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I. Planted Clique & Planted Coloring

Detection, Recovery, Refutation



• Find a planted k-clique in an n-vertex random graph
• G(n,1/2) + {random k-clique}

• Believed to have a statistical-computational gap

                  

Planted Clique Problem

Any estimator fails

[Arias-Castro, Verzelen ’14]

Polynomial-time algorithm 
succeeds (w.h.p.)

[Alon, Krivelevich, Sudakov ‘98]Statistically possible but no poly-time 
algorithm known!

k = 5

kΩ( 𝑛)2 log2 𝑛

include each edge with prob 1/2
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• Detection: distinguish ℙ vs ℚ w.h.p.
• ℚ:   G(n,1/2)

• ℙ:   G(n,1/2) + {k-clique}

• Recovery: given G ∼ ℙ, identify the clique vertices (exactly, w.h.p.)

• Refutation: given G ∼ ℚ, prove there is no k-clique

• All have poly-time algorithms when 𝑘 ≫ 𝑛 (ignoring log factors)

• No poly-time algorithms known when 𝑘 ≪ 𝑛

Algorithmic Tasks
Alg: count total edges

Alg: max degree

Alg: spectral
(next slide)



• A – adjacency matrix   (±1 valued, 1’s on diagonal)

• If there is a k-clique 𝑆 ⊆ 𝑛 ,

𝜆max 𝐴 ≥
𝟙𝑆
⊤𝐴𝟙𝑆
𝟙𝑆

2
=
𝑘2

𝑘
= 𝑘

• Under ℚ = G(n,1/2),
𝜆max 𝐴 ≤ 3 𝑛 w. h. p.

• Refutation alg: output NO if 𝜆𝑚𝑎𝑥 𝐴 < 𝑘, MAYBE otherwise

• Succeeds when 𝑘 ≫ 𝑛:
• If graph has a k-clique, output is always MAYBE
• If graph is drawn from ℚ, output is NO w.h.p.

Refuting a Large Clique

refutation task

Why?



Recall: for planted clique, all three tasks (detection, recovery, refutation) 
have the same computational threshold 𝑘 ≈ 𝑛

This is not true in general…



• ℙ: q disjoint planted cliques of size k=n/q
• Complement graph has a planted q-coloring

• Detection: distinguish ℙ𝑞 versus ℚ = G(n,1/2)
• Easy when 𝑘 ≫ 1 (count total edges)

• Recovery: given G ∼ ℙ𝑞, recover the cliques exactly
• Easy when 𝑘 ≫ 𝑛 (common neighbors)

• Refutation: given G ∼ ℚ, prove there is no q-coloring
• Easy when 𝑘 ≫ 𝑛 (spectral)

• Are these optimal?  Is coloring easier than clique?

Many Planted Cliques / Planted Coloring
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• Goal: understand computational complexity of (1) recovery in ℙ𝑞 and
(2) refutation of q-colorability in ℚ = G(n,1/2)

• Forget detection for now… but we will introduce various testing 
problems as proof constructs

• No formal relation between recovery and refutation

• Refutation can be strictly harder  [Bandeira, Banks, Kunisky, Moore, W ’20]

Our Perspective



• Back to planted clique: assume detection is hard when 𝑘 ≪ 𝑛
• ℙ (planted k-clique) vs ℚ = G(n,1/2)

• Recovery (in ℙ) must be hard when 1 ≪ 𝑘 ≪ 𝑛
• W.h.p., ℚ has no k-clique

• If you could recover, you could distinguish ℙ vs ℚ

• Refuting a k-clique in ℚ must be hard when 𝑘 ≪ 𝑛
• W.h.p, ℙ has a k-clique

• If you could refute, you could distinguish ℙ vs ℚ

Hardness of Recovery/Refutation (Clique)

Detection

Recovery Refutation
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ℙ



• To show hardness of recovery in ℙ𝑞, construct ෩ℚ such that:
• W.h.p., ෩ℚ is not q-colorable

• Distinguishing ℙ𝑞 vs ෩ℚ is hard

• Why: if you could recover, you could distinguish ℙ𝑞 vs ෩ℚ

• To show hardness of refutation in ℚ = G(n,1/2),
construct ෩ℙ such that:
• W.h.p., ෩ℙ is q-colorable

• Distinguishing ෩ℙ vs ℚ is hard

• Why: if you could refute, you could distinguish ෩ℙ vs ℚ

Hardness of Recovery/Refutation (Coloring)
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Low-Degree Testing

• Low-degree test: multivariate polynomial of degree O(log n)

• E.g. count edges, triangles, …

• “Success”: f strongly separates ℙ and ℚ if

ℚ ℙ

𝑓 𝑓
separated

Input: graph Output: number

𝑓: {0,1}
𝑛
2 → ℝ

[Hopkins, Steurer ‘17; Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer ’17; Hopkins ’18; Kunisky, W, Bandeira ’19, …]

Varℙ 𝑓 ∨ Varℚ (𝑓) = 𝑜(|Eℙ 𝑓 − Eℚ[𝑓]|)



II. Recovery

Hardness of recovering a planted q-coloring



• Cliques of size k with 𝛿 fraction of vertices un-colored
• 𝛿 = Θ(1) or even 𝛿 = 𝑛−𝑜(1)

• Exact recovery is easy when 𝑘 ≫ 𝑛

• Exact recovery is hard when 𝑘 ≪ 𝑛
• Why: even if all cliques except one are revealed, still left 

with a hard instance of planted clique

• Formally: reduction from planted clique

• Adding cliques doesn’t make recovery easier

• But this argument won’t work for coloring (𝛿 = 0)

Warm-Up: Partial Coloring
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• Goal: hardness of recovery in ℙ𝑞 when 𝑘 ≪ 𝑛

• Want to construct ෩ℚ such that:
• W.h.p., ෩ℚ is not q-colorable

• Distinguishing ℙ𝑞 vs ෩ℚ is hard (for low-degree tests)

• ෩ℚ = G(n,1/2)?   Easy when 𝑘 ≫ 1 (total edge count)

• ෩ℚ = G(n,1/2+𝜖)?   Easy when 𝑘 ≫ 𝑛1/4 (triangle count)

• ???

• ෩ℚ = ℙ𝑞+1 Not q-colorable; hard when 𝑘 ≪ 𝑛

True Coloring
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Theorem: Let 1 ≤ 𝑞 < 𝑞 + ℓ ≤ 𝑛.

• (Easy) If 𝑞2 ≪ ℓ𝑛 then there is a degree-1 polynomial 
that strongly separates ℙ𝑞 and ℙ𝑞+ℓ.

• (Hard) If 𝑞2 ≫ ℓ𝑛 then no degree-O(log n) 
polynomial strongly separates ℙ𝑞 and ℙ𝑞+ℓ.

Easy when 𝑞2 ≪ ℓ𝑛, hard when 𝑞2 ≫ ℓ𝑛

*Now ≫ hides 𝑛𝑜(1)

Testing 𝑞 vs 𝑞 + ℓ
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• To rule out strong separation between ℙ and ℚ, suffices to show

• Standard formula:

where {ℎ} is an orthonormal basis for degree-D polynomials w.r.t. ℚ

• Straightforward if ℚ has independent coordinates, e.g. G(n,1/2)

• Our proof builds on [Schramm, W ’20; Rush, Skerman, W, Yang ‘22]

Testing 𝑞 vs 𝑞 + ℓ: Proof (Lower Bound)

Adv≤𝐷(ℙ,ℚ) ≔ max
𝑓 deg 𝐷

Eℙ 𝑓

Eℚ 𝑓2
= 𝑂(1)

Adv≤𝐷
2 (ℙ,ℚ) =෍

ℎ

Eℙ[ℎ]
2



• Testing planted 𝑞-coloring versus planted- 𝑞 + ℓ -coloring
• Easy for low-degree polynomials when 𝑞2 ≪ ℓ𝑛, hard when 𝑞2 ≫ ℓ𝑛

• ℓ = 1: hard when 𝑞2 ≫ 𝑛, i.e., 𝑘 ≔
𝑛

𝑞
≪ 𝑛

• Conjecture: no poly-time algorithm can distinguish q vs q+1 if 𝑘 ≪ 𝑛
• If true, this conjecture implies: no poly-time algorithm can recover a planted 

q-coloring when 𝑘 ≪ 𝑛

• I.e., simple algorithm (common neighbors) is optimal

• Planted coloring is no easier than planted clique (for recovery)

• Alternative: low-degree lower bound for recovery [Schramm, W ‘20]

Recovery: Summary



III. Refutation

Hardness of refuting q-colorability in G(n,1/2)



• Recall: refuting q-colorability in G(n,1/2) is easy when 𝑘 ≔
𝑛

𝑞
≫ 𝑛

• Sum-of-squares (SoS) lower bounds
• A particular SoS formulation fails when 𝑘 ≪ 𝑛 [Kothari, Manohar ‘21]

• Open to characterize the more canonical formulation (equality constraints)

• Our approach: formulate a new type of refutation lower bound
• Directly based on low-degree polynomials

• Advantages: simplicity, no choice of formulation

• No formal relation to SoS

Refutation: Prior Work



Definition: A polynomial 𝑓: {0,1}
𝑛
2 → ℝ strongly separates ℚ = 

G(n,1/2) from q-colorable graphs if

(1) 𝑓 𝐴 ≥ 1 for every q-colorable graph 𝐴

(2) Eℚ 𝑓2 = 𝑜(1)

• Implies refutation: output NO if 𝑓 𝐴 < 1, MAYBE otherwise
• If graph has a q-coloring, output is always MAYBE

• If graph is drawn from ℚ, output is NO w.h.p. (Chebyshev)

Low-Degree Refutation



Theorem

• (Easy) If 𝑘 ≫ 𝑛, there is a degree-O(log n) polynomial that strongly 
separates ℚ = G(n,1/2) from q-colorable graphs
• Proof: spectral 𝑓 𝐴 = Tr 𝐴2𝑚 = ∑𝜆𝑖 𝐴

2𝑚 ≥ 𝜆max 𝐴
2𝑚

• (Hard) If 𝑘 ≪ 𝑛1/3 then no degree-O(log n) polynomial strongly 
separates ℚ = G(n,1/2) from q-colorable graphs

Easy when 𝑘 ≫ 𝑛, hard when 𝑘 ≪ 𝑛1/3, open when n1/3 ≪ 𝑘 ≪ 𝑛1/2

Low-Degree Refutation: Results



• To show hardness of refutation in ℚ = G(n,1/2), construct ෩ℙ such that:
• W.h.p., ෩ℙ is q-colorable

• Distinguishing ෩ℙ vs ℚ is hard

• Low-degree analogue: If ෩ℙ supported on q-colorable graphs and 
Adv≤𝐷 ෩ℙ,ℚ = 𝑂(1) then no degree-D polynomial strongly 
separates ℚ from q-colorable graphs

Proof (Lower Bound)



• Goal: hardness of refuting q-colorability in ℚ = G(n,1/2), for 𝑘 ≪ 𝑛

• Want to construct ෩ℙ such that:
• ෩ℙ supported on q-colorable graphs
• Distinguishing ෩ℙ vs ℚ is hard (for low-degree tests)

• What to do outside the cliques?

• Ber(1/2), i.e., ෩ℙ = ℙ𝑞?  Easy when 𝑘 ≫ 1 (total edge count)

• Ber(1/2-𝜖)?  Easy when 𝑘 ≫ 𝑛1/4 (triangle count)

• We can reach 𝑘 ≈ 𝑛1/3: plant both cliques and ind. sets

• Open: how to go beyond this?

Proof (Lower Bound)
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• We expect it is hard to refute q-colorability in G(n,1/2) when 𝑘 ≪ 𝑛
• Refuting coloring is no easier than refuting clique

• But we only proved it (in our framework) when 𝑘 ≪ 𝑛1/3

• To close the gap, suffices to construct a “quieter” planted distribution

• Maybe no such distribution exists?
• This would imply a better refutation algorithm!

• Quiet planting approach is “complete”

• Proof: minimax theorem for 2-player game: distribution ෩ℙ vs polynomial

Thanks!

Refutation: Summary
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