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• Planted signal (e.g. low rank or sparse structure) in high-dimensional 

random noise (e.g. large random matrix/graph)
• Example: planted clique problem

• 𝐺(𝑛, 1/2)  +  {𝑘-clique}

• Goal: find the 𝑘-clique, w.h.p.

• Statistical-computational gap
• Impossible: Any estimator fails [Arias-Castro, Verzelen ‘14]

• Easy: Poly-time algorithm exists [Alon, Krivelevich, Sudakov ‘98]

• Hard (?): Possible by “brute force” but no poly-time algorithm known
• How to prove the hardness is fundamental…

• Other examples: sparse PCA, community detection, clustering, …
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Hard Regime
• In what sense can we prove the “hard” regime is hard?
• This is average-case, so (worst-case) NP-hardness does not apply

• Max clique is NP-hard but can still solve planted clique for some 𝑘

• Instead, various approaches to average-case hardness:
• Conditional hardness via reductions

• Popular starting assumptions: planted clique conjecture, shortest vector on lattices, …
• Unconditional failure of restricted classes of algorithms

• Sum-of-squares hierarchy (SOS)
• Statistical query model (SQ)
• Approximate message passing (AMP)
• Overlap gap property (OGP)
• …
• Low-degree polynomials (main focus)
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• Weak detection: Decide if a given graph came from ℙ or ℚ, w.p. ≥ 1

2
+ Ω(1)

• Generally, recovery is more difficult than detection
• For planted clique, both have the same thresholds
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2𝑝
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2𝑝   for  𝑝 = Θ(log 𝑛)  (degree-2𝑝 polynomial)

• Polynomials of “low” degree 𝑂(log 𝑛) capture various algorithms…
• Spectral methods; AMP; subgraph counts, e.g. triangle count σ𝑖<𝑗<ℓ 𝑌𝑖𝑗𝑌𝑖ℓ𝑌𝑗ℓ
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a concrete form of hardness
• Idea arose from sum-of-squares, but can also be motivated directly

[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ‘16]
[Hopkins, Steurer ‘17]
[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ‘17]
[Hopkins ‘18]

• Objection: Are low-degree polynomials efficiently computable?
• A degree-𝐷 polynomial in 𝑛Θ(1) variables has 𝑛𝑂(𝐷) terms
• So a degree-𝑂(1) polynomial can be computed in poly time, but a degree-

𝑂(log 𝑛) polynomial cannot in general
• The point is: degree-𝑂(log 𝑛) polynomials capture important classes of poly-

time algorithms, so if they fail, this rules out various approaches
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• Let’s prove that all low-degree polynomials fail in the “hard” regime
• Define “success” for low-degree polynomials, starting with recovery:

• Aim to estimate a scalar value, 𝑥 ≔ 𝟙1∈clique  (is vertex 1 in the clique?)

• Low-degree estimator: polynomial 𝑓: {0,1}
𝑛
2 → ℝ of degree ≤ 𝐷 = 𝐷𝑛

• MMSE≤𝐷 ≔ inf
𝑓 deg 𝐷

Eℙ (𝑓 𝑌 − 𝑥 2]

Theorem [Schramm, W ‘20] In the planted clique model,

• (Hard) If 𝑘 ≤ 𝑛1/2−Ω(1) then MMSE≤𝑂(log 𝑛) = 1 − 𝑜 1 Var(𝑥)
• No better than the trivial degree-0 estimator 𝑓 𝑌 = E[𝑥]

• (Easy) If 𝑘 ≥ 𝑛1/2+Ω(1) then MMSE≤𝑂(1) = 𝑜(1/𝑛)
• Small enough to guarantee exact recovery
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Low-Degree Hardness (Detection)
• Definition: 𝑓 strongly separates ℙ and ℚ if

max{Varℙ 𝑓 , Varℚ(𝑓)} = 𝑜 Eℙ 𝑓 − Eℚ 𝑓

• Strong separation ⇒ strong detection
• Proof: Chebyshev

• Similarly, weak separation -- replace 𝑜(… ) by 𝑂(… )

Theorem [BHKKMP ‘16] In the planted clique model,
• (Hard) If 𝑘 ≤ 𝑛1/2−Ω(1), no degree-𝑂(log 𝑛) polynomial strongly (or 

even weakly) separates ℙ and ℚ
• (Easy) If 𝑘 ≥ 𝑛1/2+Ω(1), some degree-1 polynomial (edge count) 

strongly separates ℙ and ℚ
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• Right, we’ve only ruled out the “natural analysis” via Chebyshev
• Open: Rule out thresholding (PTF tests)
• Or even better, rule out any post-processing to a low-degree polynomial

• Fair point, but I also want to defend “separation”…
• Captures known upper bounds in the “easy” regime
• We have widely-applicable tools to rule it out in the “hard” regime
• Separation is analogous to MMSE≤𝐷

• Strong separation is equivalent to MMSE≤𝐷 = 𝑜 1  in the following recovery problem: 
draw 𝑥 ∼ {0,1} uniformly, observe 𝑌 drawn from ℙ (if 𝑥 = 1) or ℚ (if 𝑥 = 0), estimate 𝑥

• MMSE≤𝐷 has the same flaw: even if you prove it’s large, you haven’t ruled out exact 
recovery by thresholding a polynomial
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• More ambitious perspective: Polynomial degree is a proxy for runtime
• Heuristic: degree-𝑂 1 ⊆ polynomial time ⊆ degree-𝑂(log 𝑛)

• Some high-degree polynomials can be computed quickly…
• So, to argue that strong detection can’t be done in polynomial time, 

we should prove that strong separation can’t be done by degree-𝐷 
polynomials, for some 𝐷 = 𝜔(log 𝑛) or (ideally) higher

• Ideally, also prove that some degree-𝑂(log 𝑛) polynomial achieves 
strong separation in the “easy” regime

• Heuristic for higher runtimes: degree-𝑛𝛿  ≈ time-exp(𝑛𝛿±𝑜 1 )
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• The “low-degree conjecture” is the informal belief that: for some 

class of “natural statistical problems,” if degree-𝑂(log 𝑛) polynomials 
fail then so do all poly-time algorithms

• To make this formal, we need to specify the class of problems…
• Should be “noise-robust”, “highly-symmetric”, …
• Attempt by [Hopkins ‘18] recently refuted* [Buhai, Hsieh, Jain, Kothari ‘25]

• And even if true, this conjecture covered a limited range of problems

• How to know if a new problem “counts”?
• More of an art than a science
• We learn more as we find more counterexamples
• Should be cautious about conjectures
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• Sufficient:
sup

𝑓 deg 𝐷

Eℙ 𝑓 − Eℚ 𝑓

max{Varℙ 𝑓 , Varℚ(𝑓)}

= 𝑂(1)

• Sufficient:
Adv≤𝐷 ≔ sup

𝑓 deg 𝐷

Eℙ 𝑓

Eℚ 𝑓2

= 𝑂(1)

• “Advantage” a.k.a. “norm of the low-degree likelihood ratio”  𝐿≤𝐷
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Eℙ 𝑓

Eℚ 𝑓2
= σ𝑖 Eℙ ℎ𝑖

2  where  {ℎ𝑖} is a basis of 

orthonormal polynomials for ℝ 𝑌 ≤𝐷  under ℚ:  E𝑌∼ℚ ℎ𝑖 𝑌 ℎ𝑗(𝑌) = 𝛿𝑖𝑗

• E.g. If 𝑌 ∼ ℚ has i.i.d. entries 𝑌1, … , 𝑌𝑁 ∼ Unif(±1), orthonormal 
polynomials are monomials 1, 𝑌1, 𝑌2, 𝑌1𝑌2, 𝑌1𝑌3, 𝑌1𝑌2𝑌3, … up to deg 𝐷

• Generally, can construct orthogonal polynomials when ℚ is a product 
measure (independent coordinates) ℚ
• First construct orthogonal polynomials for each coordinate…

• Proof (Fact):  Write  𝑓(𝑌) = σ𝑖
መ𝑓𝑖 ℎ𝑖(𝑌)  so  Eℚ 𝑓2 = σ𝑖

መ𝑓𝑖
2  …
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• The previous strategy led to an initial wave of success for low-degree 

hardness of testing “planted” vs (i.i.d.) “null” [HS ‘17, HKPRSS ‘17, …]

• Other cases are more difficult, but we do have tools…
• Sometimes Adv≤𝐷 = 𝜔(1) in the hard regime! But separation still tracks…
• ℚ not a product measure [Rush, Skerman, W, Yang ‘22]

• E.g. ℙ has two planted cliques while ℚ has one
• Not clear how to explicitly construct orthogonal polynomials for ℚ

• Recovery: bound MMSE≤𝐷 [Schramm, W ‘20]

• Sufficient: bound Corr≤𝐷 ≔ sup
𝑓 deg 𝐷

Eℙ 𝑓⋅𝑥

Eℙ 𝑓2

• Difficult for similar reason: would like orthogonal polynomials for ℙ…
• Solution: use orthogonal polynomials in the underlying (non-observable) 

independent variables [Sohn, W ‘25]
• For planted clique: 𝑍𝑖𝑗 ∼ Ber(1/2) for each 𝑖 < 𝑗 and 𝑥𝑖 ∼ Ber(𝑘/𝑛) for each vertex
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• Stochastic block model (community detection)

• Average degree 𝑑; SNR 𝜆; 𝑞 communities -- all Θ(1)

• Sharp “Kesten-Stigum” threshold: 𝑑𝜆2 = 1
• Conjectured computational threshold for strong detection & weak recovery

• Low-degree detection matches KS [Hopkins, Steurer ‘17]

• Low-degree recovery matches KS [Sohn, W ‘25; Ding, Hua, Slot, Steurer ‘25]

• Now take 𝑞 growing with 𝑛…
• Low-degree recovery matches KS for 𝑞 ≪ 𝑛… [Chin, Mossel, Sohn, W ‘25]

• … but you can beat KS when 𝑞 ≫ 𝑛

• Detection-recovery gap
• No other frameworks apply here (?)

Image credit: Abbe ‘17
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Connection to Other Heuristics
• AMP (approximate message passing)
• OGP (overlap gap property)
• SOS (sum-of-squares hierarchy)
• SQ (statistical query model)
• LD (low-degree polynomials)

• “Unify” these: Can we prove they all make the same predictions?

• Two issues:
1. Sometimes they are NOT equivalent…
2. Often they are not even answering the same question…
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Tensor PCA
• “Rank-1 tensor plus noise” -- 𝑇 ∈ ℝ𝑛×𝑛×𝑛

• AMP gets the “wrong” (sub-optimal) threshold [Montanari, Richard ‘14]

• OGP and “local search methods” also predict the same wrong 
threshold [Ben Arous, Gheissari, Jagannath ’18; Chen, Sheehan, Zadik ‘24]

• SQ also gets a different wrong threshold [Dudeja, Hsu ‘20]

• SOS, LD get the “correct” threshold [Hopkins, Shi, Steurer ’15; HKPRSS ‘17]

• “Redemption”
• Kikuchi hierarchy [W, Alaoui, Moore ‘19]
• Averaged gradient descent [Biroli, Cammarota, Ricci-Tersenghi ‘19]
• Modified MCMC [Lovig, Sheehan, Tsirkas, Zadik ‘25]
• … but somewhat problem-specific (?)
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Tasks
• Using planted clique as a running example…
• Detection (a.k.a. Testing): Decide if a given graph came from ℙ or ℚ
• Recovery (a.k.a. Estimation): Given 𝐺~ℙ, find the planted clique
• (Non-planted) Optimization: Given 𝐺~ℚ, find any 𝑘-clique
• Refutation (or Certification): Given 𝐺~ℚ, prove there’s no 𝑘-clique

• These tasks can all have different thresholds in general

Detection
(ℙ vs ℚ)

Recovery
(ℙ)

Refutation
(ℚ)

Optimization
(ℚ)

“dual”

ℙ ℚ



Frameworks vs Tasks
Which frameworks can give hardness results for which tasks?

AMP OGP SOS SQ LD

Detection

Recovery

Optimization

Refutation
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