
The Kikuchi Hierarchy and Tensor PCA

Alex Wein
Courant Institute, NYU

Joint work with:

Ahmed El Alaoui
Stanford

Cris Moore
Santa Fe Institute

1 / 19



Statistical Physics of Inference

I High-dimensional inference problems: compressed sensing,

community detection, spiked Wigner/Wishart, sparse PCA, planted

clique, group synchronization, ...

I Connection to statistical physics: posterior distribution is a
Gibbs/Boltzmann distribution

I Algorithms: belief propagation (BP) [Pearl ’86],
approximate message passing (AMP) [Donoho-Maleki-Montanari ’09]

I Known/believed to be optimal in many settings
I Sharp results: exact MMSE, phase transitions

I Evidence for computational hardness: failure of BP/AMP, free
energy barriers [Decelle-Krzakala-Moore-Zdeborová ’11, Lesieur-Krzakala-Zdeborová ’15]

This theory has been hugely successful at precisely understanding
statistical and computational limits of many problems.
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This theory has been hugely successful at precisely understanding
statistical and computational limits of many problems.

2 / 19



Statistical Physics of Inference

I High-dimensional inference problems: compressed sensing,

community detection, spiked Wigner/Wishart, sparse PCA, planted

clique, group synchronization, ...

I Connection to statistical physics: posterior distribution is a
Gibbs/Boltzmann distribution

I Algorithms: belief propagation (BP) [Pearl ’86],
approximate message passing (AMP) [Donoho-Maleki-Montanari ’09]

I Known/believed to be optimal in many settings
I Sharp results: exact MMSE, phase transitions

I Evidence for computational hardness: failure of BP/AMP, free
energy barriers [Decelle-Krzakala-Moore-Zdeborová ’11, Lesieur-Krzakala-Zdeborová ’15]
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Sum-of-Squares (SoS) Hierarchy

A competing theory: sum-of-squares hierarchy [Parrilo ’00, Lasserre ’01]

I Systematic way to obtain convex relaxations of polynomial
optimization problems

I Degree-d relaxation can be solved in nO(d)-time

I Higher degree gives more powerful algorithms

I State-of-the-art algorithms for many statistical problems:
tensor decomposition, tensor completion, planted sparse vector,

dictionary learning, refuting random CSPs, mixtures of Gaussians, ...

I Evidence for computational hardness: SoS lower bounds

Meta-question: unify the statistical physics and SoS approaches?

This talk: case study on tensor PCA – a problem where statistical
physics and SoS disagree (!!!)
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Tensor PCA (Principal Component Analysis)

Definition (Spiked Tensor Model [Richard-Montanari ’14])

x ∈ {±1}n – signal
p ∈ {2, 3, 4, . . .} – tensor order
For each subset U ⊆ [n] of size |U| = p, observe

YU = λ
∏
i∈U

xi +N (0, 1)

λ ≥ 0 – signal-to-noise parameter
Goal: given {YU}, recover x (with high probability as n→∞)

I “For every p variables, get a noisy observation of their parity”

I In tensor notation: Y = λx⊗p +Z where Z is symmetric noise

I Case p = 2 is the spiked Wigner matrix model Y = λxx> + Z
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Algorithms for Tensor PCA

Maximum likelihood estimation (MLE):

Pr[x |Y ] ∝ exp

∑
|U|=p

λYU

∏
i∈U

xi

 = exp

(
λ

p
〈Y , x⊗p〉

)

MLE: x̂ = argmax
v∈{±1}n

〈Y , v⊗p〉

I Succeeds when λ & n(1−p)/2
[Richard-Montanari ’14]

I Statistically optimal (up to constant factors in λ)

I Problem: requires exponential time 2n
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Algorithms for Tensor PCA

Local algorithms: keep track of a “guess” v ∈ Rn and locally
maximize the log-likelihood L(v) = 〈Y , v⊗p〉

I Gradient descent [Ben Arous-Gheissari-Jagannath ’18]

I Tensor power iteration [Richard-Montanari ’14]

I Langevin dynamics [Ben Arous-Gheissari-Jagannath ’18]

I Approximate message passing (AMP) [Richard-Montanari ’14]

These only succeed when λ� n−1/2

I Recall: MLE works for λ ∼ n(1−p)/2
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Algorithms for Tensor PCA

Sum-of-squares (SoS) and spectral methods:

I SoS semidefinite program [Hopkins-Shi-Steurer ’15]

I Spectral SoS [Hopkins-Shi-Steurer ’15, Hopkins-Schramm-Shi-Steurer ’15]

I Tensor unfolding [Richard-Montanari ’14, Hopkins-Shi-Steurer ’15]

These are poly-time and succeed when λ� n−p/4

SoS lower bounds suggest no poly-time algorithm when λ� n−p/4

[Hopkins-Shi-Steurer ’15, Hopkins-Kothari-Potechin-Raghavendra-Schramm-Steurer ’17]

λ
impossible hard !!!

0 n(1−p)/2

MLE

n−p/4

SoS

n−1/2

Local

Local algorithms (gradient descent, AMP, ...) are suboptimal when
p ≥ 3
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Subexponential-Time Algorithms

Subexponential-time: 2n
δ

for δ ∈ (0, 1)

Tensor PCA has a smooth tradeoff between runtime and statistical
power: for δ ∈ (0, 1),

there is a 2n
δ
-time algorithm for λ ∼ n−p/4+δ(1/2−p/4)

[Raghavendra-Rao-Schramm ’16, Bhattiprolu-Guruswami-Lee ’16]

Interpolates between SoS and MLE:
I δ = 0 ⇒ poly-time algorithm for λ ∼ n−p/4

I δ = 1 ⇒ 2n-time algorithm for λ ∼ n(1−p)/2

λ
impossible hard

0 n(1−p)/2

MLE

n−p/4

SoS

n−1/2

Local

In contrast, some problems have a sharp threshold
I E.g., λ > 1 is nearly-linear time; λ < 1 needs time 2n

For “soft” thresholds (like tensor PCA): BP/AMP can’t be optimal
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Aside: Low-Degree Likelihood Ratio

Recall: there is a 2n
δ
-time algorithm for λ ∼ n−p/4+δ(1/2−p/4)

Evidence that this tradeoff is optimal: low-degree likelihood ratio

I A relatively simple calculation that predicts the computational
complexity of high-dimensional inference problems

I Arose from the study of SoS lower bounds, pseudo-calibration
[Barak-Hopkins-Kelner-Kothari-Moitra-Potechin ’16, Hopkins-Steurer ’17,

Hopkins-Kothari-Potechin-Raghavendra-Schramm-Steurer ’17, Hopkins PhD thesis ’18]

I Idea: look for a low-degree polynomial (of Y ) that
distinguishes P (spiked tensor) and Q (pure noise)

max
f degree ≤D

EY∼P[f (Y )]√
EY∼Q[f (Y )2]

?
=

{
O(1) ⇒ “hard”
ω(1) ⇒ “easy”

I Take deg-D polynomials as a proxy for nΘ̃(D)-time algorithms

For more, see the survey Kunisky-W.-Bandeira, “Notes on Computational

Hardness of Hypothesis Testing: Predictions using the Low-Degree Likelihood Ratio”,

arXiv:1907.11636
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Our Contributions

I We give a hierarchy of increasingly powerful BP/AMP-type
algorithms: level ` requires nO(`) time

I Analogous to SoS hierarchy

I We prove that these algorithms match the performance of
SoS

I Both for poly-time and for subexponential-time tradeoff

I This refines and “redeems” the statistical physics approach to
algorithm design

I Our algorithms and analysis are simpler than prior work

I This talk: even-order tensors only

I Similar results for refuting random XOR formulas
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Motivating the Algorithm: Belief Propagation / AMP

General setup: unknown signal x ∈ {±1}n, observed data Y

Want to understand posterior Pr[x |Y ]

Find distribution µ over {±1}n minimizing free energy
F(µ) = E(µ)− S(µ)

I “Energy” and “entropy” terms

I The unique minimizer is Pr[x |Y ]

Problem: need exponentially-many parameters to describe µ

BP/AMP: just keep track of marginals mi = E[xi ] and minimize a
proxy, Bethe free energy B(m)

I Locally minimize B(m) via iterative update
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Generalized BP and Kikuchi Free Energy

Recall: BP/AMP keeps track of marginals mi = E[xi ] and
minimizes Bethe free energy B(m)

Natural higher-order variant:

I Keep track of mi = E[xi ], mij = E[xixj ], . . . (up to degree `)

I Minimize Kikuchi free energy K`(m) [Kikuchi ’51]

Various ways to locally minimize Kikuchi free energy

I Gradient descent

I Generalized belief propagation (GBP) [Yedidia-Freeman-Weiss ’03]

I We will use a spectral method based on the Kikuchi Hessian
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The Kikuchi Hessian

Bethe Hessian approach [Saade-Krzakala-Zdeborová ’14]

I Recall: want to minimize B(m) with respect to m = {mi}

I Trivial “uninformative” stationary point m∗ where ∇B(m) = 0

I Bethe Hessian matrix Hij = ∂2B
∂mi∂mj

|m=m∗

I Algorithm: compute bottom eigenvector of H

I Why: best direction of local improvement

I Spectral method with performance essentially as good as BP
for community detection

Our approach: Kikuchi Hessian

I Bottom eigenvector of Hessian of K(m) with respect to
moments m = {mi ,mij , . . .}
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I Recall: want to minimize B(m) with respect to m = {mi}

I Trivial “uninformative” stationary point m∗ where ∇B(m) = 0

I Bethe Hessian matrix Hij = ∂2B
∂mi∂mj

|m=m∗

I Algorithm: compute bottom eigenvector of H

I Why: best direction of local improvement

I Spectral method with performance essentially as good as BP
for community detection

Our approach: Kikuchi Hessian

I Bottom eigenvector of Hessian of K(m) with respect to
moments m = {mi ,mij , . . .}

13 / 19



The Kikuchi Hessian

Bethe Hessian approach [Saade-Krzakala-Zdeborová ’14]
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The Algorithm

Definition (Symmetric Difference Matrix)

Input: an order-p tensor Y = (YU)|U|=p (with p even) and an
integer ` in the range p/2 ≤ ` ≤ n − p/2. Define the

(n
`

)
×
(n
`

)
matrix (indexed by `-subsets of [n])

MS ,T =

{
YS4T if |S 4 T | = p,
0 otherwise.

I This is (approximately) a submatrix of the Kikuchi Hessian

I Algorithm: compute leading eigenvalue/eigenvector of M

I Runtime: nO(`)

I The case ` = p/2 is “tensor unfolding,” which is poly-time
and succeeds up to the SoS threshold

I ` = nδ gives an algorithm of runtime nO(n`) = 2n
δ+o(1)
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Intuition for Symmetric Difference Matrix

Recall: MS,T = 1|S4T |=pYS4T where |S | = |T | = `

Compute top eigenvector via power iteration: v ← Mv

I v ∈ R(n`) where vS is an estimate of xS :=
∏

i∈S xi

Expand formula v ← Mv :

vS ←
∑

T :|S4T |=p

YS4T vT

I Recall: YS4T is a noisy measurement of xS4T

I So YS4T vT is T ’s opinion about xS

This is a message-passing algorithm among sets of size `

15 / 19
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Analysis

Simplest statistical task: detection

I Distinguish between λ = λ̄ (spiked tensor) and λ = 0 (noise)

Algorithm: given Y , build matrix MS ,T = 1|S4T |=pYS4T ,
threshold maximum eigenvalue

Key step: bound spectral norm ‖M‖ when Y ∼ i.i.d. N (0, 1)

Theorem (Matrix Chernoff Bound [Oliveira ’10, Tropp ’10])

Let M =
∑

i ziAi where zi ∼ N (0, 1) independently and {Ai} is a
finite sequence of fixed symmetric d × d matrices. Then, for all
t ≥ 0,

P (‖M‖ ≥ t) ≤ 2de−t
2/2σ2

where σ2 =

∥∥∥∥∥∑
i

(Ai )
2

∥∥∥∥∥ .
In our case,

∑
i (Ai )

2 is a multiple of the identity
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Comparison to Prior Work

SoS approach: given noise tensor Y , want to certify (prove) an
upper bound on tensor injective norm

‖Y ‖inj := max
‖x‖=1

|〈Y , x⊗p〉|

Spectral certification: find an n` × n` matrix M such that

(x⊗`)>M(x⊗`) = 〈Y , x⊗p〉2`/p and so ‖Y ‖inj ≤ ‖M‖p/2`

I Each entry of M is a degree-2`/p polynomial in Y

I Analysis: trace moment method (complicated)
[Raghavendra-Rao-Schramm ’16, Bhattiprolu-Guruswami-Lee ’16]

Our method: instead find M (symm. diff. matrix) such that

(x⊗`)>M(x⊗`) = 〈Y , x⊗p〉‖x‖2`−p and so ‖Y ‖inj ≤ ‖M‖

I Each entry of M is a degree-1 polynomial in Y

I Analysis: matrix Chernoff bound (much simpler)
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Related Work

I [Hastings ’19, “Classical and Quantum Algorithms for Tensor PCA”]

I Similar construction (symmetric difference matrix) with
different motivation: quantum

I Hamiltonian of system of bosons

I [Biroli, Cammarota, Ricci-Tersenghi ’19, “How to iron out rough

landscapes and get optimal performances”]

I A different form of “redemption” for local algorithms

I Replicated gradient descent
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Summary

I Local algorithms are suboptimal for tensor PCA
I E.g. gradient descent, AMP
I Keep track of an n-dimensional state
I Nearly-linear runtime

I Why suboptimal?
I Soft threshold: optimal algorithm cannot be nearly-linear time
I For p-way data, need p-way algorithm?

I “Redemption” for local algorithms and AMP
I Hierarchy of message-passing algorithms: symm. diff. matrices
I Keep track of beliefs about higher-order correlations
I Minimize Kikuchi free energy
I Matches SoS (conjectured optimal)
I Proof is much simpler than prior work

I Future directions
I Unify statistical physics and SoS?
I Systematically obtain optimal spectral methods in general?

Thanks!
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