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Motivation

Imagine we have a large noisy dataset and want to extract some
kind of hidden “signal”, e.g.,

I determine which combination of genes cause a certain disease

I find “communities” in a social network

I predict which users will click on which ads

I etc.

There are many potential solutions

The näıve algorithm would check all possibilities, too slow!

I “curse of dimensionality”

Is there a “smarter” algorithm that can find the solution efficiently?

Goal: develop a theory to understand which statistical tasks can be
solved efficiently (and which ones cannot)
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Part I: Statistical-to-Computational Gaps and the
“Low-Degree Method”
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Statistical-to-Computational Gaps

I Planted clique: G (n, 1/2) ∪ {k-clique}
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I Each of the

(
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)
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I Planted clique on k vertices
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Statistical-to-Computational Gaps

I Planted clique: G (n, 1/2) ∪ {k-clique}

I Statistically, can find planted clique of size (2 + ε) log2 n
I In polynomial time, we only know how to find clique of size

Ω(
√
n) [Alon, Krivelevich, Sudakov ’98]

I Other examples of stat-comp gaps
I Sparse PCA

I Community detection in graphs (stochastic block model)

I Random constraint satisfaction problems (e.g. 3-SAT)

I Tensor PCA

I Tensor decomposition

Different from theory of NP-hardness: average-case

Q: What fundamentally makes a problem easy or hard?
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How to Show that a Problem is Hard?

We don’t know how to prove that average-case problems are hard,
but various forms of “rigorous evidence”:

I Reductions (e.g. from planted clique) [Berthet, Rigollet ’13; Brennan, Bresler,...]

I Failure of MCMC [Jerrum ’92]

I Shattering of solution space [Achlioptas, Coja-Oghlan ’08]

I Failure of local algorithms [Gamarnik, Sudan ’13]

I Statistical physics, belief propagation [Decelle, Krzakala, Moore, Zdeborová ’11]

I Optimization landscape, Kac-Rice formula [Auffinger, Ben Arous, Černý ’10]

I Statistical query lower bounds [Feldman, Grigorescu, Reyzin, Vempala, Xiao ’12]

I Sum-of-squares lower bounds [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16]

I This talk: “low-degree method”
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16; Hopkins, Steurer ’17;

Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17; Hopkins ’18 (PhD thesis)]
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I Optimization landscape, Kac-Rice formula [Auffinger, Ben Arous, Černý ’10]
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I Optimization landscape, Kac-Rice formula [Auffinger, Ben Arous, Černý ’10]
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I Optimization landscape, Kac-Rice formula [Auffinger, Ben Arous, Černý ’10]
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I Statistical query lower bounds [Feldman, Grigorescu, Reyzin, Vempala, Xiao ’12]

I Sum-of-squares lower bounds [Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16]

I This talk: “low-degree method”
[Barak, Hopkins, Kelner, Kothari, Moitra, Potechin ’16; Hopkins, Steurer ’17;

Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17; Hopkins ’18 (PhD thesis)]

6 / 27



The Low-Degree Method (e.g. [Hopkins, Steurer ’17])

Suppose we want to hypothesis test with error probability o(1)
between two distributions:

I Null model Y ∼ Qn e.g. G (n, 1/2)

I Planted model Y ∼ Pn e.g. G (n, 1/2) ∪ {random k-clique}

Look for a degree-D (multivariate) polynomial f : Rn×n → R that
distinguishes P from Q:

Want f (Y ) to be big when Y ∼ P and small when Y ∼ Q

Compute max
f deg D

EY∼P[f (Y )]√
EY∼Q[f (Y )2]

mean in P
fluctuations in Q
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The Low-Degree Method

Conclusion: max
f deg D

EY∼P[f (Y )]√
EY∼Q[f (Y )2]

= ‖L≤D‖

Heuristically,

‖L≤D‖ =

{
ω(1) degree-D polynomial can distinguish Q,P
O(1) degree-D polynomials fail

Conjecture (informal variant of [Hopkins ’18])

For “nice” Q,P, if ‖L≤D‖ = O(1) for some D = ω(log n) then no
polynomial-time algorithm can distinguish Q,P with success
probability 1− o(1).

Degree-O(log n) polynomials ⇔ Polynomial-time algorithms
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Formal Consequences of the Low-Degree Method

The case D =∞: If ‖L‖ = O(1) (as n→∞) then no test can
distinguish Q from P (with success probability 1− o(1))

I Classical second moment method

If ‖L≤D‖ = O(1) for some D = ω(log n) then no spectral method
can distinguish Q from P (in a particular sense) [Kunisky, W, Bandeira ’19]

I Spectral method: threshold top eigenvalue of poly-size matrix
M = M(Y ) whose entries are O(1)-degree polynomials in Y

I Proof: consider polynomial f (Y ) = Tr(Mq) with q = Θ(log n)

I Spectral methods are believed to be as powerful as
sum-of-squares for average-case problems [HKPRSS ’17]
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Low-Degree Method: Recap

Given a hypothesis testing question Qn vs Pn

Take D ≈ log n

Compute/bound ‖L≤D‖ in the limit n→∞

I If ‖L≤D‖ = ω(1), suggests that the problem is poly-time
solvable

I If ‖L≤D‖ = O(1), suggests that the problem is NOT poly-time
solvable (and gives rigorous evidence: spectral methods fail)
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Advantages of the Low-Degree Method

I Possible to calculate/bound ‖L≤D‖ for many problems

I Predictions seem “correct”!
I Planted clique, sparse PCA, stochastic block model, ...

I (Relatively) simple
I Much simpler than sum-of-squares lower bounds

I Detection vs certification

I General: no assumptions on Q,P
I Captures sharp thresholds [Hopkins, Steurer ’17]

I By varying degree D, can explore runtimes other than
polynomial

I Conjecture (Hopkins ’18): degree-D polynomials ⇔
time-nΘ̃(D) algorithms

I No ingenuity required

I Interpretable
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How to Compute ‖L≤D‖

Additive Gaussian noise: P : Y = X + Z vs Q : Y = Z
where X ∼ P, any distribution over RN

and Z is i.i.d. N (0, 1)

L(Y ) =
dP
dQ

(Y ) =
EX exp(−1

2‖Y − X‖2)

exp(−1
2‖Y ‖2)

= EX exp(〈Y ,X 〉−1

2
‖X‖2)

Expand L =
∑

α cαhα where {hα} are Hermite polynomials
(orthonormal basis w.r.t. Q)

‖L≤D‖2 =
∑
|α|≤D c2

α where cα = 〈L, hα〉 = EY∼Q[L(Y )hα(Y )]

· · ·

Result: ‖L≤D‖2 =
D∑

d=0

1

d!
EX ,X ′ [〈X ,X ′〉d ]
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For more on the low-degree method...

I Samuel B. Hopkins, PhD thesis ’18: “Statistical Inference and
the Sum of Squares Method”

I Connection to SoS

I Survey article: Kunisky, W, Bandeira, “Notes on
Computational Hardness of Hypothesis Testing: Predictions
using the Low-Degree Likelihood Ratio”, arxiv:1907.11636
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Part II: Sparse PCA

Based on: Ding, Kunisky, W., Bandeira, “Subexponential-Time
Algorithms for Sparse PCA”, arxiv:1907.11635
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Spiked Wigner Model

Observe n × n matrix Y = λxxT + W
Signal: x ∈ Rn, ‖x‖ = 1
Noise: W ∈ Rn×n with entries Wij = Wji ∼ N (0, 1/n) i.i.d.
λ > 0: signal-to-noise ratio

Goal: given Y , estimate the signal x
Or, even simpler: distinguish (w.h.p.) Y from pure noise W

Structure: suppose x is drawn from some prior, e.g.

I spherical (uniform on unit sphere)

I Rademacher (i.i.d. ±1/
√
n)

I sparse
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PCA (Principal Component Analysis)

Y = λxxT + W

PCA: top eigenvalue λ1(Y ) and (unit-norm) eigenvector v1

Theorem (BBP’05, FP’06)

Almost surely, as n→∞,

I If λ ≤ 1: λ1(Y )→ 2 and 〈x , v1〉 → 0

I If λ > 1: λ1(Y )→ λ+ 1
λ > 2 and 〈x , v1〉2 → 1− 1/λ2 > 0

Sharp threshold: PCA can detect and recover the signal iff λ > 1

J. Baik, G. Ben Arous, S. Peche, AoP 2005.

D. Feral, S. Peche, CMP 2006.
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Is PCA Optimal?

PCA does not exploit structure of signal x

Is the PCA threshold (λ = 1) optimal?

I Is it statistically possible to detect/recover when λ < 1?

Answer: it depends on the prior for x

For some priors (e.g. spherical, Rademacher), detection and
recovery are statistically impossible when λ < 1 [MRZ’14, DAM’15, PWBM’18]

But what if x is sparse?
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Sparse PCA

Suppose x ∈ Rn is drawn from the k-sparse Rademacher prior:

I k random entries of x are nonzero

I the nonzero entries are drawn uniformly from {±1/
√
k}

Normalization: ‖x‖ = 1

As before, Y = λxxT + W

Assume λ < 1 is a constant

I PCA fails

Johnstone, Lu ’04, ’09
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Maximum Likelihood Estimator

Let Sk := {v ∈ {0,±1/
√
k}n : ‖v‖0 = k}

(set of k-sparse Rademacher vectors)

MLE: x̂ = argmax
v∈Sk

v>Yv

Succeeds (x̂ = x with high probability) provided k . n/ log n
[PJ’12, VL’12, CMW’13]

I For weak recovery, k < ρ∗n ≈ 0.09n
[LKZ’15, KXZ’16, DMK+’16, LM’19, EKJ’17]

Runtime:
(n
k

)
≈ nk ≈ exp(k)

20 / 27



Maximum Likelihood Estimator

Let Sk := {v ∈ {0,±1/
√
k}n : ‖v‖0 = k}

(set of k-sparse Rademacher vectors)

MLE: x̂ = argmax
v∈Sk

v>Yv

Succeeds (x̂ = x with high probability) provided k . n/ log n
[PJ’12, VL’12, CMW’13]

I For weak recovery, k < ρ∗n ≈ 0.09n
[LKZ’15, KXZ’16, DMK+’16, LM’19, EKJ’17]

Runtime:
(n
k

)
≈ nk ≈ exp(k)

20 / 27



Maximum Likelihood Estimator

Let Sk := {v ∈ {0,±1/
√
k}n : ‖v‖0 = k}

(set of k-sparse Rademacher vectors)

MLE: x̂ = argmax
v∈Sk

v>Yv

Succeeds (x̂ = x with high probability) provided k . n/ log n
[PJ’12, VL’12, CMW’13]

I For weak recovery, k < ρ∗n ≈ 0.09n
[LKZ’15, KXZ’16, DMK+’16, LM’19, EKJ’17]

Runtime:
(n
k

)
≈ nk ≈ exp(k)

20 / 27



Maximum Likelihood Estimator

Let Sk := {v ∈ {0,±1/
√
k}n : ‖v‖0 = k}

(set of k-sparse Rademacher vectors)

MLE: x̂ = argmax
v∈Sk

v>Yv

Succeeds (x̂ = x with high probability) provided k . n/ log n
[PJ’12, VL’12, CMW’13]

I For weak recovery, k < ρ∗n ≈ 0.09n
[LKZ’15, KXZ’16, DMK+’16, LM’19, EKJ’17]

Runtime:
(n
k

)
≈ nk ≈ exp(k)

20 / 27



Maximum Likelihood Estimator

Let Sk := {v ∈ {0,±1/
√
k}n : ‖v‖0 = k}

(set of k-sparse Rademacher vectors)

MLE: x̂ = argmax
v∈Sk

v>Yv

Succeeds (x̂ = x with high probability) provided k . n/ log n
[PJ’12, VL’12, CMW’13]

I For weak recovery, k < ρ∗n ≈ 0.09n
[LKZ’15, KXZ’16, DMK+’16, LM’19, EKJ’17]

Runtime:
(n
k

)
≈ nk ≈ exp(k)

20 / 27



Diagonal Thresholding

Diagonal thresholding algorithm [Johnstone, Lu ’09]:

I Identify the largest k diagonal entries Yii

I Report these indices i as the support of x

I (Easy to then recover x once you know the support)

Succeeds (exact recovery) provided k .
√
n/ log n [Amini, Wainwright ’08]

Runtime: polynomial

Variant: covariance thresholding is poly-time and succeeds when
k .
√
n (removes log factor) [Krauthgamer, Nadler, Vilenchik ’15, Deshpande, Montanari ’14]
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Hard Regime

To summarize:

Statistically possible when k � n

I Runtime exp(k)

Poly-time solvable when k �
√
n

Believed “hard” when
√
n� k � n

I Reduction from planted clique [BR’13, WBS’16, BBH’18, BB’19]

I Sum-of-squares lower bounds [MW’15, HKP+’17]

Question: exactly how hard is the “hard” regime?

I Can you do better than exp(k)?

I Reduction from planted clique doesn’t rule out
quasipolynomial time nO(log n)
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I Sum-of-squares lower bounds [MW’15, HKP+’17]

Question: exactly how hard is the “hard” regime?

I Can you do better than exp(k)? Yes: exp(k2/n)

I Reduction from planted clique doesn’t rule out
quasipolynomial time nO(log n)
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Low-Degree Prediction

Hypothesis testing between:

I P : Y = λxx> + W with x drawn from k-sparse prior

I Q : Y = W

Theorem (Ding, Kunisky, W., Bandeira ’19)

Suppose λ = Θ(1).

I If λ < 1 and D � k2/n then ‖L≤D‖ = O(1) (“hard”)

I If λ > 1 or D � k2/n then ‖L≤D‖ = ω(1) (“easy”)

So degree-D polynomials can distinguish iff λ > 1 or D � k2/n

Suggests an algorithm of runtime nk
2/n ≈ exp(k2/n) (and no

better)

I Subexponential time: exp(nδ) with δ ∈ (0, 1)

And indeed we will find such an algorithm...
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The Algorithm

For now, consider the detection problem (P vs Q)

Choose a parameter 1 ≤ ` ≤ k

Let S` := {v ∈ {±1}n : ‖v‖0 = `}

Let T := max
v∈S`

v>Yv

Algorithm: compute T and threshold it (large ⇒ P)

I ` = k ⇒ exhaustive search (MLE)

I ` = 1 ⇒ diagonal thresholding maxi Yii

Runtime:
(n
`

)
≈ n` ≈ exp(`)
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Analysis of the Algorithm

Recall: algorithm thresholds T := max
v∈S`

v>Yv

Analysis:

I Under P, Y = λxx> + W , show T is large by considering a
‘good’ v (contained in x)

I Under Q, Y = W , show T is small by Chernoff bound +
union bound over S`

Theorem (Ding, Kunisky, W., Bandeira ’19): algorithm succeeds if
`� k2/n

For any given k , choose ` ≈ k2/n, get runtime exp(k2/n)
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From Detection to Recovery

Algorithm for recovering x from Y = λxx> + W :

1. Compute initial guess: u = argmax
v∈S`

v>Yv

But u is too sparse...

2. Let w = Yu

3. Construct x̂ ∈ {0,±1/
√
k}n by thresholding entries of w

Theorem (Ding, Kunisky, W., Bandeira ’19): x̂ = x with high
probability, provided `� k2/n (same as detection)

Technically, need independent copies of Y for steps 1 & 2

I Y + W ′ and Y −W ′ where W ′ is independent copy of W
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Summary

I Continuum of subexponential-time algorithms for sparse PCA

I Smooth interpolation between diagonal thresholding and
exhaustive search

I Smooth tradeoff between sparsity and runtime: exp(k2/n)

I Extensions:
I Allow λ� 1; runtime exp(k2/(λ2n))
I Spiked Wishart model
I More general assumptions on x

I Optimal: for a given k , the low-degree likelihood ratio
suggests that no better runtime is possible

Thanks!
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