Is Planted Coloring Easier than Planted Clique?

Alex Wein

UC Davis

Joint work with: Pravesh Kothari, Santosh Vempala, Jeff Xu

I. Planted Clique \& Planted Coloring

Detection, Recovery, Refutation

Planted Clique Problem

- Find a planted k -clique in an n -vertex random graph
- G(n,1/2) + \{random k-clique\}
- Believed to have a statistical-computational gap

Algorithmic Tasks

- Detection: distinguish \mathbb{P} vs \mathbb{Q} w.h.p.
- $\mathbb{Q}: ~ G(n, 1 / 2)$
- $\mathbb{P}: G(n, 1 / 2)+\{k$-clique $\}$
- Recovery: given $G \sim \mathbb{P}$, identify the clique vertices (exactly, w.h.p.)
- Refutation: given $G \sim \mathbb{Q}$, prove there is no k-clique
- All have poly-time algorithms when $k \gg \sqrt{n}$ (ignoring log factors)
- No poly-time algorithms known when $k \ll \sqrt{n}$

Refuting a Large Clique

- A - adjacency matrix (± 1 valued, 1 's on diagonal)
- If there is a k -clique $S \subseteq[n]$,

$$
\lambda_{\max }(A) \geq \frac{\mathbb{1}_{S}^{\top} A \mathbb{1}_{S}}{\left\|\mathbb{1}_{S}\right\|^{2}}=\frac{k^{2}}{k}=k
$$

- Under $\mathbb{Q}=\mathrm{G}(\mathrm{n}, 1 / 2)$,

$$
\lambda_{\max }(A) \leq 3 \sqrt{n} \quad \text { w.h. p. }
$$

- Refutation alg: output NO if $\lambda_{\max }(A)<k$, MAYBE otherwise
- Succeeds when $k \gg \sqrt{n}$:
- If graph has a k-clique, output is always MAYBE
- If graph is drawn from \mathbb{Q}, output is NO w.h.p.

Recall: for planted clique, all three tasks (detection, recovery, refutation) have the same computational threshold $k \approx \sqrt{n}$

This is not true in general...

Many Planted Cliques / Planted Coloring

- $\mathbb{P}: q$ disjoint planted cliques of size $k=n / q$
- Complement graph has a planted q-coloring
- Detection: distinguish \mathbb{P}_{q} versus $\mathbb{Q}=G(n, 1 / 2)$
- Easy when $k \gg 1$ (count total edges)
- Recovery: given $G \sim \mathbb{P}_{q}$, recover the cliques exactly
- Easy when $k \gg \sqrt{n}$ (common neighbors)
- Refutation: given $G \sim \mathbb{Q}$, prove there is no q-coloring

- Easy when $k \gg \sqrt{n}$ (spectral)
- Are these optimal? Is coloring easier than clique?

Our Perspective

- Goal: understand computational complexity of (1) recovery in \mathbb{P}_{q} and (2) refutation of q-colorability in $\mathbb{Q}=\mathrm{G}(\mathrm{n}, 1 / 2)$
- Forget detection for now... but we will introduce various testing problems as proof constructs
- No formal relation between recovery and refutation
- Refutation can be strictly harder [Bandeira, Banks, Kunisky, Moore, w'20]

Hardness of Recovery/Refutation (Clique)

- Back to planted clique: assume detection is hard when $k \ll \sqrt{n}$
- \mathbb{P} (planted k-clique) vs $\mathbb{Q}=\mathrm{G}(\mathrm{n}, 1 / 2)$
- Recovery (in \mathbb{P}) must be hard when $1 \ll k \ll \sqrt{n}$
- W.h.p., \mathbb{Q} has no k-clique
- If you could recover, you could distinguish \mathbb{P} vs \mathbb{Q}
- Refuting a k-clique in \mathbb{Q} must be hard when $k \ll \sqrt{n}$
- W.h.p, \mathbb{P} has a k-clique
- If you could refute, you could distinguish \mathbb{P} vs \mathbb{Q}

Hardness of Recovery/Refutation (Coloring)

- To show hardness of recovery in \mathbb{P}_{q}, construct $\widetilde{\mathbb{Q}}$ such that:
- W.h.p., $\widetilde{\mathbb{Q}}$ is not q-colorable
- Distinguishing \mathbb{P}_{q} vs $\widetilde{\mathbb{Q}}$ is hard
- Why: if you could recover, you could distinguish \mathbb{P}_{q} vs $\widetilde{\mathbb{Q}}$
- To show hardness of refutation in $\mathbb{Q}=\mathrm{G}(\mathrm{n}, 1 / 2)$, construct $\widetilde{\mathbb{P}}$ such that:

- W.h.p., $\widetilde{\mathbb{P}}$ is q-colorable
- Distinguishing $\widetilde{\mathbb{P}}$ vs \mathbb{Q} is hard
- Why: if you could refute, you could distinguish $\widetilde{\mathbb{P}}$ vs \mathbb{Q}

Low-Degree Testing

[Hopkins, Steurer '17; Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17; Hopkins '18; Kunisky, W, Bandeira '19, ...]

- Low-degree test: multivariate polynomial of degree $\mathrm{O}(\log \mathrm{n})$

- E.g. count edges, triangles, ...
- "Success": f strongly separates \mathbb{P} and \mathbb{Q} if

$$
\sqrt{\operatorname{Var}_{\mathbb{P}}(f) \vee \operatorname{Var}_{\mathbb{Q}}(f)}=o\left(\left|\mathrm{E}_{\mathbb{P}}[f]-\mathrm{E}_{\mathbb{Q}}[f]\right|\right)
$$

II. Recovery

Hardness of recovering a planted q-coloring

Warm-Up: Partial Coloring

- Cliques of size k with δ fraction of vertices un-colored
- $\delta=\Theta(1)$ or even $\delta=n^{-o(1)}$
- Exact recovery is easy when $k \gg \sqrt{n}$
- Exact recovery is hard when $k \ll \sqrt{n}$
- Why: even if all cliques except one are revealed, still left with a hard instance of planted clique
- Formally: reduction from planted clique
- Adding cliques doesn't make recovery easier

- But this argument won't work for coloring ($\delta=0$)

True Coloring

- Goal: hardness of recovery in \mathbb{P}_{q} when $k \ll \sqrt{n}$
- Want to construct $\widetilde{\mathbb{Q}}$ such that:
- W.h.p., $\widetilde{\mathbb{Q}}$ is not q-colorable
- Distinguishing \mathbb{P}_{q} vs $\widetilde{\mathbb{Q}}$ is hard (for low-degree tests)
- $\widetilde{\mathbb{Q}}=\mathrm{G}(\mathrm{n}, 1 / 2)$? Easy when $k \gg 1$ (total edge count)

- $\widetilde{\mathbb{Q}}=\mathrm{G}(\mathrm{n}, 1 / 2+\epsilon)$? Easy when $k \gg n^{1 / 4}$ (triangle count)
- ???
- $\widetilde{\mathbb{Q}}=\mathbb{P}_{q+1}$ Not q-colorable; hard when $k \ll \sqrt{n}$

Testing q vs $q+\ell$

Theorem: Let $1 \leq q<q+\ell \leq n$.

- (Easy) If $q^{2} \ll \ell n$ then there is a degree- 1 polynomial that strongly separates \mathbb{P}_{q} and $\mathbb{P}_{q+\ell}$.

- (Hard) If $q^{2} \gg \ell n$ then no degree-O(log n) polynomial strongly separates \mathbb{P}_{q} and $\mathbb{P}_{q+\ell}$.

Easy when $q^{2} \ll \ell n$, hard when $q^{2} \gg \ell n$

*Now >> hides $n^{o(1)}$

Testing q vs $q+\ell$: Proof (Lower Bound)

- To rule out strong separation between \mathbb{P} and \mathbb{Q}, suffices to show

$$
\operatorname{Adv}_{\leq D}(\mathbb{P}, \mathbb{Q}):=\max _{f \operatorname{deg} D} \frac{\mathrm{E}_{\mathbb{P}}[f]}{\sqrt{\mathrm{E}_{\mathbb{Q}}\left[f^{2}\right]}}=O(1)
$$

- Standard formula:

$$
\operatorname{Adv}_{\leq D}^{2}(\mathbb{P}, \mathbb{Q})=\sum_{h}\left(\mathrm{E}_{\mathbb{P}}[h]\right)^{2}
$$

where $\{h\}$ is an orthonormal basis for degree-D polynomials w.r.t. \mathbb{Q}

- Straightforward if \mathbb{Q} has independent coordinates, e.g. $G(n, 1 / 2)$
- Our proof builds on [schramm, w'20; Rush, Skerman, w, Yang '22]

Recovery: Summary

- Testing planted q-coloring versus planted- $(q+\ell)$-coloring
- Easy for low-degree polynomials when $q^{2} \ll \ell n$, hard when $q^{2} \gg \ell n$
- $\ell=1$: hard when $q^{2} \gg n$, i.e., $k:=\frac{n}{q} \ll \sqrt{n}$
- Conjecture: no poly-time algorithm can distinguish q vs $\mathrm{q}+1$ if $k \ll \sqrt{n}$
- If true, this conjecture implies: no poly-time algorithm can recover a planted q-coloring when $k \ll \sqrt{n}$
- I.e., simple algorithm (common neighbors) is optimal
- Planted coloring is no easier than planted clique (for recovery)
- Alternative: low-degree lower bound for recovery [Schramm, w'20]

III. Refutation

Hardness of refuting q-colorability in $\mathrm{G}(\mathrm{n}, 1 / 2)$

Refutation: Prior Work

- Recall: refuting q-colorability in $\mathrm{G}(\mathrm{n}, 1 / 2)$ is easy when $k:=\frac{n}{q} \gg \sqrt{n}$
- Sum-of-squares (SoS) lower bounds
- A particular SoS formulation fails when $k \ll \sqrt{n}$ [Kothari, Manohar '21]
- Open to characterize the more canonical formulation (equality constraints)
- Our approach: formulate a new type of refutation lower bound
- Directly based on low-degree polynomials
- Advantages: simplicity, no choice of formulation
- No formal relation to SoS

Low-Degree Refutation

Definition: A polynomial $f:\{0,1\}^{\binom{n}{2}} \rightarrow \mathbb{R}$ strongly separates $\mathbb{Q}=$ $\mathrm{G}(\mathrm{n}, 1 / 2)$ from q-colorable graphs if
(1) $f(A) \geq 1$ for every q-colorable graph A
(2) $\mathrm{E}_{\mathbb{Q}}\left[f^{2}\right]=o(1)$

- Implies refutation: output NO if $f(A)<1$, MAYBE otherwise
- If graph has a q-coloring, output is always MAYBE
- If graph is drawn from \mathbb{Q}, output is NO w.h.p. (Chebyshev)

Low-Degree Refutation: Results

Theorem

- (Easy) If $k \gg \sqrt{n}$, there is a degree- $\mathrm{O}(\log \mathrm{n})$ polynomial that strongly separates $\mathbb{Q}=\mathrm{G}(\mathrm{n}, 1 / 2)$ from q-colorable graphs
- Proof: spectral $f(A)=\operatorname{Tr}\left(A^{2 m}\right)=\sum \lambda_{i}(A)^{2 m} \geq \lambda_{\text {max }}(A)^{2 m}$
- (Hard) If $k \ll n^{1 / 3}$ then no degree-O(log n) polynomial strongly separates $\mathbb{Q}=\mathrm{G}(\mathrm{n}, 1 / 2)$ from q-colorable graphs

Easy when $k \gg \sqrt{n}$, hard when $k \ll n^{1 / 3}$, open when $\mathrm{n}^{1 / 3} \ll k \ll n^{1 / 2}$

Proof (Lower Bound)

- To show hardness of refutation in $\mathbb{Q}=G(n, 1 / 2)$, construct $\widetilde{\mathbb{P}}$ such that:
- W.h.p., $\widetilde{\mathbb{P}}$ is q-colorable
- Distinguishing $\widetilde{\mathbb{P}}$ vs \mathbb{Q} is hard
- Low-degree analogue: If $\widetilde{\mathbb{P}}$ supported on q-colorable graphs and $\operatorname{Adv}_{\leq D}(\widetilde{\mathbb{P}}, \mathbb{Q})=O(1)$ then no degree-D polynomial strongly separates \mathbb{Q} from q-colorable graphs

Proof (Lower Bound)

- Goal: hardness of refuting q-colorability in $\mathbb{Q}=\mathrm{G}(\mathrm{n}, 1 / 2)$, for $k \ll \sqrt{n}$
- Want to construct $\widetilde{\mathbb{P}}$ such that:
- $\widetilde{\mathbb{P}}$ supported on q-colorable graphs
- Distinguishing $\widetilde{\mathbb{P}}$ vs \mathbb{Q} is hard (for low-degree tests)
- What to do outside the cliques?
- $\operatorname{Ber}(1 / 2)$, i.e., $\widetilde{\mathbb{P}}=\mathbb{P}_{q}$? Easy when $k \gg 1$ (total edge count)

- $\operatorname{Ber}(1 / 2-\epsilon)$? Easy when $k \gg n^{1 / 4}$ (triangle count)
- We can reach $k \approx n^{1 / 3}$: plant both cliques and ind. sets
- Open: how to go beyond this?

Refutation: Summary

- We expect it is hard to refute q -colorability in $\mathrm{G}(\mathrm{n}, 1 / 2)$ when $k \ll \sqrt{n}$
- Refuting coloring is no easier than refuting clique
- But we only proved it (in our framework) when $k \ll n^{1 / 3}$
- To close the gap, suffices to construct a "quieter" planted distribution
- Maybe no such distribution exists?
- This would imply a better refutation algorithm!
- Quiet planting approach is "complete"
- Proof: minimax theorem for 2-player game: distribution $\widetilde{\mathbb{P}}$ vs polynomial

Thanks!

