Understanding Statistical-vs-Computational
Tradeoffs via the Low-Degree Likelihood Ratio

Alex Wein
Courant Institute, NYU

Joint work with:

Afonso Bandeira Yunzi Ding Tim Kunisky
(ETH Zurich) (NYU) (NYU)

/27



Motivation

2/27



Motivation

Imagine we have a large noisy dataset and want to extract some
kind of hidden “signal”

N

27



Motivation

Imagine we have a large noisy dataset and want to extract some
kind of hidden "signal”, e.g.,

» determine which combination of genes cause a certain disease

N

27



Motivation

Imagine we have a large noisy dataset and want to extract some
kind of hidden "signal”, e.g.,

» determine which combination of genes cause a certain disease

» find “communities” in a social network

N

27



Motivation

Imagine we have a large noisy dataset and want to extract some
kind of hidden "signal”, e.g.,

» determine which combination of genes cause a certain disease
» find “communities” in a social network

» predict which users will click on which ads

N

27



Motivation

Imagine we have a large noisy dataset and want to extract some
kind of hidden "signal”, e.g.,

» determine which combination of genes cause a certain disease
» find “communities” in a social network
» predict which users will click on which ads

> etc.

)

27



Motivation

Imagine we have a large noisy dataset and want to extract some
kind of hidden "signal”, e.g.,

» determine which combination of genes cause a certain disease
» find “communities” in a social network
» predict which users will click on which ads

> etc.

There are many potential solutions

)

27



Motivation

Imagine we have a large noisy dataset and want to extract some
kind of hidden "signal”, e.g.,

» determine which combination of genes cause a certain disease
» find “communities” in a social network
» predict which users will click on which ads

> etc.

There are many potential solutions

The naive algorithm would check all possibilities, too slow!

» “curse of dimensionality”

N)

27



Motivation

Imagine we have a large noisy dataset and want to extract some
kind of hidden "signal”, e.g.,

» determine which combination of genes cause a certain disease
» find “communities” in a social network
» predict which users will click on which ads

> etc.

There are many potential solutions

The naive algorithm would check all possibilities, too slow!

» “curse of dimensionality”

Is there a “smarter” algorithm that can find the solution efficiently?

N)

27



Motivation

Imagine we have a large noisy dataset and want to extract some
kind of hidden "signal”, e.g.,

» determine which combination of genes cause a certain disease
» find “communities” in a social network
» predict which users will click on which ads

> etc.

There are many potential solutions

The naive algorithm would check all possibilities, too slow!
» “curse of dimensionality”
Is there a “smarter” algorithm that can find the solution efficiently?

Goal: develop a theory to understand which statistical tasks can be
solved efficiently (and which ones cannot)
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Part I: Statistical-to-Computational Gaps and the
“Low-Degree Method"
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Statistical-to-Computational Gaps

» Planted clique: G(n,1/2) U {k-clique}

n vertices

Each of the ('2’) edges occurs with probability 1/2
Planted clique on k vertices

Goal: find the clique

vV vy vy
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> Planted clique: G(n,1/2) U {k-clique}
» Statistically, can find planted clique of size (2 + ¢) log, n

» In polynomial time, we only know how to find clique of size
Q(\/ﬁ) [Alon, Krivelevich, Sudakov '98]

Impossible Hard Easy
} t >
2logn vn k

» Other examples of stat-comp gaps
» Sparse PCA
» Community detection in graphs (stochastic block model)
» Random constraint satisfaction problems (e.g. 3-SAT)
» Tensor PCA

» Tensor decomposition

Different from theory of NP-hardness: average-case

Q: What fundamentally makes a problem easy or hard?
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Suppose we want to hypothesis test with error probability o(1)
between two distributions:

> Null model Y ~ Q, e.g. G(n,1/2)
> Planted model Y ~ P, e.g. G(n,1/2) U {random k-clique}

Look for a degree-D (multivariate) polynomial f : R"*" — R that
distinguishes P from Q:

Want f(Y) to be big when Y ~ P and small when Y ~ Q

Compute ma Ey~p[f(Y)] mean in P
u X
P deg D /By g[f(Y)?] fluctuations in Q
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fTeZXD\)% (f.g) =Ey~glf(¥Y)g(Y)]
_ max Er~elt(V)F(Y)] 11l = V/<Fo )
fdegD /Ey_o[f(Y)?]
_ max B Likelihood ratio:
fdeg D ||f]] L(Y) = Z5(Y)
= L=7]

Maximizer: f = L=P := projection of L onto degree-D subspace

Norm of low-degree likelihood ratio
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fdeg D \/Eyq[f(Y)?]

Heuristically,
IL<0| = w(1) degree-D polynomial can distinguish Q, P
~ | O(1) degree-D polynomials fail

Conjecture (informal variant of [Hopkins '18])

For “nice” Q,P, if |L<P|| = O(1) for some D = w(log n) then no
polynomial-time algorithm can distinguish Q,P with success
probability 1 — o(1).

Degree-O(log n) polynomials < Polynomial-time algorithms
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» Classical second moment method

If [|L=P|| = O(1) for some D = w(log n) then no spectral method
can distinguish Q from PP (in a particular sense) (<unisky, W, Bandeira '19]

» Spectral method: threshold top eigenvalue of poly-size matrix
M = M(Y') whose entries are O(1)-degree polynomials in Y

» Proof: consider polynomial f(Y) = Tr(M9) with g = ©(log n)

» Spectral methods are believed to be as powerful as
sum-of-squares for average-case problems (kprss 17]
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Low-Degree Method: Recap

Given a hypothesis testing question Q, vs P,
Take D =~ log n

Compute/bound ||L=P|| in the limit n — oo

> If [[L=P]|| = w(1), suggests that the problem is poly-time
solvable

» If |[L=P|| = O(1), suggests that the problem is NOT poly-time
solvable (and gives rigorous evidence: spectral methods fail)
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Predictions seem “correct”!
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(Relatively) simple
» Much simpler than sum-of-squares lower bounds

Detection vs certification
General: no assumptions on Q, P
Captures Sharp thresh0|ds [Hopkins, Steurer '17]

By varying degree D, can explore runtimes other than
polynomial
» Conjecture (Hopkins '18): degree-D polynomials <

time-n®(P)

algorithms
No ingenuity required

Interpretable
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How to Compute ||L=P||

Additive Gaussian noise: P: Y =X+Z vs Q:Y=Z
where X ~ P, any distribution over RV
and Z is i.i.d. N(0,1)

_ Py Exew(3]Y -~ XIP)
dQ exp(— 5 Y[1)

1% = Ex (Y. X)—2 | X|?)

Expand L =) cohq where {h,} are Hermite polynomials
(orthonormal basis w.r.t. Q)

IL=PIR = 370 < p €2 where co = (L, ha) = Eyg[L(Y)ha(Y)]

D
1
Result: [|L=P |7 = 3~ —Ex (X, X')]
d=0
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Noise: W € R"*" with entries Wj; = Wj; ~ N'(0,1/n) i.i.d.
A > 0: signal-to-noise ratio

Goal: given Y, estimate the signal x
Or, even simpler: distinguish (w.h.p.) Y from pure noise W

Structure: suppose x is drawn from some prior, e.g.
» spherical (uniform on unit sphere)
» Rademacher (i.i.d. +1/y/n)

> sparse
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Y =xxT + W
PCA: top eigenvalue A1(Y) and (unit-norm) eigenvector vq

Theorem (BBP'05, FP'06)
Almost surely, as n — oo,
» IfA<1:\(Y)—2and (x,vi) =0
» IfA>1:A(Y) 2> A+ 1 >2and (x,v1)2 -5 1-1/A2>0

Sharp threshold: PCA can detect and recover the signal iff A > 1

J. Baik, G. Ben Arous, S. Peche, AoP 2005.

D. Feral, S. Peche, CMP 2006.
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PCA does not exploit structure of signal x

Is the PCA threshold (A = 1) optimal?

» Is it statistically possible to detect/recover when A < 17

Answer: it depends on the prior for x

For some priors (e.g. spherical, Rademacher), detection and
recovery are statistically impossible when A\ < 1 (urz'14, pam'1s, pwemig]

But what if x is sparse?
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Sparse PCA

Suppose x € R" is drawn from the k-sparse Rademacher prior:

» k random entries of x are nonzero

> the nonzero entries are drawn uniformly from {+1/v/k}
Normalization: [|x|| =1
As before, Y = \xxT + W

Assume )\ < 1 is a constant
» PCA fails

Johnstone, Lu '04, '09
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Let Sy := {v € {0,£1/Vk}" : ||v]lo = k}
(set of k-sparse Rademacher vectors)

MLE: & = argmaxv ' Yv
vES,

Succeeds (X = x with high probability) provided k < n/logn

[PJ'12, VL'12, CMW'13]

> For weak recovery, k < p*n = 0.09n

[LKZ'15, KXZ'16, DMK™'16, LM'19, EKJ'17]

Runtime: (}) ~ n* ~ exp(k)
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Diagonal Thresholding

Diagonal thresholding algorithm [sonnstone, Lu 09):
» Identify the largest k diagonal entries Y
» Report these indices i as the support of x

» (Easy to then recover x once you know the support)
Succeeds (exact recovery) provided k < \/n/log n (amini, Wainwright 05]
Runtime: polynomial

Variant: covariance thresholding is poly-time and succeeds when
k 5 \/E (remOVeS |Og factor) [Krauthgamer, Nadler, Vilenchik '15, Deshpande, Montanari '14]
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To summarize:

Statistically possible when k < n
» Runtime exp(k)

Poly-time solvable when k < \/n

Believed “hard” when /n < k < n
» Reduction from planted clique sr'13, wes'i6, BBH'158, BB'19]

» Sum-of-squares lower bounds mwis, Hkp*117]

Question: exactly how hard is the “hard” regime?
» Can you do better than exp(k)? Yes: exp(k?/n)

» Reduction from planted clique doesn’t rule out
quasipolynomial time n©O(log n)
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Low-Degree Prediction

Hypothesis testing between:
» P: Y = Xxx" + W with x drawn from k-sparse prior
»Q:Y=W

Theorem (Ding, Kunisky, W., Bandeira '19)

Suppose A = O(1).
> IfA<1and D < k2/n then |L=P| = O(1) ( “hard")
» If\>1or D> k?/n then ||L=P|| = w(1) (“easy”)

So degree-D polynomials can distinguish iff A > 1 or D > k?/n

Suggests an algorithm of runtime nk*/" ~ exp(k2/n) (and no
better)

» Subexponential time: exp(n®) with & € (0,1)

And indeed we will find such an algorithm...
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Analysis of the Algorithm

Recall: algorithm thresholds T := masx v Yv
vESy
Analysis:

» Under P, Y = Axx| + W, show T is large by considering a
‘good’ v (contained in x)

» Under Q, Y = W, show T is small by Chernoff bound +
union bound over Sy

Theorem (Ding, Kunisky, W., Bandeira '19): algorithm succeeds if
> k?/n

For any given k, choose £ ~ k?/n, get runtime exp(k?/n)
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From Detection to Recovery

Algorithm for recovering x from Y = Axx " + W:

1. Compute initial guess: u = argmaxv ' Yv
veSy

But u is too sparse...
2. Let w=Yu
3. Construct % € {0,41/vk}" by thresholding entries of w

Theorem (Ding, Kunisky, W., Bandeira '19): X = x with high
probability, provided ¢ >> k?/n (same as detection)

Technically, need independent copies of Y for steps 1 & 2
» Y+ W and Y — W' where W' is independent copy of W

26 /27
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