
Low-Degree Polynomials:
Overview and Recent Developments

Alex Wein
University of California, Davis

New survey on arXiv, “Computational Complexity of Statistics: New Insights from Low-Degree Polynomials”

arXiv:2506.10748

“High-Dimensional Statistics”

“High-Dimensional Statistics”
• Planted signal (e.g. low rank or sparse structure) in high-dimensional

random noise (e.g. large random matrix/graph)

“High-Dimensional Statistics”
• Planted signal (e.g. low rank or sparse structure) in high-dimensional

random noise (e.g. large random matrix/graph)
• Example: planted clique problem

• 𝐺(𝑛, 1/2) + {𝑘-clique}

• Goal: find the 𝑘-clique, w.h.p.

𝑘 = 5

“High-Dimensional Statistics”
• Planted signal (e.g. low rank or sparse structure) in high-dimensional

random noise (e.g. large random matrix/graph)
• Example: planted clique problem

• 𝐺(𝑛, 1/2) + {𝑘-clique}

• Goal: find the 𝑘-clique, w.h.p.

• Statistical-computational gap
• Impossible: Any estimator fails [Arias-Castro, Verzelen ‘14]

• Easy: Poly-time algorithm exists [Alon, Krivelevich, Sudakov ‘98]

• Hard (?): Possible by “brute force” but no poly-time algorithm known

𝑘

easyhard?impossible

2 log2 𝑛 Ω(𝑛)1

𝑘 = 5

“High-Dimensional Statistics”
• Planted signal (e.g. low rank or sparse structure) in high-dimensional

random noise (e.g. large random matrix/graph)
• Example: planted clique problem

• 𝐺(𝑛, 1/2) + {𝑘-clique}

• Goal: find the 𝑘-clique, w.h.p.

• Statistical-computational gap
• Impossible: Any estimator fails [Arias-Castro, Verzelen ‘14]

• Easy: Poly-time algorithm exists [Alon, Krivelevich, Sudakov ‘98]

• Hard (?): Possible by “brute force” but no poly-time algorithm known
• How to prove the hardness is fundamental…

𝑘

easyhard?impossible

2 log2 𝑛 Ω(𝑛)1

𝑘 = 5

“High-Dimensional Statistics”
• Planted signal (e.g. low rank or sparse structure) in high-dimensional

random noise (e.g. large random matrix/graph)
• Example: planted clique problem

• 𝐺(𝑛, 1/2) + {𝑘-clique}

• Goal: find the 𝑘-clique, w.h.p.

• Statistical-computational gap
• Impossible: Any estimator fails [Arias-Castro, Verzelen ‘14]

• Easy: Poly-time algorithm exists [Alon, Krivelevich, Sudakov ‘98]

• Hard (?): Possible by “brute force” but no poly-time algorithm known
• How to prove the hardness is fundamental…

• Other examples: sparse PCA, community detection, clustering, …

𝑘

easyhard?impossible

2 log2 𝑛 Ω(𝑛)1

𝑘 = 5

Hard Regime

Hard Regime
• In what sense can we prove the “hard” regime is hard?

𝑘

easyhard?impossible

2 log2 𝑛 Ω(𝑛)1

Hard Regime
• In what sense can we prove the “hard” regime is hard?
• This is average-case, so (worst-case) NP-hardness does not apply

𝑘

easyhard?impossible

2 log2 𝑛 Ω(𝑛)1

Hard Regime
• In what sense can we prove the “hard” regime is hard?
• This is average-case, so (worst-case) NP-hardness does not apply

• Max clique is NP-hard but can still solve planted clique for some 𝑘

𝑘

easyhard?impossible

2 log2 𝑛 Ω(𝑛)1

Hard Regime
• In what sense can we prove the “hard” regime is hard?
• This is average-case, so (worst-case) NP-hardness does not apply

• Max clique is NP-hard but can still solve planted clique for some 𝑘

• Instead, various approaches to average-case hardness:

𝑘

easyhard?impossible

2 log2 𝑛 Ω(𝑛)1

Hard Regime
• In what sense can we prove the “hard” regime is hard?
• This is average-case, so (worst-case) NP-hardness does not apply

• Max clique is NP-hard but can still solve planted clique for some 𝑘

• Instead, various approaches to average-case hardness:
• Conditional hardness via reductions

• Popular starting assumptions: planted clique conjecture, shortest vector on lattices, …

𝑘

easyhard?impossible

2 log2 𝑛 Ω(𝑛)1

Hard Regime
• In what sense can we prove the “hard” regime is hard?
• This is average-case, so (worst-case) NP-hardness does not apply

• Max clique is NP-hard but can still solve planted clique for some 𝑘

• Instead, various approaches to average-case hardness:
• Conditional hardness via reductions

• Popular starting assumptions: planted clique conjecture, shortest vector on lattices, …
• Unconditional failure of restricted classes of algorithms

• Sum-of-squares hierarchy (SOS)
• Statistical query model (SQ)
• Approximate message passing (AMP)
• Overlap gap property (OGP)
• …
• Low-degree polynomials (main focus)

𝑘

easyhard?impossible

2 log2 𝑛 Ω(𝑛)1

Objectives: Detection vs Recovery

Objectives: Detection vs Recovery
• Planted distribution ℙ: 𝐺(𝑛, 1/2) + {random 𝑘-clique}

ℙ

𝑘

Objectives: Detection vs Recovery
• Planted distribution ℙ: 𝐺(𝑛, 1/2) + {random 𝑘-clique}

• Null distribution ℚ: 𝐺(𝑛, 1/2)

ℙ

ℚ

𝑘

Objectives: Detection vs Recovery
• Planted distribution ℙ: 𝐺(𝑛, 1/2) + {random 𝑘-clique}

• Null distribution ℚ: 𝐺(𝑛, 1/2)

• Recovery: Under ℙ, find the planted clique

ℙ

ℚ

𝑘

Objectives: Detection vs Recovery
• Planted distribution ℙ: 𝐺(𝑛, 1/2) + {random 𝑘-clique}

• Null distribution ℚ: 𝐺(𝑛, 1/2)

• Recovery: Under ℙ, find the planted clique
• Exact recovery: Recover the k vertices exactly, w.h.p. 1 − 𝑜(1) as 𝑛 → ∞

ℙ

ℚ

𝑘

Objectives: Detection vs Recovery
• Planted distribution ℙ: 𝐺(𝑛, 1/2) + {random 𝑘-clique}

• Null distribution ℚ: 𝐺(𝑛, 1/2)

• Recovery: Under ℙ, find the planted clique
• Exact recovery: Recover the k vertices exactly, w.h.p. 1 − 𝑜(1) as 𝑛 → ∞

• Detection: Distinguish ℙ vs ℚ (hypothesis testing)

ℙ

ℚ

𝑘

Objectives: Detection vs Recovery
• Planted distribution ℙ: 𝐺(𝑛, 1/2) + {random 𝑘-clique}

• Null distribution ℚ: 𝐺(𝑛, 1/2)

• Recovery: Under ℙ, find the planted clique
• Exact recovery: Recover the k vertices exactly, w.h.p. 1 − 𝑜(1) as 𝑛 → ∞

• Detection: Distinguish ℙ vs ℚ (hypothesis testing)
• Strong detection: Decide if a given graph came from ℙ or ℚ, w.h.p.

• Weak detection: Decide if a given graph came from ℙ or ℚ, w.p. ≥ 1

2
+ Ω(1)

ℙ

ℚ

𝑘

Objectives: Detection vs Recovery
• Planted distribution ℙ: 𝐺(𝑛, 1/2) + {random 𝑘-clique}

• Null distribution ℚ: 𝐺(𝑛, 1/2)

• Recovery: Under ℙ, find the planted clique
• Exact recovery: Recover the k vertices exactly, w.h.p. 1 − 𝑜(1) as 𝑛 → ∞

• Detection: Distinguish ℙ vs ℚ (hypothesis testing)
• Strong detection: Decide if a given graph came from ℙ or ℚ, w.h.p.

• Weak detection: Decide if a given graph came from ℙ or ℚ, w.p. ≥ 1

2
+ Ω(1)

• Generally, recovery is more difficult than detection

ℙ

ℚ

𝑘

Objectives: Detection vs Recovery
• Planted distribution ℙ: 𝐺(𝑛, 1/2) + {random 𝑘-clique}

• Null distribution ℚ: 𝐺(𝑛, 1/2)

• Recovery: Under ℙ, find the planted clique
• Exact recovery: Recover the k vertices exactly, w.h.p. 1 − 𝑜(1) as 𝑛 → ∞

• Detection: Distinguish ℙ vs ℚ (hypothesis testing)
• Strong detection: Decide if a given graph came from ℙ or ℚ, w.h.p.

• Weak detection: Decide if a given graph came from ℙ or ℚ, w.p. ≥ 1

2
+ Ω(1)

• Generally, recovery is more difficult than detection
• For planted clique, both have the same thresholds

𝑘

easyhard?impossible

2 log2 𝑛 Ω(𝑛)1

ℙ

ℚ

𝑘

What Are the Best Known Algorithms?
ℙ

ℚ

𝑘

What Are the Best Known Algorithms?
• Input variables: 𝑛

2
 edge-indicators 𝑌𝑖𝑗 ∈ {0,1} for 𝑖 < 𝑗

ℙ

ℚ

𝑘

What Are the Best Known Algorithms?
• Input variables: 𝑛

2
 edge-indicators 𝑌𝑖𝑗 ∈ {0,1} for 𝑖 < 𝑗

• Detection: Total edge count works for 𝑘 = 𝜔(𝑛)

ℙ

ℚ

𝑘

What Are the Best Known Algorithms?
• Input variables: 𝑛

2
 edge-indicators 𝑌𝑖𝑗 ∈ {0,1} for 𝑖 < 𝑗

• Detection: Total edge count works for 𝑘 = 𝜔(𝑛)
• 𝑓 𝑌 = σ𝑖<𝑗 𝑌𝑖𝑗 (degree-1 polynomial)

ℙ

ℚ

𝑘

What Are the Best Known Algorithms?
• Input variables: 𝑛

2
 edge-indicators 𝑌𝑖𝑗 ∈ {0,1} for 𝑖 < 𝑗

• Detection: Total edge count works for 𝑘 = 𝜔(𝑛)
• 𝑓 𝑌 = σ𝑖<𝑗 𝑌𝑖𝑗 (degree-1 polynomial)

• Recovery: Max-degree vertices works when 𝑘 ≥ 𝑐 𝑛 log 𝑛

ℙ

ℚ

𝑘

What Are the Best Known Algorithms?
• Input variables: 𝑛

2
 edge-indicators 𝑌𝑖𝑗 ∈ {0,1} for 𝑖 < 𝑗

• Detection: Total edge count works for 𝑘 = 𝜔(𝑛)
• 𝑓 𝑌 = σ𝑖<𝑗 𝑌𝑖𝑗 (degree-1 polynomial)

• Recovery: Max-degree vertices works when 𝑘 ≥ 𝑐 𝑛 log 𝑛
• Degree of vertex 𝑖: σ𝑗 𝑌𝑖𝑗 (degree-1 polynomial)

ℙ

ℚ

𝑘

What Are the Best Known Algorithms?
• Input variables: 𝑛

2
 edge-indicators 𝑌𝑖𝑗 ∈ {0,1} for 𝑖 < 𝑗

• Detection: Total edge count works for 𝑘 = 𝜔(𝑛)
• 𝑓 𝑌 = σ𝑖<𝑗 𝑌𝑖𝑗 (degree-1 polynomial)

• Recovery: Max-degree vertices works when 𝑘 ≥ 𝑐 𝑛 log 𝑛
• Degree of vertex 𝑖: σ𝑗 𝑌𝑖𝑗 (degree-1 polynomial)

• To get 𝑘 ≥ 𝑐 𝑛, use leading eigenvalue/eigenvector of signed
adjacency matrix 𝐴 = 𝐴𝑖𝑗 where 𝐴𝑖𝑗 = 2𝑌𝑖𝑗 − 1 ∈ ±1

ℙ

ℚ

𝑘

What Are the Best Known Algorithms?
• Input variables: 𝑛

2
 edge-indicators 𝑌𝑖𝑗 ∈ {0,1} for 𝑖 < 𝑗

• Detection: Total edge count works for 𝑘 = 𝜔(𝑛)
• 𝑓 𝑌 = σ𝑖<𝑗 𝑌𝑖𝑗 (degree-1 polynomial)

• Recovery: Max-degree vertices works when 𝑘 ≥ 𝑐 𝑛 log 𝑛
• Degree of vertex 𝑖: σ𝑗 𝑌𝑖𝑗 (degree-1 polynomial)

• To get 𝑘 ≥ 𝑐 𝑛, use leading eigenvalue/eigenvector of signed
adjacency matrix 𝐴 = 𝐴𝑖𝑗 where 𝐴𝑖𝑗 = 2𝑌𝑖𝑗 − 1 ∈ ±1

• Tr 𝐴2𝑝 = σ𝑖 𝜆𝑖
2𝑝

≈ 𝜆max
2𝑝 for 𝑝 = Θ(log 𝑛) (degree-2𝑝 polynomial)

ℙ

ℚ

𝑘

What Are the Best Known Algorithms?
• Input variables: 𝑛

2
 edge-indicators 𝑌𝑖𝑗 ∈ {0,1} for 𝑖 < 𝑗

• Detection: Total edge count works for 𝑘 = 𝜔(𝑛)
• 𝑓 𝑌 = σ𝑖<𝑗 𝑌𝑖𝑗 (degree-1 polynomial)

• Recovery: Max-degree vertices works when 𝑘 ≥ 𝑐 𝑛 log 𝑛
• Degree of vertex 𝑖: σ𝑗 𝑌𝑖𝑗 (degree-1 polynomial)

• To get 𝑘 ≥ 𝑐 𝑛, use leading eigenvalue/eigenvector of signed
adjacency matrix 𝐴 = 𝐴𝑖𝑗 where 𝐴𝑖𝑗 = 2𝑌𝑖𝑗 − 1 ∈ ±1

• Tr 𝐴2𝑝 = σ𝑖 𝜆𝑖
2𝑝

≈ 𝜆max
2𝑝 for 𝑝 = Θ(log 𝑛) (degree-2𝑝 polynomial)

• Polynomials of “low” degree 𝑂(log 𝑛) capture various algorithms…

ℙ

ℚ

𝑘

What Are the Best Known Algorithms?
• Input variables: 𝑛

2
 edge-indicators 𝑌𝑖𝑗 ∈ {0,1} for 𝑖 < 𝑗

• Detection: Total edge count works for 𝑘 = 𝜔(𝑛)
• 𝑓 𝑌 = σ𝑖<𝑗 𝑌𝑖𝑗 (degree-1 polynomial)

• Recovery: Max-degree vertices works when 𝑘 ≥ 𝑐 𝑛 log 𝑛
• Degree of vertex 𝑖: σ𝑗 𝑌𝑖𝑗 (degree-1 polynomial)

• To get 𝑘 ≥ 𝑐 𝑛, use leading eigenvalue/eigenvector of signed
adjacency matrix 𝐴 = 𝐴𝑖𝑗 where 𝐴𝑖𝑗 = 2𝑌𝑖𝑗 − 1 ∈ ±1

• Tr 𝐴2𝑝 = σ𝑖 𝜆𝑖
2𝑝

≈ 𝜆max
2𝑝 for 𝑝 = Θ(log 𝑛) (degree-2𝑝 polynomial)

• Polynomials of “low” degree 𝑂(log 𝑛) capture various algorithms…
• Spectral methods; AMP; subgraph counts, e.g. triangle count σ𝑖<𝑗<ℓ 𝑌𝑖𝑗𝑌𝑖ℓ𝑌𝑗ℓ

ℙ

ℚ

𝑘

Low-Degree Hardness

Low-Degree Hardness
• Prove failure of degree-𝑂(log 𝑛) polynomials in the “hard” regime, as

a concrete form of hardness

Low-Degree Hardness
• Prove failure of degree-𝑂(log 𝑛) polynomials in the “hard” regime, as

a concrete form of hardness
• Idea arose from sum-of-squares, but can also be motivated directly

[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ‘16]
[Hopkins, Steurer ‘17]
[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ‘17]
[Hopkins ‘18]

Low-Degree Hardness
• Prove failure of degree-𝑂(log 𝑛) polynomials in the “hard” regime, as

a concrete form of hardness
• Idea arose from sum-of-squares, but can also be motivated directly

[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ‘16]
[Hopkins, Steurer ‘17]
[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ‘17]
[Hopkins ‘18]

• Objection: Are low-degree polynomials efficiently computable?

Low-Degree Hardness
• Prove failure of degree-𝑂(log 𝑛) polynomials in the “hard” regime, as

a concrete form of hardness
• Idea arose from sum-of-squares, but can also be motivated directly

[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ‘16]
[Hopkins, Steurer ‘17]
[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ‘17]
[Hopkins ‘18]

• Objection: Are low-degree polynomials efficiently computable?
• A degree-𝐷 polynomial in 𝑛Θ(1) variables has 𝑛𝑂(𝐷) terms

Low-Degree Hardness
• Prove failure of degree-𝑂(log 𝑛) polynomials in the “hard” regime, as

a concrete form of hardness
• Idea arose from sum-of-squares, but can also be motivated directly

[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ‘16]
[Hopkins, Steurer ‘17]
[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ‘17]
[Hopkins ‘18]

• Objection: Are low-degree polynomials efficiently computable?
• A degree-𝐷 polynomial in 𝑛Θ(1) variables has 𝑛𝑂(𝐷) terms
• So a degree-𝑂(1) polynomial can be computed in poly time, but a degree-

𝑂(log 𝑛) polynomial cannot in general

Low-Degree Hardness
• Prove failure of degree-𝑂(log 𝑛) polynomials in the “hard” regime, as

a concrete form of hardness
• Idea arose from sum-of-squares, but can also be motivated directly

[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ‘16]
[Hopkins, Steurer ‘17]
[Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ‘17]
[Hopkins ‘18]

• Objection: Are low-degree polynomials efficiently computable?
• A degree-𝐷 polynomial in 𝑛Θ(1) variables has 𝑛𝑂(𝐷) terms
• So a degree-𝑂(1) polynomial can be computed in poly time, but a degree-

𝑂(log 𝑛) polynomial cannot in general
• The point is: degree-𝑂(log 𝑛) polynomials capture important classes of poly-

time algorithms, so if they fail, this rules out various approaches

Low-Degree Hardness (Recovery)

Low-Degree Hardness (Recovery)
• Let’s prove that all low-degree polynomials fail in the “hard” regime

Low-Degree Hardness (Recovery)
• Let’s prove that all low-degree polynomials fail in the “hard” regime
• Define “success” for low-degree polynomials, starting with recovery:

Low-Degree Hardness (Recovery)
• Let’s prove that all low-degree polynomials fail in the “hard” regime
• Define “success” for low-degree polynomials, starting with recovery:

• Aim to estimate a scalar value, 𝑥 ≔ 𝟙1∈clique (is vertex 1 in the clique?)

Low-Degree Hardness (Recovery)
• Let’s prove that all low-degree polynomials fail in the “hard” regime
• Define “success” for low-degree polynomials, starting with recovery:

• Aim to estimate a scalar value, 𝑥 ≔ 𝟙1∈clique (is vertex 1 in the clique?)

• Low-degree estimator: polynomial 𝑓: {0,1}
𝑛
2 → ℝ of degree ≤ 𝐷 = 𝐷𝑛

Low-Degree Hardness (Recovery)
• Let’s prove that all low-degree polynomials fail in the “hard” regime
• Define “success” for low-degree polynomials, starting with recovery:

• Aim to estimate a scalar value, 𝑥 ≔ 𝟙1∈clique (is vertex 1 in the clique?)

• Low-degree estimator: polynomial 𝑓: {0,1}
𝑛
2 → ℝ of degree ≤ 𝐷 = 𝐷𝑛

• MMSE≤𝐷 ≔ inf
𝑓 deg 𝐷

Eℙ (𝑓 𝑌 − 𝑥 2]

Low-Degree Hardness (Recovery)
• Let’s prove that all low-degree polynomials fail in the “hard” regime
• Define “success” for low-degree polynomials, starting with recovery:

• Aim to estimate a scalar value, 𝑥 ≔ 𝟙1∈clique (is vertex 1 in the clique?)

• Low-degree estimator: polynomial 𝑓: {0,1}
𝑛
2 → ℝ of degree ≤ 𝐷 = 𝐷𝑛

• MMSE≤𝐷 ≔ inf
𝑓 deg 𝐷

Eℙ (𝑓 𝑌 − 𝑥 2]

Theorem [Schramm, W ‘20] In the planted clique model,

• (Hard) If 𝑘 ≤ 𝑛1/2−Ω(1) then MMSE≤𝑂(log 𝑛) = 1 − 𝑜 1 Var(𝑥)
• No better than the trivial degree-0 estimator 𝑓 𝑌 = E[𝑥]

• (Easy) If 𝑘 ≥ 𝑛1/2+Ω(1) then MMSE≤𝑂(1) = 𝑜(1/𝑛)
• Small enough to guarantee exact recovery

Low-Degree Hardness (Detection)

Low-Degree Hardness (Detection)
• Definition: 𝑓 strongly separates ℙ and ℚ if

max{Varℙ 𝑓 , Varℚ(𝑓)} = 𝑜 Eℙ 𝑓 − Eℚ 𝑓

ℚ ℙ

𝑓 𝑓
separated

Low-Degree Hardness (Detection)
• Definition: 𝑓 strongly separates ℙ and ℚ if

max{Varℙ 𝑓 , Varℚ(𝑓)} = 𝑜 Eℙ 𝑓 − Eℚ 𝑓

• Strong separation ⇒ strong detection
• Proof: Chebyshev

ℚ ℙ

𝑓 𝑓
separated

Low-Degree Hardness (Detection)
• Definition: 𝑓 strongly separates ℙ and ℚ if

max{Varℙ 𝑓 , Varℚ(𝑓)} = 𝑜 Eℙ 𝑓 − Eℚ 𝑓

• Strong separation ⇒ strong detection
• Proof: Chebyshev

• Similarly, weak separation -- replace 𝑜(…) by 𝑂(…)

ℚ ℙ

𝑓 𝑓
separated

Low-Degree Hardness (Detection)
• Definition: 𝑓 strongly separates ℙ and ℚ if

max{Varℙ 𝑓 , Varℚ(𝑓)} = 𝑜 Eℙ 𝑓 − Eℚ 𝑓

• Strong separation ⇒ strong detection
• Proof: Chebyshev

• Similarly, weak separation -- replace 𝑜(…) by 𝑂(…)

Theorem [BHKKMP ‘16] In the planted clique model,
• (Hard) If 𝑘 ≤ 𝑛1/2−Ω(1), no degree-𝑂(log 𝑛) polynomial strongly (or

even weakly) separates ℙ and ℚ
• (Easy) If 𝑘 ≥ 𝑛1/2+Ω(1), some degree-1 polynomial (edge count)

strongly separates ℙ and ℚ

ℚ ℙ

𝑓 𝑓
separated

Why “Separation”?

Why “Separation”?
• Objection: Suppose we’ve ruled out separation. It might still be

possible to detect by thresholding a low-degree polynomial.

Why “Separation”?
• Objection: Suppose we’ve ruled out separation. It might still be

possible to detect by thresholding a low-degree polynomial.
• Right, we’ve only ruled out the “natural analysis” via Chebyshev

Why “Separation”?
• Objection: Suppose we’ve ruled out separation. It might still be

possible to detect by thresholding a low-degree polynomial.
• Right, we’ve only ruled out the “natural analysis” via Chebyshev
• Open: Rule out thresholding (PTF tests)

Why “Separation”?
• Objection: Suppose we’ve ruled out separation. It might still be

possible to detect by thresholding a low-degree polynomial.
• Right, we’ve only ruled out the “natural analysis” via Chebyshev
• Open: Rule out thresholding (PTF tests)
• Or even better, rule out any post-processing to a low-degree polynomial

Why “Separation”?
• Objection: Suppose we’ve ruled out separation. It might still be

possible to detect by thresholding a low-degree polynomial.
• Right, we’ve only ruled out the “natural analysis” via Chebyshev
• Open: Rule out thresholding (PTF tests)
• Or even better, rule out any post-processing to a low-degree polynomial

• Fair point, but I also want to defend “separation”…

Why “Separation”?
• Objection: Suppose we’ve ruled out separation. It might still be

possible to detect by thresholding a low-degree polynomial.
• Right, we’ve only ruled out the “natural analysis” via Chebyshev
• Open: Rule out thresholding (PTF tests)
• Or even better, rule out any post-processing to a low-degree polynomial

• Fair point, but I also want to defend “separation”…
• Captures known upper bounds in the “easy” regime

Why “Separation”?
• Objection: Suppose we’ve ruled out separation. It might still be

possible to detect by thresholding a low-degree polynomial.
• Right, we’ve only ruled out the “natural analysis” via Chebyshev
• Open: Rule out thresholding (PTF tests)
• Or even better, rule out any post-processing to a low-degree polynomial

• Fair point, but I also want to defend “separation”…
• Captures known upper bounds in the “easy” regime
• We have widely-applicable tools to rule it out in the “hard” regime

Why “Separation”?
• Objection: Suppose we’ve ruled out separation. It might still be

possible to detect by thresholding a low-degree polynomial.
• Right, we’ve only ruled out the “natural analysis” via Chebyshev
• Open: Rule out thresholding (PTF tests)
• Or even better, rule out any post-processing to a low-degree polynomial

• Fair point, but I also want to defend “separation”…
• Captures known upper bounds in the “easy” regime
• We have widely-applicable tools to rule it out in the “hard” regime
• Separation is analogous to MMSE≤𝐷

Why “Separation”?
• Objection: Suppose we’ve ruled out separation. It might still be

possible to detect by thresholding a low-degree polynomial.
• Right, we’ve only ruled out the “natural analysis” via Chebyshev
• Open: Rule out thresholding (PTF tests)
• Or even better, rule out any post-processing to a low-degree polynomial

• Fair point, but I also want to defend “separation”…
• Captures known upper bounds in the “easy” regime
• We have widely-applicable tools to rule it out in the “hard” regime
• Separation is analogous to MMSE≤𝐷

• Strong separation is equivalent to MMSE≤𝐷 = 𝑜 1 in the following recovery problem:
draw 𝑥 ∼ {0,1} uniformly, observe 𝑌 drawn from ℙ (if 𝑥 = 1) or ℚ (if 𝑥 = 0), estimate 𝑥

Why “Separation”?
• Objection: Suppose we’ve ruled out separation. It might still be

possible to detect by thresholding a low-degree polynomial.
• Right, we’ve only ruled out the “natural analysis” via Chebyshev
• Open: Rule out thresholding (PTF tests)
• Or even better, rule out any post-processing to a low-degree polynomial

• Fair point, but I also want to defend “separation”…
• Captures known upper bounds in the “easy” regime
• We have widely-applicable tools to rule it out in the “hard” regime
• Separation is analogous to MMSE≤𝐷

• Strong separation is equivalent to MMSE≤𝐷 = 𝑜 1 in the following recovery problem:
draw 𝑥 ∼ {0,1} uniformly, observe 𝑌 drawn from ℙ (if 𝑥 = 1) or ℚ (if 𝑥 = 0), estimate 𝑥

• MMSE≤𝐷 has the same flaw: even if you prove it’s large, you haven’t ruled out exact
recovery by thresholding a polynomial

Degree-Runtime Correspondence

Degree-Runtime Correspondence
• One perspective: “Degree complexity” is an intrinsic measure of

computational complexity, captures certain algorithms

Degree-Runtime Correspondence
• One perspective: “Degree complexity” is an intrinsic measure of

computational complexity, captures certain algorithms
• More ambitious perspective: Polynomial degree is a proxy for runtime

Degree-Runtime Correspondence
• One perspective: “Degree complexity” is an intrinsic measure of

computational complexity, captures certain algorithms
• More ambitious perspective: Polynomial degree is a proxy for runtime
• Heuristic: degree-𝑂 1 ⊆ polynomial time ⊆ degree-𝑂(log 𝑛)

Degree-Runtime Correspondence
• One perspective: “Degree complexity” is an intrinsic measure of

computational complexity, captures certain algorithms
• More ambitious perspective: Polynomial degree is a proxy for runtime
• Heuristic: degree-𝑂 1 ⊆ polynomial time ⊆ degree-𝑂(log 𝑛)

• Some high-degree polynomials can be computed quickly…

Degree-Runtime Correspondence
• One perspective: “Degree complexity” is an intrinsic measure of

computational complexity, captures certain algorithms
• More ambitious perspective: Polynomial degree is a proxy for runtime
• Heuristic: degree-𝑂 1 ⊆ polynomial time ⊆ degree-𝑂(log 𝑛)

• Some high-degree polynomials can be computed quickly…
• So, to argue that strong detection can’t be done in polynomial time,

we should prove that strong separation can’t be done by degree-𝐷
polynomials, for some 𝐷 = 𝜔(log 𝑛) or (ideally) higher

Degree-Runtime Correspondence
• One perspective: “Degree complexity” is an intrinsic measure of

computational complexity, captures certain algorithms
• More ambitious perspective: Polynomial degree is a proxy for runtime
• Heuristic: degree-𝑂 1 ⊆ polynomial time ⊆ degree-𝑂(log 𝑛)

• Some high-degree polynomials can be computed quickly…
• So, to argue that strong detection can’t be done in polynomial time,

we should prove that strong separation can’t be done by degree-𝐷
polynomials, for some 𝐷 = 𝜔(log 𝑛) or (ideally) higher

• Ideally, also prove that some degree-𝑂(log 𝑛) polynomial achieves
strong separation in the “easy” regime

Degree-Runtime Correspondence
• One perspective: “Degree complexity” is an intrinsic measure of

computational complexity, captures certain algorithms
• More ambitious perspective: Polynomial degree is a proxy for runtime
• Heuristic: degree-𝑂 1 ⊆ polynomial time ⊆ degree-𝑂(log 𝑛)

• Some high-degree polynomials can be computed quickly…
• So, to argue that strong detection can’t be done in polynomial time,

we should prove that strong separation can’t be done by degree-𝐷
polynomials, for some 𝐷 = 𝜔(log 𝑛) or (ideally) higher

• Ideally, also prove that some degree-𝑂(log 𝑛) polynomial achieves
strong separation in the “easy” regime

• Heuristic for higher runtimes: degree-𝑛𝛿 ≈ time-exp(𝑛𝛿±𝑜 1)

Does Degree Really Track Runtime?

Does Degree Really Track Runtime?
• Yes, in many examples…

• planted dense subgraph, community detection, graph matching, geometric graphs, …
• sparse PCA, spiked Wigner/Wishart matrix, planted submatrix, group synchronization, …
• tensor PCA, tensor decomposition, planted dense subhypergraph, …
• sparse linear regression, non-gaussian component analysis, gaussian mixture models, …
• … and more

Does Degree Really Track Runtime?
• Yes, in many examples…

• planted dense subgraph, community detection, graph matching, geometric graphs, …
• sparse PCA, spiked Wigner/Wishart matrix, planted submatrix, group synchronization, …
• tensor PCA, tensor decomposition, planted dense subhypergraph, …
• sparse linear regression, non-gaussian component analysis, gaussian mixture models, …
• … and more

• But not in others…
• XOR-SAT (gaussian elimination)
• certain “noiseless” problems (LLL lattice basis reduction)
• error-correcting codes
• heavy-tailed noise
• broadcasting on trees

Does Degree Really Track Runtime?
• Yes, in many examples…

• planted dense subgraph, community detection, graph matching, geometric graphs, …
• sparse PCA, spiked Wigner/Wishart matrix, planted submatrix, group synchronization, …
• tensor PCA, tensor decomposition, planted dense subhypergraph, …
• sparse linear regression, non-gaussian component analysis, gaussian mixture models, …
• … and more

• But not in others…
• XOR-SAT (gaussian elimination)
• certain “noiseless” problems (LLL lattice basis reduction)
• error-correcting codes
• heavy-tailed noise
• broadcasting on trees

“success stories”

“counterexamples”

Does Degree Really Track Runtime?
• Yes, in many examples…

• planted dense subgraph, community detection, graph matching, geometric graphs, …
• sparse PCA, spiked Wigner/Wishart matrix, planted submatrix, group synchronization, …
• tensor PCA, tensor decomposition, planted dense subhypergraph, …
• sparse linear regression, non-gaussian component analysis, gaussian mixture models, …
• … and more

• But not in others…
• XOR-SAT (gaussian elimination)
• certain “noiseless” problems (LLL lattice basis reduction)
• error-correcting codes
• heavy-tailed noise
• broadcasting on trees

?

“success stories”

“counterexamples”

Low-Degree Conjecture

Low-Degree Conjecture
• The “low-degree conjecture” is the informal belief that: for some

class of “natural statistical problems,” if degree-𝑂(log 𝑛) polynomials
fail then so do all poly-time algorithms

Low-Degree Conjecture
• The “low-degree conjecture” is the informal belief that: for some

class of “natural statistical problems,” if degree-𝑂(log 𝑛) polynomials
fail then so do all poly-time algorithms

• To make this formal, we need to specify the class of problems…

Low-Degree Conjecture
• The “low-degree conjecture” is the informal belief that: for some

class of “natural statistical problems,” if degree-𝑂(log 𝑛) polynomials
fail then so do all poly-time algorithms

• To make this formal, we need to specify the class of problems…
• Should be “noise-robust”, “highly-symmetric”, …

Low-Degree Conjecture
• The “low-degree conjecture” is the informal belief that: for some

class of “natural statistical problems,” if degree-𝑂(log 𝑛) polynomials
fail then so do all poly-time algorithms

• To make this formal, we need to specify the class of problems…
• Should be “noise-robust”, “highly-symmetric”, …
• Attempt by [Hopkins ‘18] recently refuted* [Buhai, Hsieh, Jain, Kothari ‘25]

Low-Degree Conjecture
• The “low-degree conjecture” is the informal belief that: for some

class of “natural statistical problems,” if degree-𝑂(log 𝑛) polynomials
fail then so do all poly-time algorithms

• To make this formal, we need to specify the class of problems…
• Should be “noise-robust”, “highly-symmetric”, …
• Attempt by [Hopkins ‘18] recently refuted* [Buhai, Hsieh, Jain, Kothari ‘25]

• And even if true, this conjecture covered a limited range of problems

Low-Degree Conjecture
• The “low-degree conjecture” is the informal belief that: for some

class of “natural statistical problems,” if degree-𝑂(log 𝑛) polynomials
fail then so do all poly-time algorithms

• To make this formal, we need to specify the class of problems…
• Should be “noise-robust”, “highly-symmetric”, …
• Attempt by [Hopkins ‘18] recently refuted* [Buhai, Hsieh, Jain, Kothari ‘25]

• And even if true, this conjecture covered a limited range of problems

• How to know if a new problem “counts”?

Low-Degree Conjecture
• The “low-degree conjecture” is the informal belief that: for some

class of “natural statistical problems,” if degree-𝑂(log 𝑛) polynomials
fail then so do all poly-time algorithms

• To make this formal, we need to specify the class of problems…
• Should be “noise-robust”, “highly-symmetric”, …
• Attempt by [Hopkins ‘18] recently refuted* [Buhai, Hsieh, Jain, Kothari ‘25]

• And even if true, this conjecture covered a limited range of problems

• How to know if a new problem “counts”?
• More of an art than a science

Low-Degree Conjecture
• The “low-degree conjecture” is the informal belief that: for some

class of “natural statistical problems,” if degree-𝑂(log 𝑛) polynomials
fail then so do all poly-time algorithms

• To make this formal, we need to specify the class of problems…
• Should be “noise-robust”, “highly-symmetric”, …
• Attempt by [Hopkins ‘18] recently refuted* [Buhai, Hsieh, Jain, Kothari ‘25]

• And even if true, this conjecture covered a limited range of problems

• How to know if a new problem “counts”?
• More of an art than a science
• We learn more as we find more counterexamples

Low-Degree Conjecture
• The “low-degree conjecture” is the informal belief that: for some

class of “natural statistical problems,” if degree-𝑂(log 𝑛) polynomials
fail then so do all poly-time algorithms

• To make this formal, we need to specify the class of problems…
• Should be “noise-robust”, “highly-symmetric”, …
• Attempt by [Hopkins ‘18] recently refuted* [Buhai, Hsieh, Jain, Kothari ‘25]

• And even if true, this conjecture covered a limited range of problems

• How to know if a new problem “counts”?
• More of an art than a science
• We learn more as we find more counterexamples
• Should be cautious about conjectures

Proof Ideas (Detection)

Proof Ideas (Detection)
• How to rule out strong separation by a degree-𝐷 polynomial:

max{Varℙ 𝑓 , Varℚ(𝑓)} = 𝑜 Eℙ 𝑓 − Eℚ 𝑓

Proof Ideas (Detection)
• How to rule out strong separation by a degree-𝐷 polynomial:

max{Varℙ 𝑓 , Varℚ(𝑓)} = 𝑜 Eℙ 𝑓 − Eℚ 𝑓

• Sufficient:
sup

𝑓 deg 𝐷

Eℙ 𝑓 − Eℚ 𝑓

max{Varℙ 𝑓 , Varℚ(𝑓)}

= 𝑂(1)

Proof Ideas (Detection)
• How to rule out strong separation by a degree-𝐷 polynomial:

max{Varℙ 𝑓 , Varℚ(𝑓)} = 𝑜 Eℙ 𝑓 − Eℚ 𝑓

• Sufficient:
sup

𝑓 deg 𝐷

Eℙ 𝑓 − Eℚ 𝑓

max{Varℙ 𝑓 , Varℚ(𝑓)}

= 𝑂(1)

• Sufficient:
Adv≤𝐷 ≔ sup

𝑓 deg 𝐷

Eℙ 𝑓

Eℚ 𝑓2

= 𝑂(1)

Proof Ideas (Detection)
• How to rule out strong separation by a degree-𝐷 polynomial:

max{Varℙ 𝑓 , Varℚ(𝑓)} = 𝑜 Eℙ 𝑓 − Eℚ 𝑓

• Sufficient:
sup

𝑓 deg 𝐷

Eℙ 𝑓 − Eℚ 𝑓

max{Varℙ 𝑓 , Varℚ(𝑓)}

= 𝑂(1)

• Sufficient:
Adv≤𝐷 ≔ sup

𝑓 deg 𝐷

Eℙ 𝑓

Eℚ 𝑓2

= 𝑂(1)

• “Advantage” a.k.a. “norm of the low-degree likelihood ratio” 𝐿≤𝐷

Bounding the “Advantage”

Bounding the “Advantage”

Fact: Adv≤𝐷 ≔ sup
𝑓 deg 𝐷

Eℙ 𝑓

Eℚ 𝑓2
= σ𝑖 Eℙ ℎ𝑖

2 where {ℎ𝑖} is a basis of

orthonormal polynomials for ℝ 𝑌 ≤𝐷 under ℚ: E𝑌∼ℚ ℎ𝑖 𝑌 ℎ𝑗(𝑌) = 𝛿𝑖𝑗

Bounding the “Advantage”

Fact: Adv≤𝐷 ≔ sup
𝑓 deg 𝐷

Eℙ 𝑓

Eℚ 𝑓2
= σ𝑖 Eℙ ℎ𝑖

2 where {ℎ𝑖} is a basis of

orthonormal polynomials for ℝ 𝑌 ≤𝐷 under ℚ: E𝑌∼ℚ ℎ𝑖 𝑌 ℎ𝑗(𝑌) = 𝛿𝑖𝑗

• E.g. If 𝑌 ∼ ℚ has i.i.d. entries 𝑌1, … , 𝑌𝑁 ∼ Unif(±1), orthonormal
polynomials are monomials 1, 𝑌1, 𝑌2, 𝑌1𝑌2, 𝑌1𝑌3, 𝑌1𝑌2𝑌3, … up to deg 𝐷

Bounding the “Advantage”

Fact: Adv≤𝐷 ≔ sup
𝑓 deg 𝐷

Eℙ 𝑓

Eℚ 𝑓2
= σ𝑖 Eℙ ℎ𝑖

2 where {ℎ𝑖} is a basis of

orthonormal polynomials for ℝ 𝑌 ≤𝐷 under ℚ: E𝑌∼ℚ ℎ𝑖 𝑌 ℎ𝑗(𝑌) = 𝛿𝑖𝑗

• E.g. If 𝑌 ∼ ℚ has i.i.d. entries 𝑌1, … , 𝑌𝑁 ∼ Unif(±1), orthonormal
polynomials are monomials 1, 𝑌1, 𝑌2, 𝑌1𝑌2, 𝑌1𝑌3, 𝑌1𝑌2𝑌3, … up to deg 𝐷

• Generally, can construct orthogonal polynomials when ℚ is a product
measure (independent coordinates) ℚ

Bounding the “Advantage”

Fact: Adv≤𝐷 ≔ sup
𝑓 deg 𝐷

Eℙ 𝑓

Eℚ 𝑓2
= σ𝑖 Eℙ ℎ𝑖

2 where {ℎ𝑖} is a basis of

orthonormal polynomials for ℝ 𝑌 ≤𝐷 under ℚ: E𝑌∼ℚ ℎ𝑖 𝑌 ℎ𝑗(𝑌) = 𝛿𝑖𝑗

• E.g. If 𝑌 ∼ ℚ has i.i.d. entries 𝑌1, … , 𝑌𝑁 ∼ Unif(±1), orthonormal
polynomials are monomials 1, 𝑌1, 𝑌2, 𝑌1𝑌2, 𝑌1𝑌3, 𝑌1𝑌2𝑌3, … up to deg 𝐷

• Generally, can construct orthogonal polynomials when ℚ is a product
measure (independent coordinates) ℚ
• First construct orthogonal polynomials for each coordinate…

Bounding the “Advantage”

Fact: Adv≤𝐷 ≔ sup
𝑓 deg 𝐷

Eℙ 𝑓

Eℚ 𝑓2
= σ𝑖 Eℙ ℎ𝑖

2 where {ℎ𝑖} is a basis of

orthonormal polynomials for ℝ 𝑌 ≤𝐷 under ℚ: E𝑌∼ℚ ℎ𝑖 𝑌 ℎ𝑗(𝑌) = 𝛿𝑖𝑗

• E.g. If 𝑌 ∼ ℚ has i.i.d. entries 𝑌1, … , 𝑌𝑁 ∼ Unif(±1), orthonormal
polynomials are monomials 1, 𝑌1, 𝑌2, 𝑌1𝑌2, 𝑌1𝑌3, 𝑌1𝑌2𝑌3, … up to deg 𝐷

• Generally, can construct orthogonal polynomials when ℚ is a product
measure (independent coordinates) ℚ
• First construct orthogonal polynomials for each coordinate…

• Proof (Fact): Write 𝑓(𝑌) = σ𝑖
መ𝑓𝑖 ℎ𝑖(𝑌) so Eℚ 𝑓2 = σ𝑖

መ𝑓𝑖
2 …

Proof Ideas (Summary)

Proof Ideas (Summary)
• The previous strategy led to an initial wave of success for low-degree

hardness of testing “planted” vs (i.i.d.) “null” [HS ‘17, HKPRSS ‘17, …]

Proof Ideas (Summary)
• The previous strategy led to an initial wave of success for low-degree

hardness of testing “planted” vs (i.i.d.) “null” [HS ‘17, HKPRSS ‘17, …]

• Other cases are more difficult, but we do have tools…

Proof Ideas (Summary)
• The previous strategy led to an initial wave of success for low-degree

hardness of testing “planted” vs (i.i.d.) “null” [HS ‘17, HKPRSS ‘17, …]

• Other cases are more difficult, but we do have tools…
• Sometimes Adv≤𝐷 = 𝜔(1) in the hard regime! But separation still tracks…

Proof Ideas (Summary)
• The previous strategy led to an initial wave of success for low-degree

hardness of testing “planted” vs (i.i.d.) “null” [HS ‘17, HKPRSS ‘17, …]

• Other cases are more difficult, but we do have tools…
• Sometimes Adv≤𝐷 = 𝜔(1) in the hard regime! But separation still tracks…
• ℚ not a product measure [Rush, Skerman, W, Yang ‘22]

Proof Ideas (Summary)
• The previous strategy led to an initial wave of success for low-degree

hardness of testing “planted” vs (i.i.d.) “null” [HS ‘17, HKPRSS ‘17, …]

• Other cases are more difficult, but we do have tools…
• Sometimes Adv≤𝐷 = 𝜔(1) in the hard regime! But separation still tracks…
• ℚ not a product measure [Rush, Skerman, W, Yang ‘22]

• E.g. ℙ has two planted cliques while ℚ has one

Proof Ideas (Summary)
• The previous strategy led to an initial wave of success for low-degree

hardness of testing “planted” vs (i.i.d.) “null” [HS ‘17, HKPRSS ‘17, …]

• Other cases are more difficult, but we do have tools…
• Sometimes Adv≤𝐷 = 𝜔(1) in the hard regime! But separation still tracks…
• ℚ not a product measure [Rush, Skerman, W, Yang ‘22]

• E.g. ℙ has two planted cliques while ℚ has one
• Not clear how to explicitly construct orthogonal polynomials for ℚ

Proof Ideas (Summary)
• The previous strategy led to an initial wave of success for low-degree

hardness of testing “planted” vs (i.i.d.) “null” [HS ‘17, HKPRSS ‘17, …]

• Other cases are more difficult, but we do have tools…
• Sometimes Adv≤𝐷 = 𝜔(1) in the hard regime! But separation still tracks…
• ℚ not a product measure [Rush, Skerman, W, Yang ‘22]

• E.g. ℙ has two planted cliques while ℚ has one
• Not clear how to explicitly construct orthogonal polynomials for ℚ

• Recovery: bound MMSE≤𝐷 [Schramm, W ‘20]

Proof Ideas (Summary)
• The previous strategy led to an initial wave of success for low-degree

hardness of testing “planted” vs (i.i.d.) “null” [HS ‘17, HKPRSS ‘17, …]

• Other cases are more difficult, but we do have tools…
• Sometimes Adv≤𝐷 = 𝜔(1) in the hard regime! But separation still tracks…
• ℚ not a product measure [Rush, Skerman, W, Yang ‘22]

• E.g. ℙ has two planted cliques while ℚ has one
• Not clear how to explicitly construct orthogonal polynomials for ℚ

• Recovery: bound MMSE≤𝐷 [Schramm, W ‘20]

• Sufficient: bound Corr≤𝐷 ≔ sup
𝑓 deg 𝐷

Eℙ 𝑓⋅𝑥

Eℙ 𝑓2

Proof Ideas (Summary)
• The previous strategy led to an initial wave of success for low-degree

hardness of testing “planted” vs (i.i.d.) “null” [HS ‘17, HKPRSS ‘17, …]

• Other cases are more difficult, but we do have tools…
• Sometimes Adv≤𝐷 = 𝜔(1) in the hard regime! But separation still tracks…
• ℚ not a product measure [Rush, Skerman, W, Yang ‘22]

• E.g. ℙ has two planted cliques while ℚ has one
• Not clear how to explicitly construct orthogonal polynomials for ℚ

• Recovery: bound MMSE≤𝐷 [Schramm, W ‘20]

• Sufficient: bound Corr≤𝐷 ≔ sup
𝑓 deg 𝐷

Eℙ 𝑓⋅𝑥

Eℙ 𝑓2

• Difficult for similar reason: would like orthogonal polynomials for ℙ…

Proof Ideas (Summary)
• The previous strategy led to an initial wave of success for low-degree

hardness of testing “planted” vs (i.i.d.) “null” [HS ‘17, HKPRSS ‘17, …]

• Other cases are more difficult, but we do have tools…
• Sometimes Adv≤𝐷 = 𝜔(1) in the hard regime! But separation still tracks…
• ℚ not a product measure [Rush, Skerman, W, Yang ‘22]

• E.g. ℙ has two planted cliques while ℚ has one
• Not clear how to explicitly construct orthogonal polynomials for ℚ

• Recovery: bound MMSE≤𝐷 [Schramm, W ‘20]

• Sufficient: bound Corr≤𝐷 ≔ sup
𝑓 deg 𝐷

Eℙ 𝑓⋅𝑥

Eℙ 𝑓2

• Difficult for similar reason: would like orthogonal polynomials for ℙ…
• Solution: use orthogonal polynomials in the underlying (non-observable)

independent variables [Sohn, W ‘25]

Proof Ideas (Summary)
• The previous strategy led to an initial wave of success for low-degree

hardness of testing “planted” vs (i.i.d.) “null” [HS ‘17, HKPRSS ‘17, …]

• Other cases are more difficult, but we do have tools…
• Sometimes Adv≤𝐷 = 𝜔(1) in the hard regime! But separation still tracks…
• ℚ not a product measure [Rush, Skerman, W, Yang ‘22]

• E.g. ℙ has two planted cliques while ℚ has one
• Not clear how to explicitly construct orthogonal polynomials for ℚ

• Recovery: bound MMSE≤𝐷 [Schramm, W ‘20]

• Sufficient: bound Corr≤𝐷 ≔ sup
𝑓 deg 𝐷

Eℙ 𝑓⋅𝑥

Eℙ 𝑓2

• Difficult for similar reason: would like orthogonal polynomials for ℙ…
• Solution: use orthogonal polynomials in the underlying (non-observable)

independent variables [Sohn, W ‘25]
• For planted clique: 𝑍𝑖𝑗 ∼ Ber(1/2) for each 𝑖 < 𝑗 and 𝑥𝑖 ∼ Ber(𝑘/𝑛) for each vertex

Sharp Thresholds in Estimation

Sharp Thresholds in Estimation
• Stochastic block model (community detection)

Image credit: Abbe ‘17

Sharp Thresholds in Estimation
• Stochastic block model (community detection)

• Average degree 𝑑; SNR 𝜆; 𝑞 communities -- all Θ(1) Image credit: Abbe ‘17

Sharp Thresholds in Estimation
• Stochastic block model (community detection)

• Average degree 𝑑; SNR 𝜆; 𝑞 communities -- all Θ(1)

• Sharp “Kesten-Stigum” threshold: 𝑑𝜆2 = 1
• Conjectured computational threshold for strong detection & weak recovery

Image credit: Abbe ‘17

Sharp Thresholds in Estimation
• Stochastic block model (community detection)

• Average degree 𝑑; SNR 𝜆; 𝑞 communities -- all Θ(1)

• Sharp “Kesten-Stigum” threshold: 𝑑𝜆2 = 1
• Conjectured computational threshold for strong detection & weak recovery

• Low-degree detection matches KS [Hopkins, Steurer ‘17]

Image credit: Abbe ‘17

Sharp Thresholds in Estimation
• Stochastic block model (community detection)

• Average degree 𝑑; SNR 𝜆; 𝑞 communities -- all Θ(1)

• Sharp “Kesten-Stigum” threshold: 𝑑𝜆2 = 1
• Conjectured computational threshold for strong detection & weak recovery

• Low-degree detection matches KS [Hopkins, Steurer ‘17]

• Low-degree recovery matches KS [Sohn, W ‘25; Ding, Hua, Slot, Steurer ‘25]

Image credit: Abbe ‘17

Sharp Thresholds in Estimation
• Stochastic block model (community detection)

• Average degree 𝑑; SNR 𝜆; 𝑞 communities -- all Θ(1)

• Sharp “Kesten-Stigum” threshold: 𝑑𝜆2 = 1
• Conjectured computational threshold for strong detection & weak recovery

• Low-degree detection matches KS [Hopkins, Steurer ‘17]

• Low-degree recovery matches KS [Sohn, W ‘25; Ding, Hua, Slot, Steurer ‘25]

• Now take 𝑞 growing with 𝑛…

Image credit: Abbe ‘17

Sharp Thresholds in Estimation
• Stochastic block model (community detection)

• Average degree 𝑑; SNR 𝜆; 𝑞 communities -- all Θ(1)

• Sharp “Kesten-Stigum” threshold: 𝑑𝜆2 = 1
• Conjectured computational threshold for strong detection & weak recovery

• Low-degree detection matches KS [Hopkins, Steurer ‘17]

• Low-degree recovery matches KS [Sohn, W ‘25; Ding, Hua, Slot, Steurer ‘25]

• Now take 𝑞 growing with 𝑛…
• Low-degree recovery matches KS for 𝑞 ≪ 𝑛… [Chin, Mossel, Sohn, W ‘25]

Image credit: Abbe ‘17

Sharp Thresholds in Estimation
• Stochastic block model (community detection)

• Average degree 𝑑; SNR 𝜆; 𝑞 communities -- all Θ(1)

• Sharp “Kesten-Stigum” threshold: 𝑑𝜆2 = 1
• Conjectured computational threshold for strong detection & weak recovery

• Low-degree detection matches KS [Hopkins, Steurer ‘17]

• Low-degree recovery matches KS [Sohn, W ‘25; Ding, Hua, Slot, Steurer ‘25]

• Now take 𝑞 growing with 𝑛…
• Low-degree recovery matches KS for 𝑞 ≪ 𝑛… [Chin, Mossel, Sohn, W ‘25]

• … but you can beat KS when 𝑞 ≫ 𝑛

Image credit: Abbe ‘17

Sharp Thresholds in Estimation
• Stochastic block model (community detection)

• Average degree 𝑑; SNR 𝜆; 𝑞 communities -- all Θ(1)

• Sharp “Kesten-Stigum” threshold: 𝑑𝜆2 = 1
• Conjectured computational threshold for strong detection & weak recovery

• Low-degree detection matches KS [Hopkins, Steurer ‘17]

• Low-degree recovery matches KS [Sohn, W ‘25; Ding, Hua, Slot, Steurer ‘25]

• Now take 𝑞 growing with 𝑛…
• Low-degree recovery matches KS for 𝑞 ≪ 𝑛… [Chin, Mossel, Sohn, W ‘25]

• … but you can beat KS when 𝑞 ≫ 𝑛

• Detection-recovery gap

Image credit: Abbe ‘17

Sharp Thresholds in Estimation
• Stochastic block model (community detection)

• Average degree 𝑑; SNR 𝜆; 𝑞 communities -- all Θ(1)

• Sharp “Kesten-Stigum” threshold: 𝑑𝜆2 = 1
• Conjectured computational threshold for strong detection & weak recovery

• Low-degree detection matches KS [Hopkins, Steurer ‘17]

• Low-degree recovery matches KS [Sohn, W ‘25; Ding, Hua, Slot, Steurer ‘25]

• Now take 𝑞 growing with 𝑛…
• Low-degree recovery matches KS for 𝑞 ≪ 𝑛… [Chin, Mossel, Sohn, W ‘25]

• … but you can beat KS when 𝑞 ≫ 𝑛

• Detection-recovery gap
• No other frameworks apply here (?)

Image credit: Abbe ‘17

Connection to Other Heuristics

Connection to Other Heuristics
• AMP (approximate message passing)
• OGP (overlap gap property)
• SOS (sum-of-squares hierarchy)
• SQ (statistical query model)
• LD (low-degree polynomials)

Connection to Other Heuristics
• AMP (approximate message passing)
• OGP (overlap gap property)
• SOS (sum-of-squares hierarchy)
• SQ (statistical query model)
• LD (low-degree polynomials)

• “Unify” these: Can we prove they all make the same predictions?

Connection to Other Heuristics
• AMP (approximate message passing)
• OGP (overlap gap property)
• SOS (sum-of-squares hierarchy)
• SQ (statistical query model)
• LD (low-degree polynomials)

• “Unify” these: Can we prove they all make the same predictions?

• Two issues:

Connection to Other Heuristics
• AMP (approximate message passing)
• OGP (overlap gap property)
• SOS (sum-of-squares hierarchy)
• SQ (statistical query model)
• LD (low-degree polynomials)

• “Unify” these: Can we prove they all make the same predictions?

• Two issues:
1. Sometimes they are NOT equivalent…

Connection to Other Heuristics
• AMP (approximate message passing)
• OGP (overlap gap property)
• SOS (sum-of-squares hierarchy)
• SQ (statistical query model)
• LD (low-degree polynomials)

• “Unify” these: Can we prove they all make the same predictions?

• Two issues:
1. Sometimes they are NOT equivalent…
2. Often they are not even answering the same question…

Tensor PCA

Tensor PCA
• “Rank-1 tensor plus noise” -- 𝑇 ∈ ℝ𝑛×𝑛×𝑛

Tensor PCA
• “Rank-1 tensor plus noise” -- 𝑇 ∈ ℝ𝑛×𝑛×𝑛

• AMP gets the “wrong” (sub-optimal) threshold [Montanari, Richard ‘14]

Tensor PCA
• “Rank-1 tensor plus noise” -- 𝑇 ∈ ℝ𝑛×𝑛×𝑛

• AMP gets the “wrong” (sub-optimal) threshold [Montanari, Richard ‘14]

• OGP and “local search methods” also predict the same wrong
threshold [Ben Arous, Gheissari, Jagannath ’18; Chen, Sheehan, Zadik ‘24]

Tensor PCA
• “Rank-1 tensor plus noise” -- 𝑇 ∈ ℝ𝑛×𝑛×𝑛

• AMP gets the “wrong” (sub-optimal) threshold [Montanari, Richard ‘14]

• OGP and “local search methods” also predict the same wrong
threshold [Ben Arous, Gheissari, Jagannath ’18; Chen, Sheehan, Zadik ‘24]

• SQ also gets a different wrong threshold [Dudeja, Hsu ‘20]

Tensor PCA
• “Rank-1 tensor plus noise” -- 𝑇 ∈ ℝ𝑛×𝑛×𝑛

• AMP gets the “wrong” (sub-optimal) threshold [Montanari, Richard ‘14]

• OGP and “local search methods” also predict the same wrong
threshold [Ben Arous, Gheissari, Jagannath ’18; Chen, Sheehan, Zadik ‘24]

• SQ also gets a different wrong threshold [Dudeja, Hsu ‘20]

• SOS, LD get the “correct” threshold [Hopkins, Shi, Steurer ’15; HKPRSS ‘17]

Tensor PCA
• “Rank-1 tensor plus noise” -- 𝑇 ∈ ℝ𝑛×𝑛×𝑛

• AMP gets the “wrong” (sub-optimal) threshold [Montanari, Richard ‘14]

• OGP and “local search methods” also predict the same wrong
threshold [Ben Arous, Gheissari, Jagannath ’18; Chen, Sheehan, Zadik ‘24]

• SQ also gets a different wrong threshold [Dudeja, Hsu ‘20]

• SOS, LD get the “correct” threshold [Hopkins, Shi, Steurer ’15; HKPRSS ‘17]

• “Redemption”
• Kikuchi hierarchy [W, Alaoui, Moore ‘19]
• Averaged gradient descent [Biroli, Cammarota, Ricci-Tersenghi ‘19]
• Modified MCMC [Lovig, Sheehan, Tsirkas, Zadik ‘25]
• … but somewhat problem-specific (?)

Tasks

Tasks
• Using planted clique as a running example…

ℙ ℚ

Tasks
• Using planted clique as a running example…
• Detection (a.k.a. Testing): Decide if a given graph came from ℙ or ℚ

ℙ ℚ

Tasks
• Using planted clique as a running example…
• Detection (a.k.a. Testing): Decide if a given graph came from ℙ or ℚ
• Recovery (a.k.a. Estimation): Given 𝐺~ℙ, find the planted clique

ℙ ℚ

Tasks
• Using planted clique as a running example…
• Detection (a.k.a. Testing): Decide if a given graph came from ℙ or ℚ
• Recovery (a.k.a. Estimation): Given 𝐺~ℙ, find the planted clique
• (Non-planted) Optimization: Given 𝐺~ℚ, find any 𝑘-clique

ℙ ℚ

Tasks
• Using planted clique as a running example…
• Detection (a.k.a. Testing): Decide if a given graph came from ℙ or ℚ
• Recovery (a.k.a. Estimation): Given 𝐺~ℙ, find the planted clique
• (Non-planted) Optimization: Given 𝐺~ℚ, find any 𝑘-clique
• Refutation (or Certification): Given 𝐺~ℚ, prove there’s no 𝑘-clique

ℙ ℚ

Tasks
• Using planted clique as a running example…
• Detection (a.k.a. Testing): Decide if a given graph came from ℙ or ℚ
• Recovery (a.k.a. Estimation): Given 𝐺~ℙ, find the planted clique
• (Non-planted) Optimization: Given 𝐺~ℚ, find any 𝑘-clique
• Refutation (or Certification): Given 𝐺~ℚ, prove there’s no 𝑘-clique

Detection
(ℙ vs ℚ)

Recovery
(ℙ)

Refutation
(ℚ)

Optimization
(ℚ)

“dual”

ℙ ℚ

Tasks
• Using planted clique as a running example…
• Detection (a.k.a. Testing): Decide if a given graph came from ℙ or ℚ
• Recovery (a.k.a. Estimation): Given 𝐺~ℙ, find the planted clique
• (Non-planted) Optimization: Given 𝐺~ℚ, find any 𝑘-clique
• Refutation (or Certification): Given 𝐺~ℚ, prove there’s no 𝑘-clique

• These tasks can all have different thresholds in general

Detection
(ℙ vs ℚ)

Recovery
(ℙ)

Refutation
(ℚ)

Optimization
(ℚ)

“dual”

ℙ ℚ

Frameworks vs Tasks
Which frameworks can give hardness results for which tasks?

AMP OGP SOS SQ LD

Detection

Recovery

Optimization

Refutation

Known Connections

Known Connections
Despite many caveats, some known connections among frameworks

Known Connections
Despite many caveats, some known connections among frameworks
“Statistical Physics” / “Geometric”

Belief Propagation (BP)

Approximate Message
Passing (AMP)

Free Energy Barriers
(Franz-Parisi Potential)

Overlap Gap Property
(OGP)

Known Connections
Despite many caveats, some known connections among frameworks
“Statistical Physics” / “Geometric”

Belief Propagation (BP)

Approximate Message
Passing (AMP)

Free Energy Barriers
(Franz-Parisi Potential)

“Computer Science” / “Algebraic”

Sum-of-Squares (SOS)

Spectral Methods

Low-Degree
Polynomials

Overlap Gap Property
(OGP)

Statistical Query (SQ)

Known Connections
Despite many caveats, some known connections among frameworks
“Statistical Physics” / “Geometric”

Belief Propagation (BP)

Approximate Message
Passing (AMP)

Free Energy Barriers
(Franz-Parisi Potential)

“Computer Science” / “Algebraic”

Sum-of-Squares (SOS)

Spectral Methods

Low-Degree
Polynomials

Overlap Gap Property
(OGP)

[GJ’19]

Statistical Query (SQ)
Gamarnik, Jagannath ‘19

Known Connections
Despite many caveats, some known connections among frameworks
“Statistical Physics” / “Geometric”

Belief Propagation (BP)

Approximate Message
Passing (AMP)

Free Energy Barriers
(Franz-Parisi Potential)

“Computer Science” / “Algebraic”

Sum-of-Squares (SOS)

Spectral Methods

Low-Degree
Polynomials

Overlap Gap Property
(OGP)

[HKPRSS’17]

Power Iter
[GJ’19]

Statistical Query (SQ)
Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ‘17

Known Connections
Despite many caveats, some known connections among frameworks
“Statistical Physics” / “Geometric”

Belief Propagation (BP)

Approximate Message
Passing (AMP)

Free Energy Barriers
(Franz-Parisi Potential)

“Computer Science” / “Algebraic”

Sum-of-Squares (SOS)

Spectral Methods

Low-Degree
Polynomials

Overlap Gap Property
(OGP)

[HKPRSS’17]

Power Iter
[GJ’19]

Statistical Query (SQ)

Known Connections
Despite many caveats, some known connections among frameworks
“Statistical Physics” / “Geometric”

Belief Propagation (BP)

Approximate Message
Passing (AMP)

Free Energy Barriers
(Franz-Parisi Potential)

“Computer Science” / “Algebraic”

Sum-of-Squares (SOS)

Spectral Methods

Low-Degree
Polynomials

Overlap Gap Property
(OGP)

[HKPRSS’17]

Power Iter
[GJ’19]

Statistical Query (SQ)
Ivkov, Schramm ‘23

Known Connections
Despite many caveats, some known connections among frameworks
“Statistical Physics” / “Geometric”

Belief Propagation (BP)

Approximate Message
Passing (AMP)

Free Energy Barriers
(Franz-Parisi Potential)

“Computer Science” / “Algebraic”

Sum-of-Squares (SOS)

Spectral Methods

Low-Degree
Polynomials

Overlap Gap Property
(OGP)

[HKPRSS’17]

Power Iter
[GJ’19]

Statistical Query (SQ)
Gamarnik, Jagannath, W ‘20

Known Connections
Despite many caveats, some known connections among frameworks
“Statistical Physics” / “Geometric”

Belief Propagation (BP)

Approximate Message
Passing (AMP)

Free Energy Barriers
(Franz-Parisi Potential)

“Computer Science” / “Algebraic”

Sum-of-Squares (SOS)

Spectral Methods

Low-Degree
Polynomials

Overlap Gap Property
(OGP)

[HKPRSS’17]

Power Iter
[GJ’19]

[BAHSWZ’22]

Statistical Query (SQ)
Bandeira, Alaoui, Hopkins, Schramm, W, Zadik ‘22

Known Connections
Despite many caveats, some known connections among frameworks
“Statistical Physics” / “Geometric”

Belief Propagation (BP)

Approximate Message
Passing (AMP)

Free Energy Barriers
(Franz-Parisi Potential)

“Computer Science” / “Algebraic”

Sum-of-Squares (SOS)

Spectral Methods

Low-Degree
Polynomials

Overlap Gap Property
(OGP)

[HKPRSS’17]

Power Iter
[GJ’19]

[BAHSWZ’22]

Statistical Query (SQ)

[BBHLS’20]

Brennan, Bresler, Hopkins, Li, Schramm ‘20

Known Connections
Despite many caveats, some known connections among frameworks
“Statistical Physics” / “Geometric”

Belief Propagation (BP)

Approximate Message
Passing (AMP)

Free Energy Barriers
(Franz-Parisi Potential)

“Computer Science” / “Algebraic”

Sum-of-Squares (SOS)

Spectral Methods

Low-Degree
Polynomials

Overlap Gap Property
(OGP)

[HKPRSS’17]

Power Iter
[GJ’19]

[BAHSWZ’22]

Statistical Query (SQ)

[BBHLS’20]

Montanari, W ‘22

Known Connections
Despite many caveats, some known connections among frameworks
“Statistical Physics” / “Geometric”

Belief Propagation (BP)

Approximate Message
Passing (AMP)

Free Energy Barriers
(Franz-Parisi Potential)

“Computer Science” / “Algebraic”

Sum-of-Squares (SOS)

Spectral Methods

Low-Degree
Polynomials

Overlap Gap Property
(OGP)

[HKPRSS’17]

Power Iter
[GJ’19]

[BAHSWZ’22]

Statistical Query (SQ)

[BBHLS’20]
[CMZZ’25]

Chen, Misiakiewicz, Zadik, Zhang ‘25

Known Connections
Despite many caveats, some known connections among frameworks
“Statistical Physics” / “Geometric”

Belief Propagation (BP)

Approximate Message
Passing (AMP)

Free Energy Barriers
(Franz-Parisi Potential)

“Computer Science” / “Algebraic”

Sum-of-Squares (SOS)

Spectral Methods

Low-Degree
Polynomials

Overlap Gap Property
(OGP)

[HKPRSS’17]

Power Iter
[GJ’19]

[BAHSWZ’22]

Statistical Query (SQ)

[BBHLS’20]
[CMZZ’25]

	Slide 1: Low-Degree Polynomials: Overview and Recent Developments
	Slide 2: “High-Dimensional Statistics”
	Slide 3: “High-Dimensional Statistics”
	Slide 4: “High-Dimensional Statistics”
	Slide 5: “High-Dimensional Statistics”
	Slide 6: “High-Dimensional Statistics”
	Slide 7: “High-Dimensional Statistics”
	Slide 8: Hard Regime
	Slide 9: Hard Regime
	Slide 10: Hard Regime
	Slide 11: Hard Regime
	Slide 12: Hard Regime
	Slide 13: Hard Regime
	Slide 14: Hard Regime
	Slide 15: Objectives: Detection vs Recovery
	Slide 16: Objectives: Detection vs Recovery
	Slide 17: Objectives: Detection vs Recovery
	Slide 18: Objectives: Detection vs Recovery
	Slide 19: Objectives: Detection vs Recovery
	Slide 20: Objectives: Detection vs Recovery
	Slide 21: Objectives: Detection vs Recovery
	Slide 22: Objectives: Detection vs Recovery
	Slide 23: Objectives: Detection vs Recovery
	Slide 24: What Are the Best Known Algorithms?
	Slide 25: What Are the Best Known Algorithms?
	Slide 26: What Are the Best Known Algorithms?
	Slide 27: What Are the Best Known Algorithms?
	Slide 28: What Are the Best Known Algorithms?
	Slide 29: What Are the Best Known Algorithms?
	Slide 30: What Are the Best Known Algorithms?
	Slide 31: What Are the Best Known Algorithms?
	Slide 32: What Are the Best Known Algorithms?
	Slide 33: What Are the Best Known Algorithms?
	Slide 34: Low-Degree Hardness
	Slide 35: Low-Degree Hardness
	Slide 36: Low-Degree Hardness
	Slide 37: Low-Degree Hardness
	Slide 38: Low-Degree Hardness
	Slide 39: Low-Degree Hardness
	Slide 40: Low-Degree Hardness
	Slide 41: Low-Degree Hardness (Recovery)
	Slide 42: Low-Degree Hardness (Recovery)
	Slide 43: Low-Degree Hardness (Recovery)
	Slide 44: Low-Degree Hardness (Recovery)
	Slide 45: Low-Degree Hardness (Recovery)
	Slide 46: Low-Degree Hardness (Recovery)
	Slide 47: Low-Degree Hardness (Recovery)
	Slide 48: Low-Degree Hardness (Detection)
	Slide 49: Low-Degree Hardness (Detection)
	Slide 50: Low-Degree Hardness (Detection)
	Slide 51: Low-Degree Hardness (Detection)
	Slide 52: Low-Degree Hardness (Detection)
	Slide 53: Why “Separation”?
	Slide 54: Why “Separation”?
	Slide 55: Why “Separation”?
	Slide 56: Why “Separation”?
	Slide 57: Why “Separation”?
	Slide 58: Why “Separation”?
	Slide 59: Why “Separation”?
	Slide 60: Why “Separation”?
	Slide 61: Why “Separation”?
	Slide 62: Why “Separation”?
	Slide 63: Why “Separation”?
	Slide 64: Degree-Runtime Correspondence
	Slide 65: Degree-Runtime Correspondence
	Slide 66: Degree-Runtime Correspondence
	Slide 67: Degree-Runtime Correspondence
	Slide 68: Degree-Runtime Correspondence
	Slide 69: Degree-Runtime Correspondence
	Slide 70: Degree-Runtime Correspondence
	Slide 71: Degree-Runtime Correspondence
	Slide 72: Does Degree Really Track Runtime?
	Slide 73: Does Degree Really Track Runtime?
	Slide 74: Does Degree Really Track Runtime?
	Slide 75: Does Degree Really Track Runtime?
	Slide 76: Does Degree Really Track Runtime?
	Slide 77: Low-Degree Conjecture
	Slide 78: Low-Degree Conjecture
	Slide 79: Low-Degree Conjecture
	Slide 80: Low-Degree Conjecture
	Slide 81: Low-Degree Conjecture
	Slide 82: Low-Degree Conjecture
	Slide 83: Low-Degree Conjecture
	Slide 84: Low-Degree Conjecture
	Slide 85: Low-Degree Conjecture
	Slide 86: Low-Degree Conjecture
	Slide 87: Proof Ideas (Detection)
	Slide 88: Proof Ideas (Detection)
	Slide 89: Proof Ideas (Detection)
	Slide 90: Proof Ideas (Detection)
	Slide 91: Proof Ideas (Detection)
	Slide 92: Bounding the “Advantage”
	Slide 93: Bounding the “Advantage”
	Slide 94: Bounding the “Advantage”
	Slide 95: Bounding the “Advantage”
	Slide 96: Bounding the “Advantage”
	Slide 97: Bounding the “Advantage”
	Slide 98: Proof Ideas (Summary)
	Slide 99: Proof Ideas (Summary)
	Slide 100: Proof Ideas (Summary)
	Slide 101: Proof Ideas (Summary)
	Slide 102: Proof Ideas (Summary)
	Slide 103: Proof Ideas (Summary)
	Slide 104: Proof Ideas (Summary)
	Slide 105: Proof Ideas (Summary)
	Slide 106: Proof Ideas (Summary)
	Slide 107: Proof Ideas (Summary)
	Slide 108: Proof Ideas (Summary)
	Slide 109: Proof Ideas (Summary)
	Slide 110: Sharp Thresholds in Estimation
	Slide 111: Sharp Thresholds in Estimation
	Slide 112: Sharp Thresholds in Estimation
	Slide 113: Sharp Thresholds in Estimation
	Slide 114: Sharp Thresholds in Estimation
	Slide 115: Sharp Thresholds in Estimation
	Slide 116: Sharp Thresholds in Estimation
	Slide 117: Sharp Thresholds in Estimation
	Slide 118: Sharp Thresholds in Estimation
	Slide 119: Sharp Thresholds in Estimation
	Slide 120: Sharp Thresholds in Estimation
	Slide 121: Connection to Other Heuristics
	Slide 122: Connection to Other Heuristics
	Slide 123: Connection to Other Heuristics
	Slide 124: Connection to Other Heuristics
	Slide 125: Connection to Other Heuristics
	Slide 126: Connection to Other Heuristics
	Slide 127: Tensor PCA
	Slide 128: Tensor PCA
	Slide 129: Tensor PCA
	Slide 130: Tensor PCA
	Slide 131: Tensor PCA
	Slide 132: Tensor PCA
	Slide 133: Tensor PCA
	Slide 134: Tasks
	Slide 135: Tasks
	Slide 136: Tasks
	Slide 137: Tasks
	Slide 138: Tasks
	Slide 139: Tasks
	Slide 140: Tasks
	Slide 141: Tasks
	Slide 142: Frameworks vs Tasks
	Slide 143: Known Connections
	Slide 144: Known Connections
	Slide 145: Known Connections
	Slide 146: Known Connections
	Slide 147: Known Connections
	Slide 148: Known Connections
	Slide 149: Known Connections
	Slide 150: Known Connections
	Slide 151: Known Connections
	Slide 152: Known Connections
	Slide 153: Known Connections
	Slide 154: Known Connections
	Slide 155: Known Connections
	Slide 156: Known Connections

