Fine-Grained Extensions of the Low-Degree Testing Framework

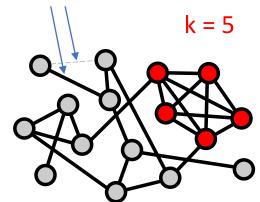
Alex Wein

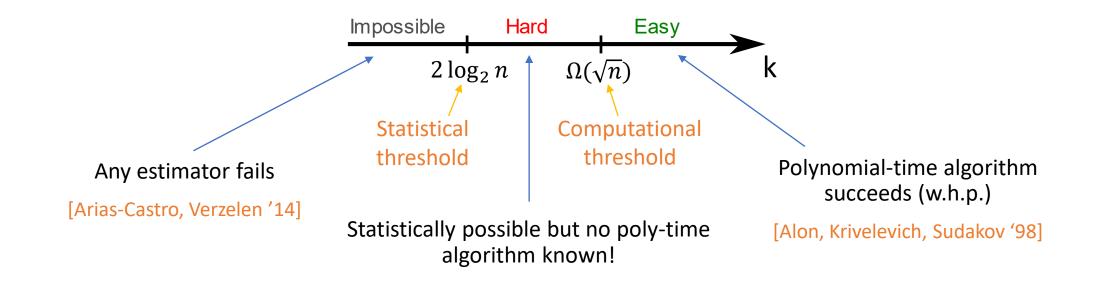
Based on joint works with: {Jay Mardia, Kabir Aladin Verchand}, {Ankur Moitra}

Planted Clique Problem

include each edge with prob 1/2

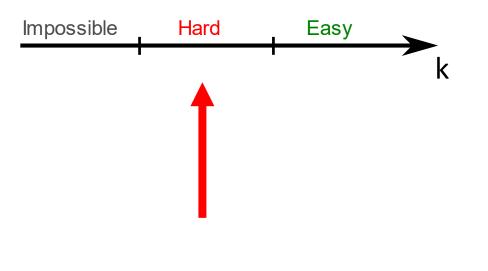
- Find a planted k-clique in an n-vertex random graph
 - G(n,1/2) + {random k-clique}
- Believed to have a statistical-computational gap





"Hard" Regime

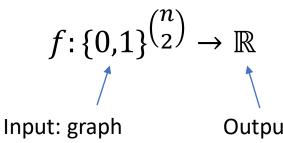
- How to show computational hardness?
- Average-case complexity is difficult...
- Instead:
 - Average-case reductions
 - Failure of restricted classes of algorithms
 - Statistical query (SQ) algorithms
 - Sum-of-squares (SoS) hierarchy
 - "Local" algorithms
 - Approximate message passing
 - ...
- This talk: low-degree polynomial algorithms for hypothesis testing
 - As opposed to recovery/estimation, optimization, refutation, ...



Low-Degree Testing

[Hopkins, Steurer '17; Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17; Hopkins '18, ...]

• **Degree-D test**: multivariate polynomial of degree $D = D_n$



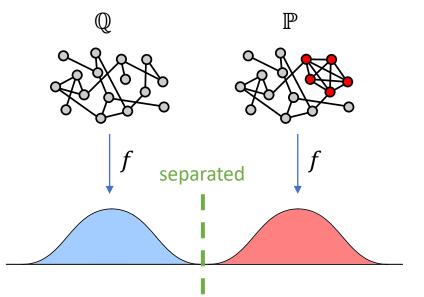
Output: number

• E.g. count edges, triangles, subgraphs, ...

• $f(A) = \sum_{i < j < k} A_{ij} A_{ik} A_{jk}$ (triangle count)

• "Success": $f = f_n$ strongly separates \mathbb{P} and \mathbb{Q} if

$$\sqrt{\max\{\operatorname{Var}_{\mathbb{P}}(f), \operatorname{Var}_{\mathbb{Q}}(f)\}} = o(|\operatorname{E}_{\mathbb{P}}[f] - \operatorname{E}_{\mathbb{Q}}[f]|)$$



Consideration #1: Runtime

- Heuristic:
 - deg $D \approx \operatorname{time} n^{\widetilde{\Theta}(D)}$
 - deg $O(1) < \text{poly time} < \text{deg } O(\log n)$
 - deg $n^c \approx \operatorname{time} \exp(\widetilde{\Theta}(n^c))$
- "Low-degree conjecture" [Hopkins '18]
 - If low-degree polynomials fail, so do algorithms of the corresponding runtime
 - Not true for all distributions \mathbb{P} , \mathbb{Q} ...
 - Can't hope to prove it...
 - Or think of low-degree lower bounds as ruling out restricted algorithms
- Question: can we differentiate fine-grained time complexities such as O(n) versus $O(n^2)$?

Consideration #2: Testing Error

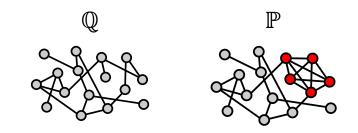
- Strong separation \Rightarrow strong detection
 - $\sqrt{\max\{\operatorname{Var}_{\mathbb{P}}(f), \operatorname{Var}_{\mathbb{Q}}(f)\}} = o\left(\left|\operatorname{E}_{\mathbb{P}}[f] \operatorname{E}_{\mathbb{Q}}[f]\right|\right) \Rightarrow \operatorname{type} I + \operatorname{type} II = o(1)$
- Weak separation \Rightarrow weak detection
 - $\sqrt{\max\{\operatorname{Var}_{\mathbb{P}}(f), \operatorname{Var}_{\mathbb{Q}}(f)\}} = O\left(\left|\operatorname{E}_{\mathbb{P}}[f] \operatorname{E}_{\mathbb{Q}}[f]\right|\right) \Rightarrow \text{ type I } + \text{ type II} \leq 1 \epsilon$
- Heuristic: if low-degree polynomials fail at strong (or weak) separation then efficient algorithms fail at strong (or weak) detection
- Question: can we identify the optimal tradeoff between type I and type II errors in a regime where weak (but not strong) detection is tractable?

Part 1: Fine-Grained Runtime

Based on joint work with Jay Mardia and Kabir Aladin Verchand

arXiv, "Low-degree phase transitions for detecting a planted clique in sublinear time," 2024

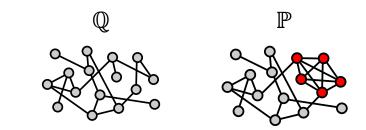
Planted Clique in Sub-Linear Time



- Distinguish \mathbb{Q} : G(n,1/2) versus \mathbb{P} : G(n,1/2) + {random k-clique}
- What runtime is required in the "easy" regime $k = \Theta(n^{1/2+\delta})$?
- Naïve methods (max degree / total edges) have "linear" runtime $\Theta(n^2)$
- "Subsampled" max degree has runtime $\Theta(n^{3(1/2-\delta)})$ [MAC'20]
 - Is this optimal?
- How to approach this?
 - Polynomial degree doesn't capture fine-grained runtime: even naïve method (count total edges) is a degree-1 polynomial
 - The bottleneck seems to be reading the input...

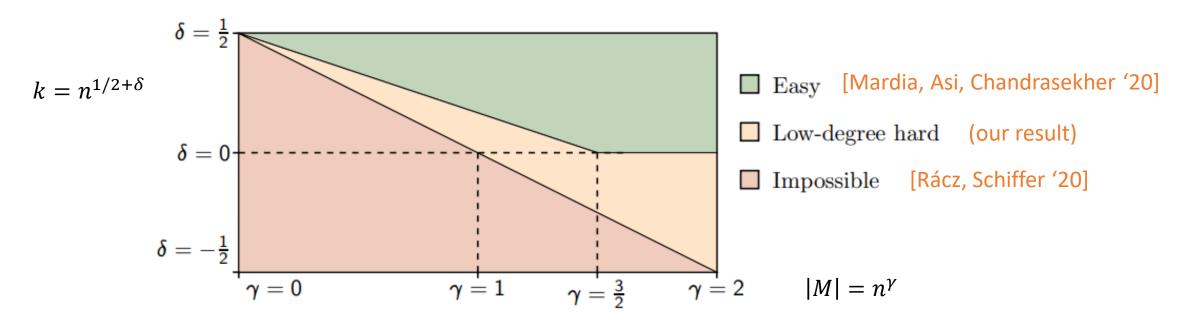
Non-Adaptive Edge Query Model

[Feige, Gamarnik, Neeman, Rácz, Tetali '20; Rácz, Schiffer '20]



- Restricted class of algorithms
 - First choose a subset of edges ("mask") $M \subseteq {\binom{[n]}{2}}$ to observe (hard-coded)
 - Then perform a computation to decide \mathbb{P}_M vs \mathbb{Q}_M
 - Runtime may be bounded or unbounded
 - Or require a low-degree test, as a proxy for bounded runtime
- Main result: low-degree tests require a mask of size $|M| \approx n^{3(1/2-\delta)}$
- **Theorem**: Let $k = \Theta(n^{1/2+\delta})$ for a constant $\delta \in (0,1)$
 - (Easy) If $\gamma > 3(1/2 \delta)$ there exists $|M| = O(n^{\gamma})$ and a degree- $O(\log n)$ polynomial that strongly separates \mathbb{P}_M and \mathbb{Q}_M
 - (Hard) If $\gamma < 3(1/2 \delta)$ then for every $|M| = O(n^{\gamma})$, every degree- $o(\log^2 n)$ polynomial fails to weakly separate \mathbb{P}_M and \mathbb{Q}_M

Non-Adaptive Edge Query Model: Phase Diagram



- IT threshold: query a complete subgraph, brute-force search for clique; adaptivity doesn't help [Rácz, Schiffer '20]
- Our result: non-adaptive low-degree algorithms cannot improve the best known sub-linear runtime $O(n^{3(1/2-\delta)})$
 - Open: does adaptivity help?

Proof Overview

• Standard tool: low-degree likelihood ratio

$$\left\|L_{M}^{\leq D}\right\| \coloneqq \sup_{f \text{ deg } D} \frac{\mathrm{E}_{Y \sim \mathbb{P}_{M}}[f(Y)]}{\sqrt{\mathrm{E}_{Y \sim \mathbb{Q}_{M}}[f(Y)^{2}]}}$$

- Goal: show $\|L_M^{\leq D}\| = 1 + o(1)$, implying that no deg-D polynomial weakly separates \mathbb{P}_M and \mathbb{Q}_M
- Convenient upper bound

$$\left\|L_{M}^{\leq D}\right\|^{2} \leq 1 + \sum_{d=1}^{D} \frac{1}{d!} \mathbb{E}_{X,X'}[\langle X, X' \rangle^{d}]$$

where $X \in \{0,1\}^M$ is the indicator for mask edges with both endpoints in the clique, and X' is an independent copy (for a different clique)

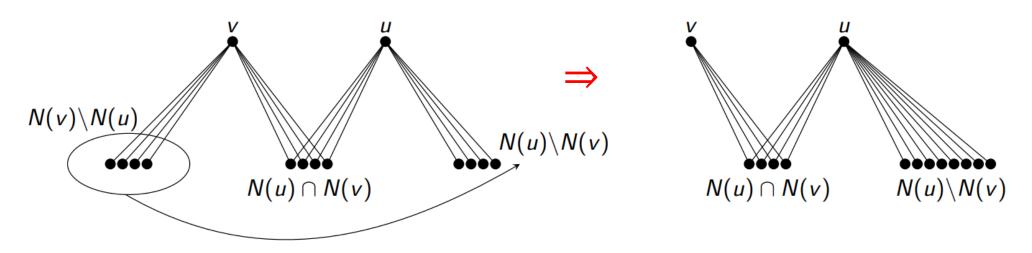
• Difficulty: need to bound this for every possible *M* of a given size

Conditioning

- Issue: $||L_M^{\leq D}|| = \omega(1)$ for some choices of M, e.g. the "star" $M = \{(1,2), (1,3), (1,4), ..., (1,n)\}$
 - In this case, $\|L_M^{\leq D}\|$ is dominated by the unlikely event (under \mathbb{P}_M) that vertex 1 is in the clique
- Need to condition on high-probability "good" event: no vertex of "high" *M*-degree is in the clique
 - Why high prob: due to bound on |M|, few vertices have "high" *M*-degree
- Formally: conditional low-degree calculation with modified $\widetilde{\mathbb{P}}_M$
 - Effectively lets us assume *M* has no "high" degree vertices

Key Idea

- Recall goal: bound LDUB $(M) = 1 + \sum_{d=1}^{D} \frac{1}{d!} E_{X,X'}[\langle X, X' \rangle^d]$ for all M
 - Assuming *M* has no "high" degree vertices
- "Donation" operation simplifies M and only increases LDUB(M)



• By repeated application, can reduce the total number of vertices in the mask; now straightforward to bound LDUB(*M*)

Summary (Part 1: Fine-Grained Runtime)

- Main result: non-adaptive $O(\log n)$ -degree tests require $\approx n^{3(1/2-\delta)}$ edge queries to detect a clique of size $k = \Theta(n^{1/2+\delta})$
- 2 ways to motivate this model:
 - Barrier to improving the best known sub-linear runtime $O(n^{3(1/2-\delta)})$ for planted clique in the "easy" regime
 - Non-adaptive queries model a scenario where we must decide in advance what data to collect
- Open: can non-adaptive algorithms achieve a better runtime?
 - How to formulate this as a low-degree question?

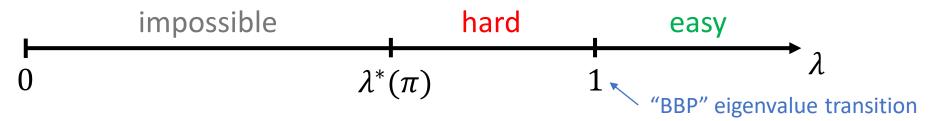
Part 2: Fine-Grained Error Probability

Based on joint work with Ankur Moitra

arXiv, "Precise Error Rates for Computationally Efficient Testing," 2023

Spiked Wigner Model

- Testing problem over $n \times n$ symmetric matrices
 - Q: Y = W• D: $V = {}^{\lambda} x x^{\top} + W$ $W_{ij} = W_{ji} \sim N(0,1/n), W_{ii} \sim N(0,2/n)$
 - \mathbb{P} : $Y = \frac{\lambda}{n} x x^{\top} + W$ $x \in \mathbb{R}^{n}$ i.i.d. from π , mean 0, variance 1
 - $n \rightarrow \infty$ with π and $\lambda > 0$ fixed
- Weak detection (beat random guess) is always easy: Tr(Y)
- Phase diagram for strong detection (type I + type II → 0) [Baik, Ben Arous, Péché '05; El Alaoui, Krzakala, Jordan '20; Kunisky, W, Bandeira '19]



• Goal: optimal poly-time weak detection in "hard" regime?

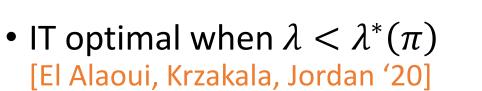
Linear Spectral Statistics (LSS)

- Best known poly-time algorithm for weak detection when $\lambda < 1$
- Threshold $\sum_i f_{\lambda}(\mu_i)$ where μ_i are the eigenvalues of Y, for some f_{λ}
- Achieves a particular ROC (receiver operating characteristic) curve ϕ_{λ} [Chung, Lee '22]

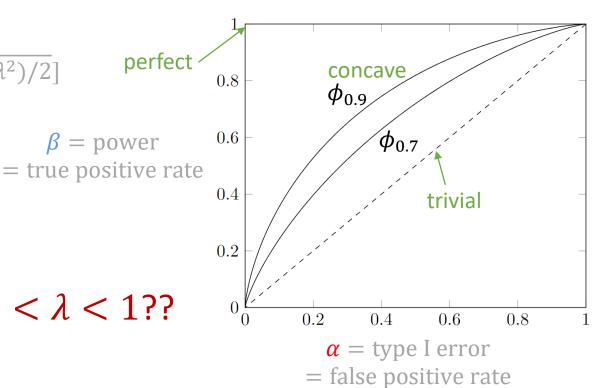
 $\beta = power$

$$\phi_{\lambda}(\alpha) = 1 - \Phi[\Phi^{-1}(1-\alpha) - \sqrt{-\log(1-\lambda^2)/2}]$$

 Φ = standard normal CDF



• Poly-time optimal when $\lambda^*(\pi) < \lambda < 1$??



Strengthening of Low-Degree Conjecture

• For any
$$\lambda < 1$$
, any* π , and any $D = D_n = o(n/\log n)$,
 $\|L^{\leq D}\| \coloneqq \sup_{f \deg D} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} \to (1 - \lambda^2)^{-1/4} \text{ as } n \to \infty$

- This is O(1), implying no strong separation by degree-D polynomials
- "Standard" LD conjecture: strong detection requires exponential runtime $\exp(n^{1-o(1)})$
- **Conjecture** (strong LD conjecture): for spiked Wigner, any $f = f_n$ with $\limsup_{n \to \infty} \frac{\mathbb{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}} > (1 - \lambda^2)^{-1/4}$ requires runtime $\exp(n^{1-o(1)})$

Main Result

 Assuming strong LD conjecture, LSS has optimal ROC curve among efficient algorithms

• Theorem:

- Fix $\lambda \in (0,1)$
- Fix any* spike prior π
- Assume the strong LD conjecture
- Suppose $\beta > \phi_{\lambda}(\alpha)$, i.e., (α, β) lies above the ROC curve of LSS
- Then any test with (type I, power) $\rightarrow (\alpha, \beta)$ requires runtime $\exp(n^{1-o(1)})$

Proof Idea

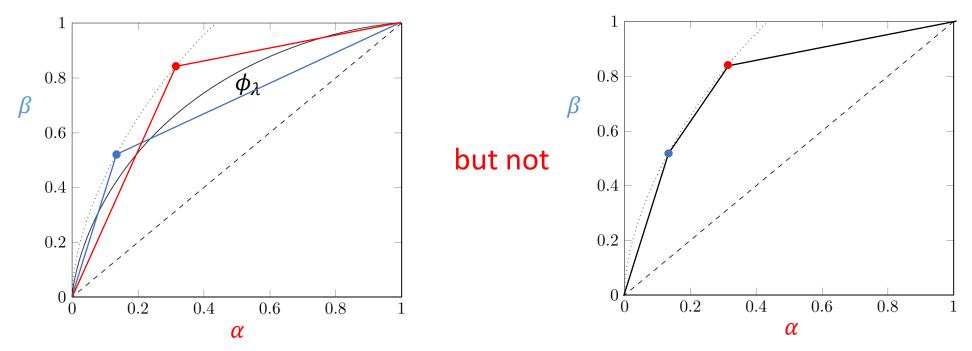
• Given achievable (concave) ROC curve ϕ , can construct f with $ratio(f) = val(\phi)$



Proof Idea

ratio(f) := $\frac{\mathrm{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathrm{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}}$ val(ϕ) := $\sqrt{\int_0^1 (\phi'(\alpha))^2 d\alpha}$

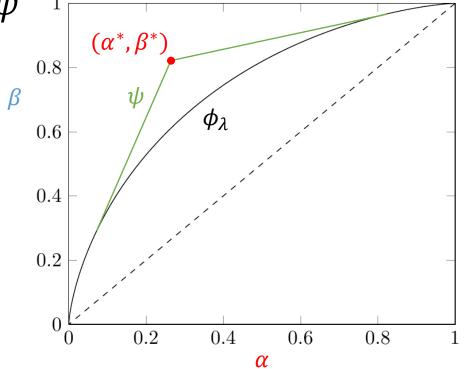
- Recall: ratio $(f) \leq (1 \lambda^2)^{-1/4}$
 - For low-degree f, and conjecturally for all efficiently-computable f
- Given this, what ROC curves are possible?
 - Must have $val(\phi) \leq (1 \lambda^2)^{-1/4}$
 - Many possibilities...



Proof

ratio(f) := $\frac{\mathrm{E}_{Y \sim \mathbb{P}}[f(Y)]}{\sqrt{\mathrm{E}_{Y \sim \mathbb{Q}}[f(Y)^2]}}$ val(ϕ) := $\sqrt{\int_0^1 (\phi'(\alpha))^2 d\alpha}$

- We know ϕ_λ is achievable in poly time [Chung, Lee '22], yielding ratio $\mathrm{val}(\phi_\lambda)=(1-\lambda^2)^{-1/4}$
- Assume for contradiction: some (α^*, β^*) above ϕ_{λ} is achievable
- Can then achieve an even better ROC curve ψ
- Thus achieving ratio $val(\psi) > val(\phi_{\lambda}) = (1 \lambda^2)^{-1/4}$
- Contradicts strong LD conjecture
- Conclude: (α^*, β^*) not achievable (in sub-exponential time)



Summary (Part 2: Fine-Grained Error Probability)

- Spiked Wigner model with $\lambda^*(\pi) < \lambda < 1$: strong detection possible-but-hard
- Weak detection is always easy, but what is the optimal ROC curve?
- Assuming "strong low-degree conjecture," linear spectral statistics (LSS) has the best ROC curve among all poly-time (even sub-exponential time) algorithms
- Consequence ("computational universality"): while IT threshold $\lambda^*(\pi)$ depends on prior π , the best computationally-efficient test only uses the spectrum and is thus oblivious to the prior
- Akin to optimal low-degree estimation error when $\lambda > 1$ [Montanari, W '22]
- Open: more "direct" analysis of low-degree tests?

Thanks!