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Splked Wigner I\/I()del signal-to-noise ratio s > 0

Y = > 00" + 7
Vn

observed data, n-by-n matrix

rank-1 “signal” lid Gaussian “noise

6 — unknown vector with entries iid from known fixed prior

Goal: given Y, estimate 6
Simple “signal plus noise” model, testbed



What Are The Best Algorithms?
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AMP for Spiked Wigner Model
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Main Result 5.
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AMP has optimal MSE among all poly-time algorithms

Theorem (Montanari, W 22)
AMP has optimal MSE among all

AMP (with const num iter) takes the form (8,(Y), ..., 8,,(Y)) where
6, is a const-deg multivariate polynomial in the entries of Y

We show AMP is the best estimator of this form; sharp constant



Comments
Biased prior: E[r] # 0
Open: mean-zero prior r, O(logn) iterations/degree

Open: rule out higher degree polynomials
conjecture: need degree n'=°W to beat AMP

AMP Is sub-optimal for tensor PCA
Kikuchi hierarchy “redeems” physics

Proof suggests how to test if AMP is optimal for a given problem



Low-Degree Estimation Lower Bounds

Given 'Y, estimate 6,

Want to understand MMSE. |, = CilnfD E[(p(Y) — 6,)?]
p deg

* Planted submatrix, planted dense subgraph

« Hypergraphic planted dense subgraph

« Tensor decomposition

This work: exact value of lim lim MMSE_,

D—oo n—>oo



Y = \/S—EHHT +Z
Proof Sketch: AMP vs Low-Deg
.  AMP is as powerful as any “tree-shaped” polynomial

Il. Tree-shaped polynomials are as powerful as all
polynomials (of the same degree)
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Y =—00" +Z
l. AMP vs Tree Polynomials

Claim: lim lim MSE2MP = lim lim MMSE.lLee

t—>00 n—oo D—0oo0 n—oo

(=) AMP is a tree polynomial
(<) Consider the best tree polynomial, WLOG symmetric

Given any symmetric const-deg tree polynomial, can construct
a “message-passing” (MP) scheme to compute it

Prior work: AMP has best MSE among all MP schemes



Y = \/S—EHHT +7Z
Il. Tree Poly vs All Poly

Remains to prove: lim MMSE!®® = lim MMSE., (rest of talk)

n—0~oo n—>00

Conclude:

lim lim MSE2MP = lim lim MMSE.IL® = lim lim MMSE.,

t—>00 n—oo D—>00 n—>oo D—>00 n—>oo
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Y =—600"+2Z

Il. Tree Poly vs All Poly

Remains to prove: lim MMSE!®® = lim MMSE_,

n—0~oo n—>00

MMSE<p = . érelgD E[(p(Y) — 61)*] = E[6f] —c"M~'c

where:
{H,} — basis for (symmetric) const-deg polynomials

Cq = E[Ha(Y) - 04] Myp == E[Ha(Y) - Hp(Y)]



Goal: lim MMSE.L® = lim MMSE_,,

Nn—>00 n—00

MMSE., = E[62] —

cq = E[Ha(Y) - 04] Myp = E[Hy(Y) - Hg(Y)]
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Summary

Equivalence of constant-iter AMP and constant-degree
polynomials in the spiked Wigner model with any fixed prior

AMP = tree polynomials = all polynomials

Key property of Wigner model for “tree = all”: block diagonal
use this to test if AMP is optimal for a given problem?

Thanks!
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