜕𝛼ℎ
→ ∞ as 𝛼ℎ → 0+ (and this is the only place in the interval [0, 1] where the

derivative blows up), and so a maximizer 𝛼 for 𝑇 (𝛼) should have no coordinates set to zero.
𝜕𝑇
𝜕𝛼ℎ

is decreasing when 𝛼ℎ < 𝐶
2
, and increasing when 𝛼ℎ > 𝐶

2
. In particular, 𝜕𝑇

𝜕𝛼ℎ
(𝛼ℎ) is

(at most) 2-to-1. If some coordinate of 𝛼 is 1 then the rest would have to be 0, which we

already ruled out. Therefore, all coordinates of a maximizer are strictly between 0 and 1,

which means 𝜕𝑇
𝜕𝛼ℎ

must be equal for all coordinates. Since the derivative is 2-to-1, this means

a maximizer can have at most two different 𝛼ℎ values.

We can therefore restrict to 𝛼 for which 𝑘 out of the 𝐿 coordinates have the value 𝑥, and
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the remaining 𝐿− 𝑘 coordinates have the value 𝑦 = 1−𝑘𝑥
𝐿−𝑘

(since the sum of coordinates must

be 1). Therefore it is sufficient to show

min
1≤𝑘≤𝐿/2

min
0≤𝑥≤1/𝑘

𝑇𝑘(𝑥) ≥ 0

where

𝑇𝑘(𝑥) = 𝐶

[︂
log𝐿+ 𝑘𝑥 log 𝑥+ (1− 𝑘𝑥) log

(︂
1− 𝑘𝑥

𝐿− 𝑘

)︂]︂
−
[︂
𝑘𝑥2 +

(1− 𝑘𝑥)2

𝐿− 𝑘
− 1

𝐿

]︂
.

Although it only makes sense for 𝑘 to take integer values, we will show that the above is still

true when 𝑘 is allowed to be any real number in the interval [0, 𝐿/2].

Define

𝑡𝑘(𝑥) = 𝐶𝑘

[︂
log𝐿+ 𝑘𝑥 log 𝑥+ (1− 𝑘𝑥) log

(︂
1− 𝑘𝑥

𝐿− 𝑘

)︂]︂
−
[︂
𝑘𝑥2 +

(1− 𝑘𝑥)2

𝐿− 𝑘
− 1

𝐿

]︂
.

Note that this is the same as 𝑇𝑘(𝑥) but with 𝐶 replaced by 𝐶𝑘 (defined above). In the

following two lemmas we will show min𝑘,𝑥 𝑡𝑘(𝑥) ≥ 0 and 𝐶𝑘 ≤ 𝐶1 = 𝐶 for all 𝑘. It follows that

𝑇𝑘(𝑥) ≥ 𝑡𝑘(𝑥) (since the coefficient of 𝐶 in 𝑇𝑘(𝑥) is the KL divergence, which is nonnegative).

This completes the proof of the upper bound sup𝛼 ̸=𝛼 𝑀(𝛼) ≤ 𝐿𝐶
2

because

min
𝑘,𝑥

𝑇𝑘(𝑥) ≥ min
𝑘,𝑥

𝑡𝑘(𝑥) ≥ 0.

Lemma B.1.2. For any 𝑘 ∈ [1, 𝐿/2], we have

min
𝑥∈[0,1/𝑘]

𝑡𝑘(𝑥) ≥ 0.

Proof. We relax 𝑘 to be a real number in the interval (0, 𝐿/2). The 𝑘 = 𝐿/2 case will follow

by continuity. Compute the fourth derivative:

𝑑4𝑡𝑘
𝑑𝑥4

= 𝐶𝑘

[︂
2𝑘

𝑥3
+

2𝑘4

(1− 𝑘𝑥)3

]︂
> 0.
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Since the fourth derivative is strictly positive, the second derivative is convex. It follows that

the first derivative 𝑑𝑡𝑘
𝑑𝑥

has at most three zeros. One can check explicitly that these zeros

are 1
𝐿
< 1

2𝑘
< 𝐿−𝑘

𝑘𝐿
. Using concavity of the second derivative, the middle zero 1

2𝑘
is a local

maximum of 𝑡𝑘(𝑥) and the global minimum of 𝑡𝑘(𝑥) is achieved at either 1
𝐿

or 𝐿−𝑘
𝑘𝐿

. Both of

these attain the value 𝑡𝑘(𝑥) = 0, completing the proof.

Lemma B.1.3. For all 𝑘 ∈ [1, 𝐿/2], 𝐶𝑘 ≤ 𝐶1 = 𝐶.

Proof. We will show that 𝐶𝑘 is monotone decreasing in 𝑘 on the interval (0, 𝐿/2), by showing

that its derivative is negative. It then follows that we should take the smallest allowable

value for 𝑘, i.e. 𝑘 = 1. Compute the derivative:

𝑑𝐶𝑘

𝑑𝑘
=

𝐿(𝐿− 2𝑘)− (𝑘2 + (𝐿− 𝑘)2) log
(︀
𝐿−𝑘
𝑘

)︀
𝑘2(𝑘 − 𝐿)2 log2

(︀
𝐿−𝑘
𝑘

)︀ .

The denominator is positive, so it suffices to show that the numerator is negative. Applying

the bound log(𝑥) < 2
(︀
𝑥−1
𝑥+1

)︀
, valid for all 𝑥 ≥ 1, we see that the numerator is at most

− (𝐿−2𝑘)3

𝐿
< 0.

This completes the proof of the upper bound sup𝛼 ̸=𝛼 𝑀(𝛼) ≤ 𝐿𝐶
2

. The matching lower

bound is achieved by taking the 𝛼 value corresponding to 𝑘 = 1 and 𝑥 = 𝐿−1
𝐿

. (For 𝐿 = 2,

this corresponds to the sigularity 𝛼, but the optimum is achieved in the limit 𝑥→ 𝐿−1
𝐿

= 1
2
.)
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Appendix C

Additional proofs for Chapter 4

C.1 Spherical harmonics and SO(3) invariants

C.1.1 Spherical harmonics

We follow the conventions of [31]. Parametrize the unit sphere by angular spherical coordi-

nates (𝜃, 𝜑) with 𝜃 ∈ [0, 𝜋] and 𝜑 ∈ [0, 2𝜋). (Here 𝜃 = 0 is the north pole and 𝜃 = 𝜋 is the

south pole.) For integers ℓ ≥ 0 and −ℓ ≤ 𝑚 ≤ ℓ, define the complex spherical harmonic

𝑌ℓ𝑚(𝜃, 𝜑) = (−1)𝑚𝑁ℓ𝑚𝑃
𝑚
ℓ (cos 𝜃)e𝑖𝑚𝜑

with normalization factor

𝑁ℓ𝑚 =

√︃
(2ℓ+ 1)(ℓ−𝑚)!

4𝜋(ℓ+𝑚)!

where 𝑃𝑚
ℓ (𝑥) are the associated Legendre polynomials

𝑃𝑚
ℓ (𝑥) =

1

2ℓℓ!
(1− 𝑥2)𝑚/2 dℓ+𝑚

d𝑥ℓ+𝑚
(𝑥2 − 1)ℓ.

In the 𝑆2 registration problem we are interested in representing a real-valued function

on the sphere, in which case we use an expansion (with real coefficients) in terms of the real
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spherical harmonics:

𝑆ℓ𝑚(𝜃, 𝜑) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−1)𝑚√

2
(𝑌ℓ𝑚(𝜃, 𝜑) + 𝑌ℓ𝑚(𝜃, 𝜑)) =

√
2𝑁ℓ𝑚𝑃

𝑚
ℓ (cos 𝜃) cos(𝑚𝜑) 𝑚 > 0,

𝑌ℓ0(𝜃, 𝜑) = 𝑁ℓ0𝑃
0
ℓ (cos 𝜃) 𝑚 = 0,

(−1)𝑚

𝑖
√
2
(𝑌ℓ|𝑚|(𝜃, 𝜑)− 𝑌ℓ|𝑚|(𝜃, 𝜑)) =

√
2𝑁ℓ|𝑚|𝑃

|𝑚|
ℓ (cos 𝜃) sin(|𝑚|𝜑) 𝑚 < 0.

Here 𝑌ℓ𝑚 is the complex conjugate of 𝑌ℓ𝑚, which satisfies the identity

𝑌ℓ𝑚(𝜃, 𝜑) = (−1)𝑚𝑌ℓ(−𝑚)(𝜃, 𝜑). (C.1)

Above we have also used the identity 𝑃−𝑚
ℓ = (−1)𝑚 (ℓ−𝑚)!

(ℓ+𝑚)!
𝑃𝑚
ℓ , which implies 𝑁ℓ(−𝑚)𝑃

−𝑚
ℓ =

(−1)𝑚𝑁ℓ𝑚𝑃
𝑚
ℓ .

In the cryo-EM problem we are instead interested in representing the Fourier transform

of a real-valued function. Such a function 𝑓 has the property that if 𝑟⃗ and −𝑟⃗ are antipodal

points on the sphere, 𝑓(−𝑟⃗) = 𝑓(𝑟⃗). For this type of function we use an expansion (with

real coefficients) in terms of a new basis of spherical harmonics:

𝐻ℓ𝑚(𝜃, 𝜑) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1√
2
(𝑌ℓ𝑚(𝜃, 𝜑) + (−1)ℓ+𝑚𝑌ℓ(−𝑚)(𝜃, 𝜑)) 𝑚 > 0,

𝑖ℓ𝑌ℓ0(𝜃, 𝜑) 𝑚 = 0,

𝑖√
2
(𝑌ℓ|𝑚|(𝜃, 𝜑)− (−1)ℓ+𝑚𝑌ℓ(−|𝑚|)(𝜃, 𝜑)) 𝑚 < 0.

One can check that 𝐻ℓ𝑚(−𝑟⃗) = 𝐻ℓ𝑚(𝑟⃗) using (C.1) along with the fact 𝑌ℓ𝑚(−𝑟⃗) = (−1)ℓ𝑌ℓ𝑚(𝑟⃗)

which comes from 𝑃𝑚
ℓ (−𝑥) = (−1)ℓ+𝑚𝑃𝑚

ℓ (𝑥).

C.1.2 Wigner D-matrices

We will mostly work in the basis of complex spherical harmonics 𝑌ℓ𝑚 since the formulas

are simpler. The analogous results for the other bases can be worked out by applying the

appropriate change of basis.

Let 𝑉ℓ ≃ C2ℓ+1 be the vector space consisting of degree-ℓ complex spherical harmon-

ics represented in the basis {𝑌ℓ𝑚}−ℓ≤𝑚≤ℓ, i.e. 𝑣 ∈ C2ℓ+1 encodes the spherical harmonic
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∑︀ℓ
𝑚=−ℓ 𝑣𝑚𝑌ℓ𝑚. These 𝑉ℓ (for ℓ = 0, 1, 2, . . .) are the irreducible representations of SO(3).

Each can also be defined over the real numbers by changing basis to the real spherical

harmonics 𝑆ℓ𝑚.

A group element 𝑔 ∈ SO(3) acts on a (spherical harmonic) function 𝑓 : 𝑆2 → R via

(𝑔 · 𝑓)(𝑥) = 𝑓(𝑔−1𝑥). The action of 𝑔 on 𝑉ℓ is given by the Wigner D-matrix 𝐷ℓ(𝑔) ∈

C(2ℓ+1)×(2ℓ+1) defined as in [31].

We will need the following orthogonality properties of the Wigner D-matrices. First, the

standard Schur orthogonality relations from representation theory yield

E
𝑔∼Haar(SO(3))

𝐷ℓ
𝑚𝑘(𝑔)𝐷

ℓ′

𝑚′𝑘′(𝑔) =
1

2ℓ+ 1
1ℓ=ℓ′1𝑚=𝑚′1𝑘=𝑘′ .

We also have [129]

𝐷ℓ
𝑚𝑘(𝑔)𝐷

ℓ′

𝑚′𝑘′(𝑔) =
ℓ+ℓ′∑︁

𝐿=|ℓ−ℓ′|

⟨ℓ𝑚 ℓ′ 𝑚′|𝐿 (𝑚+𝑚′)⟩⟨ℓ 𝑘 ℓ′ 𝑘′|𝐿 (𝑘 + 𝑘′)⟩𝐷𝐿
(𝑚+𝑚′)(𝑘+𝑘′)(𝑔)

where ⟨ℓ1𝑚1 ℓ2𝑚2|ℓ𝑚⟩ is a Clebsch-Gordan coefficient. There is a closed-form expression

for these coefficients [32]:

⟨ℓ1𝑚1 ℓ2𝑚2|ℓ𝑚⟩ = 1𝑚=𝑚1+𝑚2

√︃
(2ℓ+ 1)(ℓ+ ℓ1 − ℓ2)!(ℓ− ℓ1 + ℓ2)!(ℓ1 + ℓ2 − ℓ)!

(ℓ1 + ℓ2 + ℓ+ 1)!
×√︀

(ℓ+𝑚)!(ℓ−𝑚)!(ℓ1 −𝑚1)!(ℓ1 +𝑚1)!(ℓ2 −𝑚2)!(ℓ2 +𝑚2)! ×∑︁
𝑘

(−1)𝑘

𝑘!(ℓ1 + ℓ2 − ℓ− 𝑘)!(ℓ1 −𝑚1 − 𝑘)!(ℓ2 +𝑚2 − 𝑘)!(ℓ− ℓ2 +𝑚1 + 𝑘)!(ℓ− ℓ1 −𝑚2 + 𝑘)!

where the sum is over all 𝑘 for which the argument of every factorial is nonnegative.

C.1.3 Moment tensor

Let ℱ be a multi-set of frequencies from {1, 2, . . .} and consider the action of 𝐺 = SO(3)

on 𝑉 = ⊕ℓ∈ℱ𝑉ℓ. Recall that we want an explicit formula for 𝑇𝑑(x) = E𝑔[(Π(𝑔 · x))⊗𝑑] with
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𝑔 ∼ Haar(𝐺) (where Π can be the identity in the case of no projection). We have

E𝑔[(Π(𝑔 · x))⊗𝑑] = Π⊗𝑑E𝑔[𝜌(𝑔)
⊗𝑑]x⊗𝑑

(where x⊗𝑑 is a column vector of length dim(𝑉 )𝑑) and so we need an explicit formula for the

matrix E𝑔[𝜌(𝑔)
⊗𝑑]. Here 𝜌(𝑔) is block diagonal with blocks 𝐷ℓ(𝑔) for ℓ ∈ ℱ . There are no

degree-1 invariants since we have excluded the trivial representation ℓ = 0. For the degree-2

invariants E𝑔[𝜌(𝑔)
⊗2], consider a particular block E𝑔[𝐷

ℓ1(𝑔) ⊗𝐷ℓ2(𝑔)] for some pair (ℓ1, ℓ2).

The entries in this block can be computed using the above orthogonality relations (and using

𝐷0
00(𝑔) = 1):

E𝑔[(𝐷
ℓ1(𝑔))𝑚1𝑘1(𝐷

ℓ2(𝑔))𝑚2𝑘2 ] = 1ℓ1=ℓ21𝑚1=−𝑚21𝑘1=−𝑘2⟨ℓ1𝑚1 ℓ2𝑚2|0 0⟩⟨ℓ1 𝑘1 ℓ2 𝑘2|0 0⟩

= 1ℓ1=ℓ21𝑚1=−𝑚21𝑘1=−𝑘2

(−1)𝑚1+𝑘1

2ℓ1 + 1

using the special case ⟨ℓ1𝑚1 ℓ2𝑚2|0 0⟩ = 1ℓ1=ℓ21𝑚1=−𝑚2

(−1)ℓ1+𝑚1√
2ℓ1+1

.

Similarly, for degree 3 we have

E𝑔[(𝐷
ℓ1(𝑔))𝑚1𝑘1(𝐷

ℓ2(𝑔))𝑚2𝑘2(𝐷
ℓ3(𝑔))𝑚3𝑘3 ] =

1|ℓ2−ℓ3|≤ℓ1≤ℓ2+ℓ31𝑚1+𝑚2+𝑚3=01𝑘1+𝑘2+𝑘3=0
(−1)𝑚1+𝑘1

2ℓ1 + 1
⟨ℓ2𝑚2 ℓ3𝑚3|ℓ1 (𝑚2 +𝑚3)⟩⟨ℓ2 𝑘2 ℓ3 𝑘3|ℓ1 (𝑘2 + 𝑘3)⟩.

C.1.4 Projection

Let 𝑉 = ⊕ℓ∈ℱ𝑉ℓ with ℱ a subset of {1, 2, . . .}. Let Π : 𝑉 → 𝑊 be the projection that takes

a complex spherical harmonic function and reveals only its values on the equator 𝜃 = 𝜋/2.

In cryo-EM this projection is applied separately to each shell (see Section 4.4.5). Letting

𝐿 = maxℓ∈ℱ ℓ, the functions 𝑏−𝐿, 𝑏−𝐿+1, . . . , 𝑏𝐿 (from the circle 𝑆1 to R) form a basis for 𝑊 ,

where 𝑏𝑚(𝜑) = 𝑒𝑖𝑚𝜑. The projection Π takes the form

Π(𝑌ℓ𝑚) = (−1)𝑚𝑁ℓ𝑚𝑃
𝑚
ℓ (0)𝑏𝑚
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extended by linearity. By taking a binomial expansion of (𝑥2 − 1)ℓ it can be shown that

𝑃𝑚
ℓ (0) =

⎧⎨⎩ 0 (ℓ+𝑚) odd,
(−1)(ℓ−𝑚)/2

2ℓℓ!

(︀
ℓ

(ℓ+𝑚)/2

)︀
(ℓ+𝑚)! (ℓ+𝑚) even.

(C.2)

For cryo-EM, if we use the basis 𝐻ℓ𝑚 so that the expansion coefficients are real, the

output of the projection can be expressed (with real coefficients) in the basis

ℎ𝑚(𝜑) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1√
2
(𝑒𝑖𝑚𝜑 + (−1)𝑚𝑒−𝑖𝑚𝜑) 𝑚 > 0,

1 𝑚 = 0,

𝑖√
2
(𝑒𝑖|𝑚|𝜑 − (−1)𝑚𝑒−𝑖|𝑚|𝜑) 𝑚 < 0,

where the projection Π takes the form

Π(𝐻ℓ𝑚) = (−1)𝑚𝑁ℓ|𝑚|𝑃
|𝑚|
ℓ (0)ℎ𝑚

extended by linearity.

C.1.5 Explicit construction of invariants

Consider the cryo-EM setup (see Section 4.4.5) with 𝑆 shells and 𝐹 frequencies. We will

cover 𝑆2 registration as the special case 𝑆 = 1 (without projection). Use the basis of complex

spherical harmonics, with corresponding variables 𝑥𝑠ℓ𝑚 with 1 ≤ 𝑠 ≤ 𝑆, 1 ≤ ℓ ≤ 𝐹 , and

−ℓ ≤ 𝑚 ≤ ℓ. One can change variables to 𝑆ℓ𝑚 or 𝐻ℓ𝑚 but for our purposes of testing the

rank of the Jacobian it is sufficient to just work with 𝑌ℓ𝑚 (since the change of variables has

no effect on the rank of the Jacobian).

Recall that in Section C.1.3 we computed expressions for the matrices E𝑔[𝐷
ℓ1(𝑔)⊗𝐷ℓ2(𝑔)]

and E𝑔[𝐷
ℓ1(𝑔) ⊗ 𝐷ℓ2(𝑔) ⊗ 𝐷ℓ3(𝑔)], and in particular they are rank-1. Using this we can

explicitly compute the entries of 𝑇𝑑(x) and thus extract a basis for 𝑈𝑇
2 and 𝑈𝑇

3 . We present

the results below.
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Degree-2 invariants

Without projection, the degree-2 invariants are

ℐ2(𝑠1, 𝑠2, ℓ) =
1

2ℓ+ 1

∑︁
|𝑘|≤ℓ

(−1)𝑘𝑥𝑠1ℓ𝑘𝑥𝑠2ℓ(−𝑘)

for 𝑠1, 𝑠2 ∈ {1, . . . , 𝑆} and ℓ ∈ {1, . . . , 𝐹}. Swapping 𝑠1 with 𝑠2 results in the same invariant,

so take 𝑠1 ≤ 𝑠2 to remove redundancies.

With projection, the degree-2 invariants are

𝒫2(𝑠1, 𝑠2,𝑚) = (−1)𝑚
∑︁
ℓ≥|𝑚|

𝑁ℓ𝑚𝑁ℓ(−𝑚)𝑃
𝑚
ℓ (0)𝑃−𝑚

ℓ (0)ℐ2(𝑠1, 𝑠2, ℓ)

with 𝑠1, 𝑠2 ∈ {1, . . . , 𝑆} and 𝑚 ∈ {−𝐹, . . . , 𝐹}. Negating 𝑚 or swapping 𝑠1 with 𝑠2 results

in the same invariant (up to sign) so take 𝑠1 ≤ 𝑠2 and 𝑚 ≥ 0 to remove redundancies. Recall

the expression (C.2) for 𝑃𝑚
ℓ (0).

Degree-3 invariants

Let Δ(ℓ1, ℓ2, ℓ3) denote the predicate |ℓ2−ℓ3| ≤ ℓ1 ≤ ℓ2+ℓ3 (which captures whether ℓ1, ℓ2, ℓ3

can be the side-lengths of a triangle). Without projection, the degree-3 invariants are

ℐ3(𝑠1, ℓ1, 𝑠2, ℓ2, 𝑠3, ℓ3) =
1

2ℓ1 + 1

∑︁
𝑘1+𝑘2+𝑘3=0

|𝑘𝑖|≤ℓ𝑖

(−1)𝑘1⟨ℓ2 𝑘2 ℓ3 𝑘3|ℓ1(−𝑘1)⟩𝑥𝑠1ℓ1𝑘1𝑥𝑠2ℓ2𝑘2𝑥𝑠3ℓ3𝑘3

for 𝑠𝑖 ∈ {1, . . . , 𝑆} and ℓ𝑖 ∈ {1, . . . , 𝐹} satisfying Δ(ℓ1, ℓ2, ℓ3). There are some redundancies

here. First, permuting the three (𝑠𝑖, ℓ𝑖) pairs (while keeping each pair in tact) results in the

same invariant (up to scalar multiple). Also, some of the above invariants are actually zero;

specifically, this occurs when (𝑠1, ℓ1) = (𝑠2, ℓ2) = (𝑠3, ℓ3) with ℓ1 odd, or when (𝑠1, ℓ1) =

(𝑠2, ℓ2) ̸= (𝑠3, ℓ3) with ℓ3 odd (or some permutation of this case).
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With projection, the degree-3 invariants are

𝒫3(𝑠1,𝑚1, 𝑠2,𝑚2, 𝑠3,𝑚3) =

(−1)𝑚1

∑︁
ℓ1,ℓ2,ℓ3 :Δ(ℓ1,ℓ2,ℓ3)

𝑁ℓ1𝑚1𝑁ℓ2𝑚2𝑁ℓ3𝑚3𝑃
𝑚1
ℓ1

(0)𝑃𝑚2
ℓ2

(0)𝑃𝑚3
ℓ3

(0)⟨ℓ2𝑚2 ℓ3𝑚3|ℓ1(−𝑚1)⟩ℐ3(𝑠1, ℓ1, 𝑠2, ℓ2, 𝑠3, ℓ3)

for 𝑠𝑖 ∈ {1, . . . , 𝑆} and 𝑚𝑖 ∈ {−𝐹, . . . , 𝐹} such that 𝑚1 + 𝑚2 + 𝑚3 = 0. There are again

redundancies under permutation: permuting the three (𝑠𝑖,𝑚𝑖) pairs results in the same

invariant. Negating all three 𝑚’s also results in the same invariant. There are additional

non-trivial linear relations (see Section C.1.6 below).

C.1.6 Counting the number of invariants

𝑆2 registration

For the case of 𝑆2 registration (𝑆 = 1) the above degree-2 and degree-3 invariants without

projection (with redundancies removed as discussed above) form a basis for R[x]𝐺2 ⊕ R[x]𝐺3
(although we have not made this rigorous). Thus, counting these invariants gives a combi-

natorial analogue of Proposition 4.4.7.

Cryo-EM

In this section we give a formula for trdeg(𝑈𝑇
≤3) for (heterogeneous) cryo-EM (with projec-

tion), valid for all 𝐾 ≥ 1, 𝑆 ≥ 1 and 𝐹 ≥ 2. The formula is conjectural but has been tested

(via the Jacobian criterion) for various small values of 𝐾,𝑆, 𝐹 .

The number of algebraically independent degree-2 invariants turns out to be the number

of distinct ℐ2 invariants (i.e. without projection). The number of such invariants is 1
2
𝑆(𝑆 +

1)𝐹 .

For degree 3, things are more complicated because the projected invariants 𝒫3 have

smaller dimension than the ℐ3. We start by counting the number of distinct (up to scalar

multiple) 𝒫3 invariants. To this end, let 𝒳 (𝑆, 𝐹 ) be the set of equivalence classes of tuples
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(𝑠1,𝑚1, 𝑠2,𝑚2, 𝑠3,𝑚3) with 𝑠𝑖 ∈ {1, . . . , 𝑆} and 𝑚𝑖 ∈ {−𝐹, . . . , 𝐹}, modulo the relations

(𝑠1,𝑚1, 𝑠2,𝑚2, 𝑠3,𝑚3) ∼ (𝑠2,𝑚2, 𝑠1,𝑚1, 𝑠3,𝑚3) ∼ (𝑠1,𝑚1, 𝑠3,𝑚3, 𝑠2,𝑚2) (permutation)

(𝑠1,𝑚1, 𝑠2,𝑚2, 𝑠3,𝑚3) ∼ (𝑠1,−𝑚1, 𝑠2,−𝑚2, 𝑠3,−𝑚3) (negation).

There are some non-trivial linear relations among the distinct 𝒫3 invariants, which we must

now account for. The number of such relations is

𝐸(𝑆) , 2𝑆 + 4𝑆(𝑆 − 1) + 𝑆(𝑆 − 1)(𝑆 − 2).

This can be broken down as follows. For each 𝑘 ∈ {1, 2, 3} there are 2𝑘 relations for each

size-3 multi-subset {𝑠1, 𝑠2, 𝑠3} of {1, . . . , 𝑆} with exactly 𝑘 distinct elements. (We do not

currently have a thorough understanding of what exactly the linear relations are, but we

have observed that the above pattern holds.)

We can now put it all together and state our conjecture. We will also use the formula

(4.3) for trdeg(R[x]𝐺), extended to the heterogeneous case via Proposition 4.3.15.

Conjecture C.1.1. Consider heterogeneous cryo-EM with 𝐹 ≥ 2 frequencies.

∙ trdeg(R[x]𝐺) = 𝐾[𝑆(𝐹 2 + 2𝐹 )− 3] +𝐾 − 1,

∙ dim(𝑈𝑇
2 ) =

1
2
𝑆(𝑆 + 1)𝐹 ,

∙ dim(𝑈𝑇
3 ) = |𝒳 (𝑆, 𝐹 )| − 𝐸(𝑆),

∙ generic list recovery is possible at degree 3 if and only if dim(𝑈𝑇
2 ) + dim(𝑈𝑇

3 ) ≥

trdeg(R[x]𝐺).

When 𝑆 and 𝐹 are large, the dominant term in dim(𝑈𝑇
2 ) + dim(𝑈𝑇

3 ) is |𝒳 (𝑆, 𝐹 )| ≈ 𝑆3𝐹 2/4

and so generic list recovery is possible when (roughly) 𝐾 ≤ 𝑆2/4.

Remark C.1.2. When 𝑆 is large compared to 𝐹 we have dim(𝑈𝑇
2 ) > trdeg(R[x]𝐺) and so

we might expect generic list recovery to be possible at degree 2. However, this appears to
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not be the case because unexpected algebraic dependencies are encountered in this regime,

i.e. trdeg(𝑈𝑇
2 ) < trdeg(R[x]𝐺) < dim(𝑈𝑇

2 ). We have not observed instances where such

unexpected algebraic dependencies affect the feasibility of generic list recovery at degree 3.
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