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Stochastic Block Model (SBM)
Model for community detection in graphs

Introduced by Holland, Laskey and Leinhardt (1983)

● Vertices partitioned into 2 hidden communities

● Connection probabilities p > q

● Edges independent

Goal: recover communities (exactly or approximately)

Studied in statistics, information theory, computer science, statistical physics, ...
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Optimal Algorithms

Dense regime (exact recovery):

● Spectral/combinatorial clustering + local 
refinement [MNS’14, AS’15]

● Semidefinite programming (SDP)        
[ABH’14, HWX’15, Ban’15]

Sparse regime (partial recovery):

● (Linearized) belief propagation + variants
[Mas’14, MNS’13, BLM’15, MNS’14]

● SDPs can get close to the threshold, but 
haven’t been able to reach it [GV’15, MS’15]

In both settings, there are efficient algorithms known to work up to the threshold:

Can SDPs reach the threshold in the sparse regime, or are they suboptimal?

Answer: We will give evidence that SDPs cannot reach the threshold! — but only because they are 
actually solving a harder problem.
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For stochastic block model [Feige-Kilian ’00]:
1. Draw a random graph from the usual SBM
2. An adversary can perform any number of 

monotone (‘helpful’) changes:
a. Add edges within communities
b. Remove edges between communities

Prevents algorithms from over-tuning to specific
model statistics (degree distribution, spectrum, etc.)

Captures some notion of ‘robustness’

“random model”
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Example: p = ½, q = ¼, n           , exact recovery

Easy algorithm for the random model: count common neighbors

● 2 same-side vertices have           common neighbors
● 2 opposite-side vertices have           common neighbors

Semirandom model: adversary can break this — add a clique on one community

● 2 left-side vertices still have           common neighbors
● 2 opposite-side vertices now have           common neighbors

The vast majority of algorithms fail against the semirandom model!

A Non-robust Algorithm
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Robust Algorithms
Monotone-robust algorithm: succeeds against the semirandom model
● In this talk, “robust” means monotone-robust

Only one method is known to be robust: convex programming!

For exact recovery: SDP is robust up to the threshold [Feige–Kilian ’00, Hajek–Wu–Xu ’15]

For partial recovery: harder…                    recall: threshold is                      

● In random model, SDP works when                             [Guédon–Vershynin ’15]

● SDP is robust under same condition
[Moitra–Perry–W ’15, Makarychev–Makarychev–Vijayaraghavan ’15]

● Open: Can [Montanari–Sen ’15] analysis be made robust?

http://arxiv.org/find/math,stat/1/au:+Guedon_O/0/1/0/all/0/1
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Main Result
Theorem: Partial recovery is strictly harder in the semirandom model than in the 
random model — ‘helpful’ changes can hurt!

Random: impossible iff

Semirandom: impossible if

where      for all

● No algorithm can robustly reach the threshold!

● First random-to-semirandom gap

● Gap only exists for partial recovery
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Can SDPs reach the threshold?
Our result: No algorithm for partial recovery can robustly reach the threshold

Doesn’t technically imply that SDPs cannot reach the threshold
● No proof that if SDP succeeds in random model, then it is robust

(i.e. succeeds in the semirandom model for the same range of parameters a,b)

But it does give evidence that SDPs cannot reach the threshold
● Formally: No [GV’15]-type SDP analysis succeeds up to threshold

Additional evidence: statistical physics predicts (non-rigorous) that SDP misses 
the threshold [JMR’15]
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Proof Idea: How can ‘helpful’ changes hurt?
Our adversary: look for degree-2 nodes with 2 
opposite-side neighbors; cut both edges

Sparse graph: this occurs often

“Long edge” within a community

We prove that this makes partial recovery strictly 
harder (information-theoretically)

Interpretation: algorithms reaching the threshold
(e.g. linearized belief propagation) rely on the 
distribution of these structures in the noise
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Proof Idea 
Goal: show that with our adversary, partial recovery is impossible in some region 
strictly above the threshold

We adapt the original proof of [Mossel–Neeman–Sly ’13] that shows impossibility 
below the threshold (in the random model)

Sparse graphs are locally-tree-like
● A vertex’s O(log n)-radius neighborhood is a tree with high probability

Use connection to broadcast tree model
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Broadcast Tree Model
2 colors: red, blue (corresponding to 2 communities)

Recursively, each node gives birth to:
● Pois(a/2) nodes of same color, and
● Pois(b/2) nodes of opposite color

(Resembles neighborhood of graph!)

Q: When can you recover the root color from 
the leaf colors? (as tree depth             )

Answer: when                             Look familiar?
[Kesten-Stigum ’66, Evans-Kenyon-Peres-Schulman ’00]
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New phenomenon: random-to-semirandom gap (only in partial recovery)
● Does this phenomenon occur elsewhere?

Statistical physics (i.e. belief propagation) exactly achieves the recovery threshold
● But at what cost? Lacks robustness.

Convex optimization (i.e. SDP) falls slightly short of the threshold but holds onto 
robustness.
● Missing the threshold is necessary — robust problem is strictly harder.

What price do we pay (in terms of robustness) in order to reach 
information-theoretic thresholds?

Thanks! Questions?


