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» High-dimensional inference problems: compressed sensing,
community detection, spiked Wigner/Wishart, sparse PCA, planted
clique, group synchronization, ...

» Connection to statistical physics: posterior distribution is a
Gibbs/Boltzmann distribution

» Algorithms: belief propagation (BP) (peari s,
approximate message passing (AMP) [ponoho-Maleki-Montanari ‘0]

» Known/believed to be optimal in many settings
» Sharp results: exact MMSE, phase transitions

» Evidence for computational hardness: failure of BP/AMP, free

energy barrlers [Decelle-Krzakala-Moore-Zdeborova '11, Lesieur-Krzakala-Zdeborova '15]

This theory has been hugely successful at precisely understanding
statistical and computational limits of many problems.

19



Sum-of-Squares (SoS) Hierarchy

A competing theory: sum-of-squares hierarchy [pario 00, Lasserre '01]

/19



Sum-of-Squares (SoS) Hierarchy

A competing theory: sum-of-squares hierarchy [pario 00, Lasserre '01]

» Systematic way to obtain convex relaxations of polynomial
optimization problems

19



Sum-of-Squares (SoS) Hierarchy

A competing theory: sum-of-squares hierarchy [pario 00, Lasserre '01]

» Systematic way to obtain convex relaxations of polynomial
optimization problems

» Degree-d relaxation can be solved in n9(9-time

19



Sum-of-Squares (SoS) Hierarchy

A competing theory: sum-of-squares hierarchy [pario 00, Lasserre '01]

» Systematic way to obtain convex relaxations of polynomial
optimization problems

» Degree-d relaxation can be solved in n9(9-time

» Higher degree gives more powerful algorithms

19



Sum-of-Squares (SoS) Hierarchy

A competing theory: sum-of-squares hierarchy [pario 00, Lasserre '01]

>

Systematic way to obtain convex relaxations of polynomial
optimization problems

Degree-d relaxation can be solved in n9(9)_time
Higher degree gives more powerful algorithms

State-of-the-art algorithms for many statistical problems:
tensor decomposition, tensor completion, planted sparse vector,

dictionary learning, refuting random CSPs, mixtures of Gaussians, ...

19



Sum-of-Squares (SoS) Hierarchy

A competing theory: sum-of-squares hierarchy [pario 00, Lasserre '01]

>

Systematic way to obtain convex relaxations of polynomial
optimization problems

Degree-d relaxation can be solved in n9(9)_time
Higher degree gives more powerful algorithms

State-of-the-art algorithms for many statistical problems:
tensor decomposition, tensor completion, planted sparse vector,

dictionary learning, refuting random CSPs, mixtures of Gaussians, ...

Evidence for computational hardness: SoS lower bounds

19



Sum-of-Squares (SoS) Hierarchy

A competing theory: sum-of-squares hierarchy [pario 00, Lasserre '01]

>

Systematic way to obtain convex relaxations of polynomial
optimization problems

Degree-d relaxation can be solved in n9(9)_time
Higher degree gives more powerful algorithms

State-of-the-art algorithms for many statistical problems:
tensor decomposition, tensor completion, planted sparse vector,

dictionary learning, refuting random CSPs, mixtures of Gaussians, ...

Evidence for computational hardness: SoS lower bounds

Meta-question: unify the statistical physics and SoS approaches?

19



Sum-of-Squares (SoS) Hierarchy

A competing theory: sum-of-squares hierarchy [pario 00, Lasserre '01]

>

Systematic way to obtain convex relaxations of polynomial
optimization problems

Degree-d relaxation can be solved in n9(9)_time
Higher degree gives more powerful algorithms

State-of-the-art algorithms for many statistical problems:
tensor decomposition, tensor completion, planted sparse vector,

dictionary learning, refuting random CSPs, mixtures of Gaussians, ...

Evidence for computational hardness: SoS lower bounds

Meta-question: unify the statistical physics and SoS approaches?

This talk: case study on tensor PCA — a problem where statistical
physics and SoS disagree (!!!)
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Tensor PCA (Principal Component Analysis)

Definition (Spiked Tensor Model [Richard-Montanari '14])

x € {£1}" — signal
p € {2,3,4,...} — tensor order
For each subset U C [n] of size |U| = p, observe

Yu=M]]x+N(0,1)
ieU

A > 0 — signal-to-noise parameter
Goal: given {Yy}, recover x (with high probability as n — oo)

» “For every p variables, get a noisy observation of their parity”
» In tensor notation: Y = Ax®P + Z where Z is symmetric noise

» Case p = 2 is the spiked Wigner matrix model Y = Axx' + Z
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Algorithms for Tensor PCA
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A ®
Pr[x|Y] o exp Z )\YUHX; =exp [ =(Y,x®P)
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MLE: X = argmax (Y, v®P)
ve{£1}r

> Succeeds When )\ Z n(l_p)/2 [Richard-Montanari '14]
» Statistically optimal (up to constant factors in \)

» Problem: requires exponential time 2"
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Algorithms for Tensor PCA

Local algorithms: keep track of a “guess” v € R” and locally
maximize the log-likelihood L£(v) = (Y, v®P)

» Gradient descent [Ben Arous-Gheissari-Jagannath '18]

» Tensor power iteration [Richard Montanari '14]

> Langevin dynamics [sen Arous Gheissari-Jagannath '18]

» Approximate message passing (AMP) [richard Montanari 14]

These only succeed when \ > n~1/2

» Recall: MLE works for A\ ~ n(1=P)/2

6
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Sum-of-squares (SoS) and spectral methods:

> SOS Semldeflnlte program [Hopkins-Shi-Steurer '15]
> Spectra| SOS [Hopkins-Shi-Steurer '15, Hopkins-Schramm-Shi-Steurer '15]

> Tensor Unfolding [Richard-Montanari '14, Hopkins-Shi-Steurer '15]

These are poly-time and succeed when A > n—P/4

SoS lower bounds suggest no poly-time algorithm when A < n~P/4

[Hopkins-Shi-Steurer '15, Hopkins-Kothari-Potechin-Raghavendra-Schramm-Steurer '17]

Q n(l_P)/2 n_‘P/4 n_‘l/2

impossible MT_E hard SoS i Lo'ca|

Local algorithms (gradient descent, AMP, ...) are suboptimal when
p=>3
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Tensor PCA has a smooth tradeoff between runtime and statistical
power: for § € (0,1),

there is a 2" -time algorithm for A ~ n—P/4+6(1/2=p/4)

[Raghavendra-Rao-Schramm 16, Bhattiprolu-Guruswami-Lee '16]

Interpolates between SoS and MLE:
» =0 = poly-time algorithm for A ~ n=P/4
» =1 = 2"-time algorithm for A\ ~ n(1=P)/2

Q n(l_p)/2 n_Ap/4 n_1/2

impossible I\/I=LE hard SoS Loecal

In contrast, some problems have a sharp threshold
» E.g., A > 1 is nearly-linear time; A < 1 needs time 2"

For “soft” thresholds (like tensor PCA): BP/AMP can't be optimal
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Aside: Low-Degree Likelihood Ratio

Recall: there is a 2" -time algorithm for \ ~ n—P/4+0(1/2=p/4)
Evidence that this tradeoff is optimal: low-degree likelihood ratio
> A relatively simple calculation that predicts the computational
complexity of high-dimensional inference problems
> Arose from the study of SoS lower bounds, pseudo-calibration
[Barak-Hopkins-Kelner-Kothari-Moitra-Potechin '16, Hopkins-Steurer '17,

Hopkins-Kothari-Potechin-Raghavendra-Schramm-Steurer '17, Hopkins PhD thesis '18]
» Idea: look for a low-degree polynomial (of Y) that
distinguishes P (spiked tensor) and Q (pure noise)
ax Eyplf(Y)] 2 [ O(1) = “hard"
f degree <D EYNQ[f(Y)2] - UJ(].) = ‘“easy”

» Take deg-D polynomials as a proxy for n®(P)_time algorithms

For more, see the survey Kunisky-W.-Bandeira, “Notes on Computational
Hardness of Hypothesis Testing: Predictions using the Low-Degree Likelihood Ratio”,
arXiv:1907.11636
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Our Contributions

» We give a hierarchy of increasingly powerful BP/AMP-type
algorithms: level ¢ requires n®® time
» Analogous to SoS hierarchy

» We prove that these algorithms match the performance of

SoS

» Both for poly-time and for subexponential-time tradeoff

» This refines and “redeems” the statistical physics approach to
algorithm design

» Our algorithms and analysis are simpler than prior work
» This talk: even-order tensors only

» Similar results for refuting random XOR formulas
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Want to understand posterior Pr[x|Y]

Find distribution p over {£1}" minimizing free energy
Fp) = E(p) — S(w)
> “Energy” and “entropy” terms

» The unique minimizer is Pr[x|Y]

Problem: need exponentially-many parameters to describe u

BP/AMP: just keep track of marginals m; = E[x;] and minimize a
proxy, Bethe free energy (m)

> Locally minimize B(m) via iterative update
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Various ways to locally minimize Kikuchi free energy

» Gradient descent

> Generalized behef prOpagatlon (GBP) [Yedidia-Freeman-Weiss '03]

12 /19



Generalized BP and Kikuchi Free Energy

Recall: BP/AMP keeps track of marginals m; = E[x;] and
minimizes Bethe free energy B(m)

Natural higher-order variant:
> Keep track of m; = E[x;], mjj = E[x;xj], ... (up to degree ¢)
» Minimize Kikuchi free energy Kp(m) (xiuch 51

Various ways to locally minimize Kikuchi free energy

» Gradient descent
> Generalized behef prOpagatlon (GBP) [Yedidia-Freeman-Weiss '03]

» We will use a spectral method based on the Kikuchi Hessian

12 /19



The Kikuchi Hessian

13/19



The Kikuchi Hessian

Bethe HeSSIan approach [Saade-Krzakala-Zdeborova '14]

13/19



The Kikuchi Hessian

Bethe Hessian approach (ssade kizakala Zdeborovs 14]

» Recall: want to minimize B(m) with respect to m = {m;}

13/19



The Kikuchi Hessian

Bethe HeSSIan approaCh [Saade-Krzakala-Zdeborova '14]

» Recall: want to minimize B(m) with respect to m = {m;}

» Trivial “uninformative” stationary point m* where V5B(m) = 0

13 /19



The Kikuchi Hessian

Bethe HeSSIan approaCh [Saade-Krzakala-Zdeborova '14]

» Recall: want to minimize B(m) with respect to m = {m;}

» Trivial “uninformative” stationary point m* where V5B(m) = 0

o°B

» Bethe Hessian matrix Hjj = 555 —|p— -
iom;j

13 /19



The Kikuchi Hessian

Bethe HeSSIan approaCh [Saade-Krzakala-Zdeborova '14]

» Recall: want to minimize B(m) with respect to m = {m;}

» Trivial “uninformative” stationary point m* where V5B(m) = 0
- . 2

> Bethe Hessian matrix Hj; = #gmjmzm*

» Algorithm: compute bottom eigenvector of H

13 /19



The Kikuchi Hessian

Bethe Hessian approach (ssade kizakala Zdeborovs 14]

» Recall: want to minimize B(m) with respect to m = {m;}

Trivial “uninformative” stationary point m* where VB(m) =0

v

. . 2
Bethe Hessian matrix Hj; = %M:m*
! J

v

v

Algorithm: compute bottom eigenvector of H

v

Why: best direction of local improvement

13 /19



The Kikuchi Hessian

Bethe Hessian approach (ssade kizakala Zdeborovs 14]

» Recall: want to minimize B(m) with respect to m = {m;}

Trivial “uninformative” stationary point m* where VB(m) =0

v

. . 2
Bethe Hessian matrix Hj; = %M:m*
! J

v

v

Algorithm: compute bottom eigenvector of H

v

Why: best direction of local improvement

v

Spectral method with performance essentially as good as BP
for community detection

13 /19



The Kikuchi Hessian

Bethe Hessian approach (ssade kizakala Zdeborovs 14]

» Recall: want to minimize B(m) with respect to m = {m;}

Trivial “uninformative” stationary point m* where VB(m) =0

v

. . 2
Bethe Hessian matrix Hj; = %Lﬂ:m*
! J

v

v

Algorithm: compute bottom eigenvector of H

v

Why: best direction of local improvement

v

Spectral method with performance essentially as good as BP
for community detection

Our approach: Kikuchi Hessian

» Bottom eigenvector of Hessian of KC(m) with respect to
moments m = {m;, mj;, ...}
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The Algorithm

Definition (Symmetric Difference Matrix)

Input: an order-p tensor Y = (Yy)|y|=p (with p even) and an
integer £ in the range p/2 < ¢ < n— p/2. Define the (]) x (})
matrix (indexed by ¢-subsets of [n])

e { Ysar ifISAT|=p,
ST=Yo0 otherwise.
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v

This is (approximately) a submatrix of the Kikuchi Hessian

v

Algorithm: compute leading eigenvalue/eigenvector of M

» Runtime: n©()

v

The case ¢ = p/2 is “tensor unfolding,” which is poly-time
and succeeds up to the SoS threshold
O(ne) _ 2n5+o(1)

v

¢ = n® gives an algorithm of runtime n
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Recall: Ms 1 = 1jsat|=pYsaT Where |S| =|T| =/
Compute top eigenvector via power iteration: v < My

> v e R() where Vs is an estimate of x° := [[;cs x;

Expand formula v < Mv:
Vs > Ysarvr
T:|SAT|=p
» Recall: YsaT is a noisy measurement of xSAT
» So Ysat vy is T's opinion about x°

This is a message-passing algorithm among sets of size ¢
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Key step: bound spectral norm ||[M|| when Y ~ i.i.d. N(0,1)

Theorem (Matrix Chernoff Bound [Oliveira '10, Tropp '10])

Let M =", zjA; where zj ~ N(0, 1) independently and {A;} is a
finite sequence of fixed symmetric d x d matrices. Then, for all
t >0,

P(IM] > 1) < 2de 2" where o2 = HZ<A,-)2

In our case, Y_;(A;)? is a multiple of the identity
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(x®)TM(x®) = (Y, x®P)[|Ix|[*7P and so || Y liny < | M]|

» Each entry of M is a degree-1 polynomial in Y

» Analysis: matrix Chernoff bound (much simpler)
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» [Hastings '19, “Classical and Quantum Algorithms for Tensor PCA"]

» Similar construction (symmetric difference matrix) with
different motivation: quantum

» Hamiltonian of system of bosons

» [Biroli, Cammarota, Ricci-Tersenghi '19, “How to iron out rough
landscapes and get optimal performances”|

» A different form of “redemption” for local algorithms

» Replicated gradient descent
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