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I. Planted Clique & Planted Coloring

Detection, Recovery, Refutation



Planted Cligue Problem

include each edge with prob 1/2

\\ k=5

* Find a planted k-clique in an n-vertex random graph
e G(n,1/2) + {random k-clique}

* Believed to have a statistical-computational gap

Impossible Hard . Easy

>

/ ZIOIan A Q(\I/ﬁ) X

Any estimator fails Polynomial-time algorithm
succeeds (w.h.p.)

Statistically possible but no poly-time
algorithm known!



Algorithmic Tasks

Alg: count total edges
* Detection: distinguish IP vs Q w.h.p. —
¢ Q: G(n,1/2) Alg: max degree
« P: G(n,1/2) + {k-clique} /
* Recovery: given G ~ P, identify the clique vertices (exactly, w.h.p.)
* Refutation: given G ~ Q, prove there is no k-clique Alg: spectral
(next slide)

* All have poly-time algorithms when k >> +/n (ignoring log factors)
* No poly-time algorithms known when k < +/n



Refuting a Large Cligue Why?

* A —adjacency matrix (+1 valued, 1’s on diagonal)
* If there is a k-clique S € [n],

Amax(4) =

* Under Q = G(n,1/2),
Amax(4) < 34/n w. h. p.
* Refutation alg: output NO if 1,,,,,,(A) < k, MAYBE otherwise

* Succeeds when k > +/n:

* If graph has a k-clique, output is always MAYBE efutation task
* If graph is drawn from @Q, output is NO w.h.p.

IgAls  k*
[ [




Recall: for planted clique, all three tasks (detection, recovery, refutation)
have the same computational threshold k =~ \/n

This is not true in general...



Many Planted Cliques / Planted Coloring

 [P: g disjoint planted cliques of size k=n/q

 Complement graph has a planted g-coloring 1

* Detection: distinguish P, versus Q = G(n,1/2)

1/2

 Easy when k > 1 (count total edges)

* Recovery: given G ~ [P, recover the cliques exactly
* Easy when k > \/n (common neighbors)

* Refutation: given G ~ QQ, prove there is no g-coloring
* Easy when k > \/n (spectral)

* Are these optimal? Is coloring easier than clique?




Our Perspective

* Goal: understand computational complexity of (1) recovery in [P, and
(2) refutation of g-colorability in Q = G(n,1/2)

* Forget detection for now... but we will introduce various testing
problems as proof constructs

* No formal relation between recovery and refutation
e Refutation can be strictly harder



Hardness of Recovery/Refutation (Clique)

* Back to planted clique: assume detection is hard when k < /n
* P (planted k-clique) vs Q = G(n,1/2)

* Recovery (in P) must be hard when 1 K k < \/n 1
* W.h.p., ©Q has no k-clique P
* If you could recover, you could distinguish P vs Q 1/2

* Refuting a k-clique in Q must be hard when k < \n

* W.h.p, P has a k-clique
* If you could refute, you could distinguish IP vs Q

Detection Q 1/2

/N

Recovery Refutation



Hardness of Recovery/Refutation (Coloring)

* To show hardness of recovery in P, construct Q such that:
« W.h.p., Q is not g-colorable

* Distinguishing IP; vs Q is hard 1

* Why: if you could recover, you could distinguish I, vs Q P

1/2

* To show hardness of refutation in Q = G(n,1/2),

construct P such that:
e W.h.p., P is g-colorable

* Distinguishing P vs Q is hard
 Why: if you could refute, you could distinguish P vs Q Q

1/2




Low-Degree Testing

* Low-degree test: multivariate polynomial of degree O(log n)

f: {0,1}(3) - R
/ \

Input: graph Output: number

Q P
e E.g. count edges, triangles, ... w %
e “Success”: f strongly separates P and Q if

f f
\/Var[p(f) VVar@ (f) = o(|Eplf] — E(@[f]D l l




II. Recovery

Hardness of recovering a planted g-coloring



Warm-Up: Partial Coloring

* Cliques of size k with 0 fraction of vertices un-colored
« §=0(1)orevens§ = n= oW

* Exact recovery is easy when k > \/n

* Exact recovery is hard when k < \/n

 Why: even if all cligues except one are revealed, still left
with a hard instance of planted clique

* Formally: reduction from planted clique

e Adding cliques doesn’t make recovery easier
e But this argument won’t work for coloring (6 = 0)

on

1/2




True Coloring

* Goal: hardness of recovery in P, when k < +/n

« Want to construct Q such that:
« W.h.p., Q is not g-colorable
* Distinguishing IP; vs Q is hard (for low-degree tests) P

* Q =G(n,1/2)? Easy when k > 1 (total edge count)

* Q = G(n,1/2+€)? Easy when k > n'/* (triangle count)
« 777

1/2




Testinggvs g + ¥

Theorem:Llet1 < g<qg+{¥ <n.

e (Easy) If g% < ¥n then there is a degree-1 polynomial
that strongly separates P, and P ,.

e (Hard) If g% > #n then no degree-O(log n)
polynomial strongly separates I, and P, ,.

Easy when g* « £n, hard when g* > fn
*Now > hides n°(1)

1/2




Testing g vs g + £: Proof (Lower Bound)

* To rule out strong separation between IP and Q, suffices to show

Eplf]
Eqlf?]

Adv.p (P, Q) := max

f degD - 0(1)

e Standard formula:
AdvZ,(P,Q) = ) (Ep[h])’
h

where {h} is an orthonormal basis for degree-D polynomials w.r.t. Q
e Straightforward if Q has independent coordinates, e.g. G(n,1/2)
e Our proof builds on



Recovery: Summary

* Testing planted g-coloring versus planted-(g + £)-coloring
e Easy for low-degree polynomials when g? « ¥#n, hard when g# > #n

e« £ = 1:hard when g% > n, i.e., k = s K +n

* Conjecture: no poly-time algorithm can distinguish q vs q+1 if k < /n
* If true, this conjecture implies: no poly-time algorithm can recover a planted
g-coloring when k < \n
* |.e., simple algorithm (common neighbors) is optimal
* Planted coloring is no easier than planted clique (for recovery)

 Alternative: low-degree lower bound for recovery



III. Refutation

Hardness of refuting g-colorability in G(n,1/2)



Refutation: Prior Work

 Recall: refuting g-colorability in G(n,1/2) is easy when k = g > \n

e Sum-of-squares (SoS) lower bounds

* A particular SoS formulation fails when k < \/n
* Open to characterize the more canonical formulation (equality constraints)

* Our approach: formulate a new type of refutation lower bound
* Directly based on low-degree polynomials
* Advantages: simplicity, no choice of formulation
* No formal relation to SoS



Low-Degree Refutation

n
Definition: A polynomial f: {0,1}(2) — R strongly separates Q =
G(n,1/2) from qg-colorable graphs if

(1) f(A) = 1 for every g-colorable graph A
(2) Elf?] = o(1)

* Implies refutation: output NO if f(4) < 1, MAYBE otherwise
* |f graph has a g-coloring, output is always MAYBE
* If graph is drawn from Q, output is NO w.h.p. (Chebyshev)



Low-Degree Refutation: Results

Theorem

e (Easy) If k > +/n, there is a degree-O(log n) polynomial that strongly
separates Q = G(n,1/2) from g-colorable graphs
* Proof: spectral f(4) = Tr(4%™) = Y 1,;(A)*™ > A . (A)*™
e (Hard) If k < n/3 then no degree-O(log n) polynomial strongly
separates Q = G(n,1/2) from g-colorable graphs

Fasy when k >> /1, hard when k < n'/3, open when n'/3 « k « nl/2



Proof (Lower Bound)

* To show hardness of refutation in Q = G(n,1/2), construct PP such that:
e W.h.p., P is g-colorable
e Distinguishing P vs Q is hard
« Low-degree analogue: If P supported on g-colorable graphs and
Adv.p (I'[B, (@) = 0(1) then no degree-D polynomial strongly
separates () from g-colorable graphs



Proof (Lower Bound)

 Goal: hardness of refuting g-colorability in Q = G(n,1/2), for k < +/n

« Want to construct P such that:

e P supported orlq—colorable graphs
* Distinguishing IP vs Q is hard (for low-degree tests)
 What to do outside the cliques?
 Ber(1/2),i.e., P = P,? Easy when k >> 1 (total edge count)
e Ber(1/2-€)? Easy when k > n'/# (triangle count)
 We can reach k = n/3: plant both cliques and ind. sets

* Open: how to go beyond this?

=N

Q

27

1/2




Refutation: Summary

* We expect it is hard to refute g-colorability in G(n,1/2) when k < +/n

* Refuting coloring is no easier than refuting clique

« But we only proved it (in our framework) when k <« n1/3

* To close the gap, suffices to construct a “quieter” planted distribution

* Maybe no such distribution exists?
* This would imply a better refutation algorithm!
* Quiet planting approach is “complete”
e Proof: minimax theorem for 2-player game: distribution P vs polynomial

Thanks!
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