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Motivation: cryo-EM

Given many noisy 2D images of molecules, each with a 
different, unknown 3D rotation 

Figure: courtesy of Amit 
Singer and Yoel Shkolnisky

A. Singer and Y. Shkolnisky. Three-dimensional structure determination 
from common lines in Cryo-EM by eigenvectors and semidefinite 
programming. SIAM J. Imaging Sciences, 4(2):543–572, 2011.

[SS11]



Motivation: cryo-EM

Given many noisy 2D images of molecules, each with a 
different, unknown 3D rotation 

Comparing images u, v, we can learn a little about 
(relative alignment)

Figure: courtesy of Amit 
Singer and Yoel Shkolnisky

A. Singer and Y. Shkolnisky. Three-dimensional structure determination 
from common lines in Cryo-EM by eigenvectors and semidefinite 
programming. SIAM J. Imaging Sciences, 4(2):543–572, 2011.

[SS11]



Motivation: cryo-EM

Given many noisy 2D images of molecules, each with a 
different, unknown 3D rotation 

Comparing images u, v, we can learn a little about 
(relative alignment)

Q: how to synthesize into accurate estimation of all       ?

Figure: courtesy of Amit 
Singer and Yoel Shkolnisky

A. Singer and Y. Shkolnisky. Three-dimensional structure determination 
from common lines in Cryo-EM by eigenvectors and semidefinite 
programming. SIAM J. Imaging Sciences, 4(2):543–572, 2011.

[SS11]

(to reconstruct the molecule)



Motivation: cryo-EM

Given many noisy 2D images of molecules, each with a 
different, unknown 3D rotation 

Comparing images u, v, we can learn a little about 
(relative alignment)

One answer: spectral methods (PCA) [CSSS10]

Q: how to synthesize into accurate estimation of all       ?

Figure: courtesy of Amit 
Singer and Yoel Shkolnisky

R. R. Coifman, Y. Shkolnisky, F. J.  Sigworth, A. Singer, “Reference free 
structure determination through eigenvectors of center of mass operators”. 
Applied and Computational Harmonic Analysis, Volume 28, Issue 3 (2010).

[CSSS10]A. Singer and Y. Shkolnisky. Three-dimensional structure determination 
from common lines in Cryo-EM by eigenvectors and semidefinite 
programming. SIAM J. Imaging Sciences, 4(2):543–572, 2011.
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Motivation: cryo-EM

Challenge:

● PCA ignores the constraint to valid group elements. How 
do we make better use of this structure?

● PCA effectively linearizes the observations, losing much 
of the signal. How do we fully exploit our observations?

We apply Approximate Message Passing, an existing 
framework for structured linear problems.

We will build up towards cryo-EM via simpler problems.



Warm-up:            synchronization

Learn

a matrix of from noisy pairwise measurements...

e.g. [HLL77], [Sin11], [ABBS14]

P. W. Holland, K. B. Laskey, and S. Leinhardt. 
"Stochastic blockmodels: First steps." Social 
networks 5.2 (1983): 109-137.
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and semidefinite programming.” Applied and 
computational harmonic analysis 30.1 (2011).
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Warm-up:            synchronization

Learn

from a matrix of noisy pairwise measurements:

—signal— —noise—

: signal-to-noise ratio,            : Gaussian noise  (GOE)

(up to a global flip)

e.g. [HLL77], [Sin11], [ABBS14]

P. W. Holland, K. B. Laskey, and S. Leinhardt. 
"Stochastic blockmodels: First steps." Social 
networks 5.2 (1983): 109-137.

[HLL77] A. Singer. “Angular synchronization by eigenvectors 
and semidefinite programming.” Applied and 
computational harmonic analysis 30.1 (2011).

[Sin11] [ABBS14] E. Abbe, A. S. Bandeira, A. Bracher, A, Singer. "Decoding binary 
node labels from censored edge measurements: Phase transition 
and efficient recovery." IEEE Trans. Network Sci. Eng. 1.1 (2014).
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         : some prior methods

PCA: top eigenvector of Y [Sin11]

Power iteration:

Projected power iteration (“majority dynamics”)   [Bou16]

Semidefinite programming [Sin11, BCS15]

N. Boumal, “Nonconvex phase 
synchronization”. arXiv:1601.06114 (2016).

[Bou16]A. Singer. “Angular synchronization by eigenvectors 
and semidefinite programming.” Applied and 
computational harmonic analysis 30.1 (2011).

[Sin11] A. S. Bandeira, Y. Chen, and A. Singer. "Non-unique 
games over compact groups and orientation 
estimation in cryo-EM." arXiv:1505.03840 (2015).

[BCS15]
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         : try soft thresholding?

Soft thresholding:
 (      is applied entry-wise to     )

Optimal: 

Outputs in                  capture “confidence” of estimates.

So this iterative algorithm passes around distributions...



Belief Propagation (BP)

In each iteration, nodes send each other ‘messages’: their 
posterior distributions given the previous iteration.

Pearl, Judea. "Fusion, propagation, and structuring in belief 
networks." Artificial intelligence 29.3 (1986): 241-288.

[Pea86] M. Mézard,  G. Parisi, and M. A. Virasoro. "SK model: 
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Belief Propagation (BP)

In each iteration, nodes send each other ‘messages’: their 
posterior distributions given the previous iteration.

Caveat: no backtracking!

Arose simultaneously as ‘cavity equations’ in physics.

Not rigorously well-understood.

Pearl, Judea. "Fusion, propagation, and structuring in belief 
networks." Artificial intelligence 29.3 (1986): 241-288.

[Pea86] M. Mézard,  G. Parisi, and M. A. Virasoro. "SK model: 
The replica solution without replicas." Europhys. Lett 
1.2 (1986): 77-82.

[MPV86]

send messages

consolidate
& send message

convolve with
pair likelihoods

(e.g. random SAT)
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Simplifies belief propagation
● Exploits central limit theorems for dense graphs
● Encodes messages (distributions) in a few parameters

Frequently yields state-of-the-art statistical performance.
● Compressed sensing [DMM09]

● Sparse PCA [DM14],     non-negative / cone PCA [DMR14]

Rigorous proof framework [BM11]

[BM11] M. Bayati and A. Montanari. "The dynamics of 
message passing on dense graphs, with applications to 
compressed sensing." IEEE T. Inform. Theory 57.2 (2011).

[DMM09] D. L. Donoho., A. Maleki, and A. Montanari. 
"Message-passing algorithms for compressed sensing." 
P. Natl. Acad. Sci. USA 106.45 (2009).
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optimal sparse PCA." IEEE ISIT, 2014.
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AMP for           synchronization

Onsager term corrects for backtracking, to leading order.

Each entry of        encodes a distribution over               .
(as the expectation)

—soft thresholding—

—Onsager correction—
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Comparison of Methods
ln(error), lower is better

PCA

projected power method

AMP without Onsager term (soft thresholding)

AMP
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Comparison of Methods

AMP is provably optimal here 
(modulo warm-start)  [DAM15]

Onsager term does make a difference!

PCA

projected power method

AMP without Onsager term (soft thresholding)

AMP

Y. Deshpande, E. Abbe, and A. Montanari. 
"Asymptotic mutual information for the two-groups 
stochastic block model." arXiv:1507.08685 (2015).

[DAM15]

(SNR)

ln(error), lower is better



Motivation: multireference alignment

A. S. Bandeira, M. Charikar, A. Singer, and A. Zhu. Multireference 
alignment using semidefinite programming. 5th Innovations in 
Theoretical Computer Science (ITCS 2014), 2014.

Figure:



Motivation: angular synchronization



Learn a vector      of group elements
from noisy observations of             .
(up to global right-multiplication by a group element)

Synchronization over any group

A. S. Bandeira, Y. Chen, and A. Singer. "Non-unique 
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estimation in cryo-EM." arXiv:1505.03840 (2015).
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Learn a vector      of group elements
from noisy observations of             .
(up to global right-multiplication by a group element)

(e.g.                                                 compact Lie groups)

Synchronization over any group

Our contribution: AMP for synchronization 
over any* group, with any* noise model

A. S. Bandeira, Y. Chen, and A. Singer. "Non-unique 
games over compact groups and orientation 
estimation in cryo-EM." arXiv:1505.03840 (2015).

[BCS15]
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U(1) synchronization

Observe 

SDP is tight [BNS14]

—signal— —noise—

A. S. Bandeira, N. Boumal, and A. Singer. "Tightness of 
the maximum likelihood semidefinite relaxation for 
angular synchronization." arXiv:1411.3272 (2014).

[BNS14]
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U(1) with multiple frequencies

Observe 

…

Multiple channels of 
pairwise information.

Multiple frequencies 
corresponds to nonlinear 
observations.

No clear PCA approach 
that couples them.

—signal— —noise—



U(1): AMP algorithm
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U(1): AMP algorithm

Represent distributions by discretizations?

Discretizing                  is awkward: impossible without breaking 
symmetry.

Rotating a discretized function is lossy.
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Iteration:

       is the transformation from           to         !

U(1): AMP algorithm

(consolidation)

(messaging)

density? log-likelihood?
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Then,
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U(1): empirical results

AMP can synthesize information across multiple frequencies.

correlation with truth (higher is better)

1 freq

2

3

4

5

6

ln(error),  lower is better

(SNR) (SNR)
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Synchronization over any* group

Fourier theory becomes representation theory.

Peter–Weyl theorem: any*                                  decomposes into 
normal modes:

Apply this to distributions to describe the AMP iterations.

(consolidation: exp & normalize)(messaging)



Noise models & non-unique games

What sort of noise?

A. S. Bandeira, Y. Chen, and A. Singer. "Non-unique 
games over compact groups and orientation 
estimation in cryo-EM." arXiv:1505.03840 (2015).

[BCS15]
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noisy rotated copies recovery result



AMP for SO(3) synchronization

Example: aligning noisy copies of images on the sphere.

To form            : decompose images into spherical harmonics.
        representation compares the degree      harmonics.

ground truth

noisy rotated copies recovery result
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Correct AMP for per-vertex noise
Cryo-EM and other problems have noise on each observation, not on each 

pair comparison.

We can derive correct AMP for each stochastic model—but 
can we make AMP tune itself?

More robust to uncertain noise models?

What are the information limits of synchronization problems?
Does AMP match them?

Ongoing work:



Thanks!

Any questions?


