Is Planted Coloring Easier than Planted Clique?

Alex Wein UC Davis

Joint work with: Pravesh Kothari, Santosh Vempala, Jeff Xu

I. Planted Clique & Planted Coloring

Detection, Recovery, Refutation

Planted Clique Problem

- Find a planted k-clique in an n-vertex random graph
 - G(n,1/2) + {random k-clique}
- Believed to have a statistical-computational gap

Algorithmic Tasks

- **Detection**: distinguish \mathbb{P} vs \mathbb{Q} w.h.p.
 - Q: G(n,1/2)
 - ℙ: G(n,1/2) + {k-clique}
- **Recovery**: given $G \sim \mathbb{P}$, identify the clique vertices (exactly, w.h.p.)

Alg: count total edges

Alg: max degree

- **Refutation**: given $G \sim \mathbb{Q}$, *prove* there is no k-clique (next slide)
- All have poly-time algorithms when $k \gg \sqrt{n}$ (ignoring log factors)
- No poly-time algorithms known when $k \ll \sqrt{n}$

Refuting a Large Clique

- A adjacency matrix $(\pm 1 \text{ valued}, 1' \text{ s on diagonal})$
- If there is a k-clique $S \subseteq [n]$, $\lambda_{\max}(A) \ge \frac{\mathbb{1}_S^{\mathsf{T}} A \mathbb{1}_S}{\|\mathbb{1}_S\|^2} = \frac{k^2}{k} = k$
- Under $\mathbb{Q} = G(n, 1/2)$, $\lambda_{\max}(A) \le 3\sqrt{n}$ w.h.p.
- Refutation alg: output NO if $\lambda_{max}(A) < k$, MAYBE otherwise
- Succeeds when $k \gg \sqrt{n}$:
 - If graph has a k-clique, output is *always* MAYBE
 If graph is drawn from Q, output is NO w.h.p.

Recall: for planted clique, all three tasks (detection, recovery, refutation) have the same computational threshold $k \approx \sqrt{n}$

This is not true in general...

Many Planted Cliques / Planted Coloring

- \mathbb{P} : q disjoint planted cliques of size k=n/q
 - Complement graph has a planted q-coloring
- **Detection**: distinguish \mathbb{P}_q versus $\mathbb{Q} = G(n, 1/2)$
 - Easy when $k \gg 1$ (count total edges)
- **Recovery**: given $G \sim \mathbb{P}_q$, recover the cliques exactly
 - Easy when $k \gg \sqrt{n}$ (common neighbors)
- **Refutation**: given $G \sim \mathbb{Q}$, *prove* there is no q-coloring
 - Easy when $k \gg \sqrt{n}$ (spectral)
- Are these optimal? Is coloring easier than clique?

Our Perspective

- **Goal**: understand computational complexity of (1) recovery in \mathbb{P}_q and (2) refutation of q-colorability in $\mathbb{Q} = G(n, 1/2)$
- Forget detection for now... but we will introduce various testing problems as proof constructs
- No formal relation between recovery and refutation
- Refutation can be strictly harder [Bandeira, Banks, Kunisky, Moore, W'20]

Hardness of Recovery/Refutation (Clique)

- Back to planted clique: assume detection is hard when $k \ll \sqrt{n}$
 - \mathbb{P} (planted k-clique) vs $\mathbb{Q} = G(n, 1/2)$
- Recovery (in $\mathbb P$) must be hard when $1 \ll k \ll \sqrt{n}$
 - W.h.p., \mathbb{Q} has no k-clique
 - If you could recover, you could distinguish $\mathbb P$ vs $\mathbb Q$
- Refuting a k-clique in $\mathbb Q$ must be hard when $k \ll \sqrt{n}$
 - W.h.p, \mathbb{P} has a k-clique
 - If you could refute, you could distinguish $\mathbb P$ vs $\mathbb Q$

1/2

 \bigcirc

Hardness of Recovery/Refutation (Coloring)

- To show hardness of recovery in \mathbb{P}_q , construct $\widetilde{\mathbb{Q}}$ such that:
 - W.h.p., $\widetilde{\mathbb{Q}}$ is not q-colorable
 - Distinguishing \mathbb{P}_q vs $\widetilde{\mathbb{Q}}$ is hard
 - Why: if you could recover, you could distinguish \mathbb{P}_q vs $\widetilde{\mathbb{Q}}$
- To show hardness of refutation in $\mathbb{Q} = G(n, 1/2)$, construct $\widetilde{\mathbb{P}}$ such that:
 - W.h.p., $\widetilde{\mathbb{P}}$ is q-colorable
 - Distinguishing $\widetilde{\mathbb{P}}$ vs \mathbb{Q} is hard
 - Why: if you could refute, you could distinguish $\widetilde{\mathbb{P}}$ vs \mathbb{Q}

1/2

 \mathbb{Q}

Low-Degree Testing

[Hopkins, Steurer '17; Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer '17; Hopkins '18; Kunisky, W, Bandeira '19, ...]

• Low-degree test: multivariate polynomial of degree O(log n)

- E.g. count edges, triangles, ...
- "Success": f strongly separates \mathbb{P} and \mathbb{Q} if

$$\sqrt{\operatorname{Var}_{\mathbb{P}}(f) \vee \operatorname{Var}_{\mathbb{Q}}(f)} = o(|\mathsf{E}_{\mathbb{P}}[f] - \mathsf{E}_{\mathbb{Q}}[f]|)$$

II. Recovery

Hardness of recovering a planted q-coloring

Warm-Up: Partial Coloring

- Cliques of size k with δ fraction of vertices un-colored
 - $\delta = \Theta(1)$ or even $\delta = n^{-o(1)}$
- Exact recovery is easy when $k \gg \sqrt{n}$
- Exact recovery is hard when $k \ll \sqrt{n}$
 - Why: even if all cliques except one are revealed, still left with a hard instance of planted clique
 - Formally: reduction from planted clique
- Adding cliques doesn't make recovery easier
- But this argument won't work for coloring ($\delta=0$)

True Coloring

- Goal: hardness of recovery in \mathbb{P}_q when $k \ll \sqrt{n}$
- Want to construct $\widetilde{\mathbb{Q}}$ such that:
 - W.h.p., $\widetilde{\mathbb{Q}}$ is not q-colorable
 - Distinguishing \mathbb{P}_q vs $\widetilde{\mathbb{Q}}$ is hard (for low-degree tests)
- $\widetilde{\mathbb{Q}} = G(n, 1/2)$? Easy when $k \gg 1$ (total edge count)
- $\widetilde{\mathbb{Q}} = G(n, 1/2 + \epsilon)$? Easy when $k \gg n^{1/4}$ (triangle count)
- ???
- $\widetilde{\mathbb{Q}} = \mathbb{P}_{q+1}$ Not q-colorable; hard when $k \ll \sqrt{n}$

Testing q vs $q + \ell$

Theorem: Let $1 \le q < q + \ell \le n$.

- (Easy) If $q^2 \ll \ell n$ then there is a degree-1 polynomial that strongly separates \mathbb{P}_q and $\mathbb{P}_{q+\ell}$.
- (Hard) If $q^2 \gg \ell n$ then no degree-O(log n) polynomial strongly separates \mathbb{P}_q and $\mathbb{P}_{q+\ell}$.

Easy when $q^2 \ll \ell n$, hard when $q^2 \gg \ell n$ *Now \gg hides $n^{o(1)}$

Testing q vs $q + \ell$: Proof (Lower Bound)

• To rule out strong separation between \mathbb{P} and \mathbb{Q} , suffices to show

$$\operatorname{Adv}_{\leq D}(\mathbb{P}, \mathbb{Q}) \coloneqq \max_{f \operatorname{deg} D} \frac{\operatorname{E}_{\mathbb{P}}[f]}{\sqrt{\operatorname{E}_{\mathbb{Q}}[f^2]}} = O(1)$$

• Standard formula:

$$\operatorname{Adv}_{\leq D}^{2}(\mathbb{P},\mathbb{Q}) = \sum_{h} (\operatorname{E}_{\mathbb{P}}[h])^{2}$$

where $\{h\}$ is an orthonormal basis for degree-D polynomials w.r.t. \mathbb{Q}

- Straightforward if \mathbb{Q} has independent coordinates, e.g. G(n,1/2)
- Our proof builds on [Schramm, W'20; Rush, Skerman, W, Yang '22]

Recovery: Summary

- Testing planted q-coloring versus planted- $(q + \ell)$ -coloring
 - Easy for low-degree polynomials when $q^2 \ll \ell n$, hard when $q^2 \gg \ell n$
 - $\ell = 1$: hard when $q^2 \gg n$, i.e., $k := \frac{n}{q} \ll \sqrt{n}$
- Conjecture: no poly-time algorithm can distinguish q vs q+1 if $k \ll \sqrt{n}$
 - If true, this conjecture implies: no poly-time algorithm can recover a planted q-coloring when $k \ll \sqrt{n}$
 - I.e., simple algorithm (common neighbors) is optimal
 - Planted coloring is no easier than planted clique (for recovery)
- Alternative: low-degree lower bound for recovery [Schramm, W '20]

III. Refutation

Hardness of refuting q-colorability in G(n, 1/2)

Refutation: Prior Work

- Recall: refuting q-colorability in G(n,1/2) is easy when $k \coloneqq \frac{n}{a} \gg \sqrt{n}$
- Sum-of-squares (SoS) lower bounds
 - A particular SoS formulation fails when $k \ll \sqrt{n}$ [Kothari, Manohar '21]
 - Open to characterize the more canonical formulation (equality constraints)
- Our approach: formulate a new type of refutation lower bound
 - Directly based on low-degree polynomials
 - Advantages: simplicity, no choice of formulation
 - No formal relation to SoS

Low-Degree Refutation

Definition: A polynomial $f: \{0,1\}^{\binom{n}{2}} \to \mathbb{R}$ strongly separates $\mathbb{Q} = G(n,1/2)$ from q-colorable graphs if (1) $f(A) \ge 1$ for every q-colorable graph A (2) $\mathbb{E}_{\mathbb{Q}}[f^2] = o(1)$

- Implies refutation: output NO if f(A) < 1, MAYBE otherwise
 - If graph has a q-coloring, output is *always* MAYBE
 - If graph is drawn from Q, output is NO w.h.p. (Chebyshev)

Low-Degree Refutation: Results

Theorem

• (Easy) If $k \gg \sqrt{n}$, there is a degree-O(log n) polynomial that strongly separates $\mathbb{Q} = G(n, 1/2)$ from q-colorable graphs

• Proof: spectral $f(A) = \operatorname{Tr}(A^{2m}) = \sum \lambda_i(A)^{2m} \ge \lambda_{\max}(A)^{2m}$

• (Hard) If $k \ll n^{1/3}$ then no degree-O(log n) polynomial strongly separates $\mathbb{Q} = G(n, 1/2)$ from q-colorable graphs

Easy when $k \gg \sqrt{n}$, hard when $k \ll n^{1/3}$, open when $n^{1/3} \ll k \ll n^{1/2}$

Proof (Lower Bound)

• To show hardness of refutation in $\mathbb{Q} = G(n, 1/2)$, construct $\widetilde{\mathbb{P}}$ such that:

- W.h.p., $\widetilde{\mathbb{P}}$ is q-colorable
- Distinguishing $\widetilde{\mathbb{P}}$ vs \mathbb{Q} is hard
- Low-degree analogue: If $\widetilde{\mathbb{P}}$ supported on q-colorable graphs and $\operatorname{Adv}_{\leq D}(\widetilde{\mathbb{P}}, \mathbb{Q}) = O(1)$ then no degree-D polynomial strongly separates \mathbb{Q} from q-colorable graphs

Proof (Lower Bound)

- Goal: hardness of refuting q-colorability in $\mathbb{Q} = G(n, 1/2)$, for $k \ll \sqrt{n}$
- Want to construct $\widetilde{\mathbb{P}}$ such that:
 - $\widetilde{\mathbb{P}}$ supported on q-colorable graphs
 - Distinguishing $\widetilde{\mathbb{P}}$ vs \mathbb{Q} is hard (for low-degree tests)
- What to do outside the cliques?
- Ber(1/2), i.e., $\widetilde{\mathbb{P}} = \mathbb{P}_q$? Easy when $k \gg 1$ (total edge count)
- Ber(1/2- ϵ)? Easy when $k \gg n^{1/4}$ (triangle count)
- We can reach $k \approx n^{1/3}$: plant both cliques and ind. sets
- Open: how to go beyond this?

1/2

 \mathbb{Q}

Refutation: Summary

- We expect it is hard to refute q-colorability in G(n,1/2) when $k \ll \sqrt{n}$
 - Refuting coloring is no easier than refuting clique
- But we only proved it (in our framework) when $k \ll n^{1/3}$
- To close the gap, suffices to construct a "quieter" planted distribution
- Maybe no such distribution exists?
 - This would imply a better refutation algorithm!
 - Quiet planting approach is "complete"
 - Proof: minimax theorem for 2-player game: distribution $\widetilde{\mathbb{P}}$ vs polynomial

Thanks!