Optimality of AMP Among Low-Degree Polynomials

Alex Wein University of California, Davis Department of Mathematics

Joint work with Andrea Montanari (Stanford)

 θ – unknown vector with entries iid from known fixed prior π

Goal: given *Y*, estimate θ

Simple "signal plus noise" model, testbed

What Are The Best Algorithms?

AMP for Spiked Wigner Model $Y = \frac{s}{\sqrt{n}} \theta \theta^{T} + Z$

Main Result

Conjecture

AMP has optimal MSE among all poly-time algorithms

Theorem (Montanari, **W** '22) AMP has optimal MSE among all constant-degree polynomials

AMP (with const num iter) takes the form $(\hat{\theta}_1(Y), \dots, \hat{\theta}_n(Y))$ where $\hat{\theta}_i$ is a const-deg multivariate polynomial in the entries of *Y*

We show AMP is the <u>best</u> estimator of this form; sharp constant

Comments

Biased prior: $\mathbb{E}[\pi] \neq 0$

Open: mean-zero prior π , $O(\log n)$ iterations/degree

Open: rule out higher degree polynomials conjecture: need degree $n^{1-o(1)}$ to beat AMP

AMP is sub-optimal for tensor PCA [Montanari,Richard'14] Kikuchi hierarchy "redeems" physics [W,Alaoui,Moore'19]

Proof suggests how to test if AMP is optimal for a given problem

Low-Degree Estimation Lower Bounds

Given *Y*, estimate θ_1

Predictor: $MMSE_{\leq D} \coloneqq \inf_{p \text{ deg } D} \mathbb{E}[(p(Y) - \theta_1)^2]$

- Planted submatrix, planted dense subgraph [Schramm,W'20]
- Hypergraphic planted dense subgraph [Luo,Zhang'20]
- Tensor decomposition [W'22]

This work: exact value of $\lim_{D \to \infty} \lim_{n \to \infty} MMSE_{\leq D}$

$Y = \frac{s}{\sqrt{n}} \theta \theta^{T} + Z$ **Proof Sketch: AMP vs Low-Deg**

- I. AMP is as powerful as any "tree-shaped" polynomial
- II. Tree-shaped polynomials are as powerful as all polynomials (of the same degree)

 $f(Y) = Y_{13}Y_{14}Y_{46}Y_{47}$

 $g(Y) = Y_{12}Y_{15}Y_{25}Y_{58}^2$

$Y = \frac{s}{\sqrt{n}} \theta \theta^{\top} + Z$

I. AMP vs Tree Polynomials

Claim: $\lim_{t \to \infty} \lim_{n \to \infty} MSE_t^{AMP} = \lim_{D \to \infty} \lim_{n \to \infty} MMSE_{\leq D}^{Tree}$

 (\geq) AMP is a tree polynomial

 (\leq) Consider the best tree polynomial, WLOG symmetric

Given any symmetric const-deg tree polynomial, can construct a "message-passing" (MP) scheme to compute it

Prior work: AMP has best MSE among all MP schemes [Celentano,Montanari,Wu'20; Montanari,Wu'22]

$$Y = \frac{s}{\sqrt{n}} \theta \theta^{\mathsf{T}} + Z$$

II. Tree Poly vs All Poly

Remains to prove: $\lim_{n \to \infty} MMSE_{\leq D}^{Tree} = \lim_{n \to \infty} MMSE_{\leq D}$ (rest of talk)

Conclude:

 $\lim_{t \to \infty} \lim_{n \to \infty} MSE_t^{AMP} = \lim_{D \to \infty} \lim_{n \to \infty} MMSE_{\leq D}^{Tree} = \lim_{D \to \infty} \lim_{n \to \infty} MMSE_{\leq D}$ $AMP \qquad Tree Poly \qquad All Poly$

$$Y = \frac{s}{\sqrt{n}} \theta \theta^{\mathsf{T}} + Z$$

II. Tree Poly vs All Poly

Remains to prove: $\lim_{n \to \infty} MMSE_{\leq D}^{Tree} = \lim_{n \to \infty} MMSE_{\leq D}$

$$\mathsf{MMSE}_{\leq D} \coloneqq \inf_{p \deg D} \mathbb{E}[(p(Y) - \theta_1)^2] = \mathbb{E}[\theta_1^2] - c^\top M^{-1}c$$

where:

 $\{H_A\}$ – basis for (symmetric) const-deg polynomials $c_A \coloneqq \mathbb{E}[H_A(Y) \cdot \theta_1] \qquad M_{AB} \coloneqq \mathbb{E}[H_A(Y) \cdot H_B(Y)]$

(see board)

Summary

Equivalence of constant-iter AMP and constant-degree polynomials in the spiked Wigner model with any fixed prior

AMP = tree polynomials = all polynomials

Key property of Wigner model for "tree = all": block diagonal use this to test if AMP is optimal for a given problem?

Thanks!